
3-1

Chapter 3 Event-based Particle Transport

The choices that we will be normally making in the course of following a particle in a Monte

Carlo transport calculation are

1. Particle initial position

2. Particle initial energy

3. Particle initial direction

4. Distance to next collision

5. Type of collision

6. Outcome of a scattering event (new energy and directions)

3.1 Choosing initial position
The basic mathematical approach to picking the initial position in three-dimensional space is to

relate three random numbers 1 2 3(, ,) to the three position coordinates—usually either

Cartesian (, ,)x y z or cylindrical (, ,)r z or spherical (, ,)r).

To do this a “volume” in random number space is equated with a fractional volume in the

physical space, e.g., in Cartesian:

() () ()1 2 3

total

dV
d d d x dx y dy z dz

V
 = =

 (3-1)

to obtain a separable set of PDFs for sampling the three coordinates (e.g., x, y, and z).

So the hard work comes from precisely defining the volume element dV in terms of differentials

of the three position coordinates. Theoretically, this could be done in any of the 13 orthogonal

geometries used in mathematical physics, but we will restrict ourselves to the three that MCNP

uses: Cartesian, cylindrical, and spherical.

Cartesian coordinate system

The classic shape in Cartesian coordinate systems is a right parallelpiped (i.e., 3D rectangle) in

(x,y,z) with upper and lower limits of 0x and 1x in x, 0y and 1y in y, and 0z and 1z in z:

3-2

A differential volume element would be defined by:

 dV dx dy dz=

(3-2)

Using our mathematical form gives us:

1 2 3

1 0 1 0 1 0() () ()total

dV dx dy dz
d d d

V x x y y z z
 = =

− − −

 (3-3)

Taking advantage of the separability, we can assign 1 to x, 2 to y, and 3 to z to get:

()1

1 0()

dx
d x dx

x x
 = =

−

()2

1 0()

dy
d y dy

y y
 = =

−

and

3-3

()3

1 0()

dz
d z dz

z z
 = =

−

 (3-4)

Looking at the rightmost equal sign of the three above equations, we immediately have the PDF

(with an obvious upper and lower limit for each variable):

()

()

()

0 1

1 0

0 1

1 0

0 1

1 0

1
 ;

()

1
 ;

()

1
 ;

()

x x x x
x x

y y y y
y y

z z z z
z z

=
−

=
−

=
−

(3-5)

This means, of course, that each of the coordinates x, y, and z would be chosen according to

constant distributions over their respective domains, giving us:

 ()

()

()

0 1 1 0

0 2 1 0

0 3 1 0

x x x x

y y y y

z z z z

= + −

= + −

= + −

(3-6)

Cylindrical coordinate system

For a cylinder of radius 0r and z limits 0z and 1z :

3-4

The volume element is:

 ()dV rd drdz rdr d dz = =

(3-7)

Where is the azimuthal angle, which goes from 0 to 2 .

Following the same path as before gives us:

1 2 3 2

0 1 0()total

dV rdr d dz
d d d

V r z z

= =

−

 (3-8)

The distributions for each of the dimensions are:

()

()

()

02

0

0 1

1 0

 ; 0

2

1
 ; 0 2

2

1
 ;

()

r
r r r

r

z z z z
z z

=

=

=
−

(3-9)

 (where normalization of the PDFs guided us to how much of the denominator was “assigned” to

each of the variables).

Use of these PDFs over the domains of the dimensions would result in the following equations

for choosing the position variables:

()

0 1

2

0 3 1 0

2

r r

z z z z

=

=

= + −

(3-10)

In the Cartesian coordinate system (that most Monte Carlo codes use) these would be translated

into:

 cos

sin

x r

y r

z z

=

=

=

(3-11)

3-5

Spherical coordinate system

For a sphere of radius 0r with dimensions r (distance from origin), (polar angle), and

(azimuthal angle):

The volume element is:

 ()()() 2sin sindV r d rd dr r dr d d = =

(3-12)

Analogous to the previous two examples, we have:

 2

1 2 3
3

0

sin

4

3
total

dV r dr d d
d d d

V
r

= =

 (3-13)

The distributions for each of the dimensions, then are:

3-6

()

()

()

2

03

0

 ; 0

3

sin
 ; 0

2

1
 ; 0 2

2

r
r r r

r

=

=

=

(3-14)

Use of these PDFs over the domains of the dimensions would result in the following equations

for choosing the position variables:

()

3
0 1

1

2

3

cos 1 2

2

r r

−

=

= −

=

(3-15)

In the Cartesian coordinate system, these would be translated into:

 sin cos

sin sin

cos

x r

y r

z r

=

=

=

(3-16)

Choosing an initial point from multiple sources

For a situation in which source particles are chosen from multiple source (possibly of various

shapes, sizes, and source rate density), the user should apply a probability mixing strategy

whereby:

7. A source is chosen from the multiple sources using the fractional source rate in each

source (in units of particles/sec) as a discrete PDF used to choose one source.

[NOTE: Pay attention to the fact that the choice between sources is not based on

particles/volume/sec but on particles/sec. You have to multiply by the volume of

each volumetric source (and area of each area source and length of each line

source).]

8. A point within the chosen source is picked using the appropriate shape's equations from

above.

3-7

Non-uniform spatial distributions

One additional consideration is what should be done if the spatial source distribution is not

uniform within a volumetric source. In this case, the PDFs for the individual dimensions would

be multiplied by the non-uniform distribution.

Example: How would you choose a point inside a spherical source if the source

is distributed in volume according to ()
2

sin

r
f r

= ?

Answer: In this case, the probability for a differential volume element would be:

()
2

2

4

sin
sin

r
f r dV r dr d d

r dr d d

=

=

The (unnormalized) PDFs for each of the dimensions, then would become:

()

()

()

4

1

1

r r

=

=

=

Use of these PDFs over the domains of the dimensions would result in the

following equations for choosing the position variables.

5
0 1

2

32

r r

=

=

=

3.2 Choosing initial energy and distribution
The choice of direction uses a 2D version of the technique we used in the previous section, based

on probabilities on d , which is a differential element of solid angle on the surface of a unit

sphere:

3-8

with the value:

 sind d d =

(3-17)

where we note that the specification of the polar axis to be the z axis in this figure is completely

arbitrary. The polar axis can be oriented in any direction that the analyst desires.

If we define cos , this becomes:

 d d d = −
(3-18)

where the minus sign is present because decreases as increases. (We will reverse it from

here on and let vary from its minimum to maximum, like the other variables (i.e., effectively

redefining the polar angle to go from south pole to north pole).

Equating a two dimensional “area” of “random number space” to this relative area:

1 2

4 2 2

d d d
d d

= =

 (3-19)

3-9

gives us a dimensional PDFs of:

()

()

1
 ; 1 1

2

1
 ; 0 2

2

= −

=

(3-20)

Since

varies from -1 to 1 and from 0 to 2 , the resulting equations for the variables are:

1

2

2 1

2

= −

=

(3-21)

Generally, Monte Carlo methods require directions in the form of direction cosines, which would

be:

 2

2

1 cos

1 sin

x

y

y

u

v

w

= = −

= = −

= =

(3-22)

Particle initial energy

Generally, choice of the initial particle energy is based on either a continuous, discrete, or

multigroup source spectrum.

If the source distribution is continuous, the particular distribution (in units of eV-1 or MeV-1)

must be dealt with in the usual ways -- either by a direct approach (if the distribution can be

integrated and inverted) or with a rejection method.

If the source distribution is discrete - which is common for photon production from decay of

radioactive sources - the data is usually in the form of particular particle energies coupled with

the yield (i.e., the percentage of decay events that produce a gamma of the particular energy). In

this situation, the yield values for the various possible emitted energies serve as the probabilities

(i) used for choosing from a discrete distribution.

Similarly, if the source distribution is in multigroup form, the individual source contribution in a

given group is the integrated source over the group (and therefore is not a distribution in "per

unit energy" units). Therefore, the individual group source values are exactly analogous to

discrete yields, so would be used as the i

probabilities in a discrete distribution.

3-10

3.3 Choosing distance to next collision
For an infinite medium (constant cross section), the probability of collision inside a differential

path element dx a distance x from the previous collision is:

 ()

()

 Probability of next collision in dx

 =(Probability particle travels distance x without

 collision) (Probability it subsequently collides in dx)

 t x

t

x dx

e d

−

=

= () x

(3-23)

Therefore the PDF is:

 () t x

tx e −
=

(3-24)

which is already normalized over the domain ()0, .

The associated CDF is:

() ()

0 0

1t t

x x

x x

tx x dx e dx e
− − = = = − =

(3-25)

which inverts to give us the formula:

 ()ln 1

t

x
− −

=

(3-26)

Notice that if we define the “optical path length”, ,as:

t x =

(3-27)

 (which corresponds to the number of mean free paths traveled) we can use:

 ()ln 1 = − −

(3-28)

This can be shown to be true for finite media (i.e., with changing total cross section). Once the

number of mean free paths have been chosen using this relation, the translation into actual

distance is done piece-wise (as the particle travels through different media).

Since 1 − is "as random" as , it is possible to simplify this to:

3-11

 ln = −
(3-29)

 (Actually, though, I don’t usually do this. As we saw in an earlier section, the current

generation of linear congruential generators can give a zero but not a one; therefore, subtracting

the random number from one keeps me from having to deal with the natural logarithm of 0.)

Example: A particle emerges from a collision at point ()4,1,0r = travelling in

direction ()0.6,0.8,0.0 = (see figure below) with the indicated total cross

sections. It is determined that it will travel 8 mean free paths (a rare event) to the

next collision. At what (x,y,z) point will this collision take place?

Answer: The path of the particle can be described using the initial position and

direction cosines as:

4 0.6

1 0.8

0 0.0

x d

y d

z d

= +

= +

= +

where d is the distance that the particle has traveled (in THREE dimensions,

although I have defined this problem to have the particle travel in the x-y plane).

P1

P2

P3

P4

0 5

7

5 --

t=3 cm-1

t=0.5 cm-1

t=2 cm-1

Cell 1

Cell 3

Cell 2

12

3-12

We will attack this problem in segments with the path through each homogeneous

material being a segment.

Segment 1

The particle begins its journey in Cell 1 with total cross section of 4. In the

direction it is travelling, it will enter the next region at the point of intersection of

its line of travel and the plane with x equal to 5, therefore we have two equations

for x:

5 4 0.6x d= = +

and 0.6 is the x-direction cosine. Therefore the point of intersection corresponds

to d=1.666…, which is at the point:

()2 : 4 0.6 ,1 0.8 ,0 0 (5,2.333,0)P d d d+ + + =

Travelling 1.666… cm in a medium with a total cross section of 3 cm-1

corresponds to 5 mean free paths; since it was initially determined that the particle

would travel 8 mean free paths, it has 3 mean free paths to go.

Segment 2

Once the particle reaches P2, its distance to the next intersection is the point

where the line of travel intersections the plane y=5, which will be after traveling:

5 1 0.8

5

y d

d

= = +

=

which is at the point:

()3 : 4 0.6 ,1 0.8 ,0 0 (7,5,0)P d d d+ + + =

The travel of (5-1.666…=3.333…) cm in a Cell 3, with I total cross section of 0.5

is a distance of 1.666… mean free paths; since the particle had 3 mean free paths

yet to go, it now has 1.333… mean free paths yet to go.

Segment 3

Having reached Cell 2, the next boundary crossing would occur when the line of

travel intersections with the plane with the equation y=7; this crossing will occur

when:

7 1 0.8

7.5

y d

d

= = +

=

3-13

This corresponds to 2.5 cm of travel in Cell 2, with its total cross section of

2 cm-1; this amount of travel WOULD HAVE used up 5 mean free paths. Since

the particle only had 1.333… mean free paths left, the particle will only travel a

fraction of the distance across the cell equal to its fraction of the mean free path.

That is, the particle will make it only a fraction:

1.33

0.266
5

f = =

This fraction of a distance of 2.5 cm is (0.266…)x(2.5)=0.66… cm; so the total

distance traveled is 5.666…, which would put the point of intersection at

(7.4,5.5333…,0).

Although this seems like a long calculation, we—as humans—were able to shorten it because we

had a figure to go by. We knew from the figure that the first crossing would occur on the surface

y=5. MCNP does not process geometry in such a way as to know this fact, so it would have to

find the distance to intersection to all four of the surfaces that bound the cell it is in (Cell 1, in

this case). It would then determine that line of travel would cross:

• The left boundary (x=0) at a distance given by:

20 4 0.6 ; 6 cm
3

x d d= = + = −

• The bottom boundary (y=0) at a distance given by:

 10 1 0.8 ; 1 cm
4

y d d= = + = −

• The right boundary (x=5) at the distance 11 cm
3

d = we already calculated; and

• The top boundary (y=7) at a distance given by:

7 1 0.8 ; 7.5 cmy d d= = + =

Now, you and I know that this would involve crossing several other cells, but MCNP does not

know this. Among these four choices, it picks the smallest positive distance as the surface it will

next hit, which turns out to be the right boundary.

The algorithm for this would be:

Choose , the total number of mean free paths to travel to the next collision, using:

3-14

 ()ln or ln 1 = − = − −

 (3-30)

9.

10. Find 0 , the number of mean free paths to reach the edge of the cell, by finding

the minimum positive distance to intersect a surface that bounds the cell, and multiplying

this distance by the total cross section in the cll.

11. Are there enough mean free paths left to reach the edge of the cell (i.e., is 0 ?)

1. If yes, has the particle reached the edge of the whole problem?

i. If yes, the particle escaped the problem, so end the particle history.

ii. If no, subtract 0 from , find out what the new cell is, and return to step

2 for the new cell.

2. If no, the next collision occurs a fraction
0

 of the distance to the edge of the

cell.

3.4 Choosing type and outcome of next collision
Once a collision is known to have occurred, the choice of reaction type is based on the reaction

macroscopic cross sections at the particle energy. Generally, the reactions of interests are

scattering, fission, and capture, with relative probabilities based on ratios with the total cross

section:

 () () () ()t s c fE E E E = + +
,

(3-31)

which gives us probabilities of:

 ()

()

()

()

()

()

s

scatter

t

c

capture

t

f

fission

t

E

E

E

E

E

E

=

=

=

(3-32)

We make the choice between reaction types by using these probabilities as a discrete

distribution.

Outcome of scattering event

The outcome of a scattering event by a particle with initial energy E is given (formally) by the

double differential cross section:

3-15

 ()0,M

s E E →

(3-33)

where M = material, the primed variables are associated with the particle after the collision, and

0
ˆ ˆ =

(the deflection cosine of the particle).

The associated two-dimensional distribution is given by:

()

()

()
0

0

,
,

M

s

M

s

E E
E

E

 →
 =

(3-34)

The most common way to handle this 2D distribution is to reduce it to a one dimensional choice

by integrating over the other dimension. In general, then, a distribution (),x y can be reduced

to a distribution over x by integrating out y:

() (),x x y dy

−

=

(3-35)

and ix chosen from this distribution.

Now comes the tricky part. Once a value ix

has been chosen from this 1D distribution, we do

NOT then go back to the original distribution and integrate out x to get a distribution for y.

Instead, we SUBSTITUTE the chosen value of x into the original 2D distribution to get the y

distribution. That is:

 () (),iy x y

 (3-36)

where I have left in the ~ (“proportional to”) because when you plug it in, the result is most

likely NOT properly normalized.

Applying this to the particle scatter distribution, our knowledge of the kinematics of scatter

generally makes it more convenient for us to integrate out the deflection cosine to get:

()

()

()

1

0

0

1

,M

s

M

s

E E
E d

E

−

 →
 =

(3-37)

3-16

After this exiting energy iE

is determined, we then choose the deflection angle using:

()

()

()
0

0

,M

s i

M

s

E E

E

 →
=

(3-38)

It should be noted that for elastic scattering events (and inelastic scattering from known nuclear

levels) there is a unique relationship among scattering deflection angle, initial energy, and final

energy. This situation would, of course, mean that once the outgoing energy from a scattering

event is chosen, the deflection angle can be calculated from the scattering kinematics, with the

azimuthal component of scatter chosen uniformly from 0 to 2 and the result direction cosines

found from spherical trigonometry relations.

Example: Choose the outgoing energy, ˆ
iE , and direction cosine, 0

ˆ
i , for an

isotropic elastic collision of a neutron of energy E with a nucIide i with atomic

mass Ai (expressed in units of neutron mass).

Answer: For isotropic elastic scattering, the joint distribution for outgoing

energy (E’) in the LAB system and deflection angle () in the COM system is

given by:

()
()

()

()

()
0 0

0

0

 , ,
, 1

, otherwise
0

i

is

ii

s

E E EE E
E E

E

 −
 →

 = = −

 where:

2

0

1

1

2 1

1

i

i

i

A

A

E

E

 −
=

 +

− −

=
−

So, if we follow the rules for multi-dimensional distributions and integrate the

above distribution over , we get a 1D energy distribution:

3-17

() ()

()

1

0 0

1

,

1
 ,

1
, otherwise

0

i
i

E E d

E E E
E

−

 =

−=

and the resulting distribution is found from plugging in the E’ value chosen

(which is a formality, since E’ is not even IN the distribution, but at least we

avoid the “two cases” problem because we know that E’ it has to fall between aE

and E). After this substitution, we formally get:

() ()
()

()

() ()

0 0

0 0

0 0 0

ˆ ,
1

i

i

E
E

−
 =

−

= −

This Dirac delta simply means that there is really no “choice” involved. A Dirac

delta distribution means that the value of the variable that makes the Dirac delta

argument equal to zero is the only variable available; it is a “one outcome”

discrete distribution and:

0 0
ˆ

i =

For multigroup energy representations in which the angular dependence of the group-to-group

scattering is represented by a Legendre expansion in deflection angle, the energy group of the

outgoing distribution is generally determined –rst -- using the 0th order Legendre cross sec–ons --

and then the direction is chosen from the angular expansion of the chosen groups, using the

particular group-to-group Legendre coefficients. (You will get the chance to research this further

later.)

3.5 Material crossing variation
According to our long example in a previous section, the distance to next collision is found by

first selecting the number of mean free paths that the particle will travel and then (painstakingly)

translating this into distance by tracing the path of the particle, possibly through the multiple

material boundaries it crosses, and at each crossing subtracting the number of mean free paths

used in the previous boundary from the original mean free path “account” until it is “used up.”

In practice, however, codes like MCNP use a slightly different approach (because of the cell

weighting and weight windows variance reduction techniques you will study later).

3-18

Our previous algorithm is modified to:

1. Choose , the total number of mean free paths to travel to the next collision, using:

 ()ln or ln 1 = − = − −

 (3-39)

2. Find 0 , the number of mean free paths to reach the edge of the cell, by finding the

minimum positive distance to intersect a surface that bounds the cell, and multiplying this

distance by the total cross section in the cell.

3. Are there enough mean free paths left to reach the edge of the cell (i.e., is 0 ?)

o If yes, has the particle reached the edge of the whole problem?

▪ If yes, the particle escaped the problem, so end the particle history.

▪ If no, subtract 0 from find out what the new cell is, and return to step

2 1 for the new cell.

o If no, the next collision occurs a fraction
0

 of the distance to the edge of the

cell.

That is, at boundary crossings a new number of mean free paths to the next collision is chosen,

rather than depleting the original choice.

The mathematical reason that we have this flexibility is that the exponential distribution used for

Decision 4 (distance to next collision) is a unique one: If you start at any value of x other than 0,

but normalize the distribution from that point to infinity, you will end up with the same as the

original distribution. This idea is often expressed either as the comment “Neutrons do not age”

or “Neutrons have no memory”. What it means is that the exponential distribution (uniquely)

has the property that, as the particle travels, the probability it will collide in the next mean free

path is always 1/e; the fact that a particle has “survived” a certain distance into a medium has no

bearing at all on the probability of how much farther it will travel before colliding.

3.6 Cell flux estimation techniques
Knowledge of the cell-averaged flux (where a “cell” is a contiguous region containing a single

material) is often desired in nuclear engineering applications because of the fact that so many

physical effects of interest can be found using it—doses, reactions rates, deposited power, point

kinetics parameters, etc.

There are two principal techniques used to estimate the cell average flux: reaction estimators and

track-length estimators.

3-19

Reaction estimators

In reaction estimators, contribution to the cell flux is triggered when the particle being tracked

has an identifiable reaction in the cell of interest. There can, theoretically, be as many varieties

of this as there are reaction types, but in practice the predominant ones are collision estimators

and absorption estimators.

The mathematical treatment is based on the fact that when a given reaction occurs in the cell, a

contribution has been made to the reaction rate in the cell. We might later want to reproduce the

reaction rate using a cell-averaged flux (times macroscopic cross section times cell volume), so

we convert the reaction rate contribution into a cell flux contribution using the relation:

,

,

Cell reaction rate contribution of reaction event of type x

 =w Current weight of particle undergoing reaction x

x cell

cell x cell cell

R

V

=

(3-40)

or

, ,

x
cell

x cell cell x cell cell

R w

V V

 = =

 (3-41)

So, the cell averaged flux contribution is found by dividing the particle weight by the

macroscopic cross section times the cell volume.

Different reaction rates can be used with this formula. The two most common, as previously

mentioned, are the collision estimator—in which all collisions “score” and the denominator has

the total cross section in it—and the absorption estimator—in which only absorption events

“score” and the absorption macroscopic cross section is in the denominator.

Different reaction types x will have different statistics, but the same expected value. Compared

to the total reaction rate, for example, reaction type x will occur x

t

 times less frequently but

contribute t

x

 times as much each time it occurs, leaving the expected score unchanged.

Track-length estimator

In a track-length estimator, the flux is estimated based on an alternate definition of flux as

“track-length per unit volume.”

3-20

The basis for this definition can be deduced from a units balance on the same familiar cell

reaction rate equation:

, ,t cell cell t cell cellR V=

 (3-42)

If we assign the following units to the non-flux variables:

,

,

 Reaction rate (units of "reactions/unit time")

 Cell volume (units of "unit volume")

Reactions per distance travelled (units of "reactions/distance travelled by particles")

t cell

cell

t cell

R

V

=

=

 =

Performing a units balance results in the fact that the flux units must be:

 Cell flux (units of "distance travelled by particles/unit volume/unit time")cell =

At first (or even second) glance, this seems like a strange unit for flux, but when you think about

it, if we have a total cross section of 0.1 cm-1, then we must expect one reaction per ever 10 cm

of neutron travel. So, if the expected reaction rate is 10 reactions/sec in a region (no matter what

its size is), then it must have been caused by particles travelling 100 cm (on average) in the

volume each second. So, total “path segments” laid down by all particles traversing a region

divided by the cell volume equals the cell flux.

Another way of looking at the track-length estimator is as a collision estimator that replaces the

actual number of collisions with the expected number of collisions. That is, instead of scoring

the average distance travelled (a.k.a. “mean free path”, 1
t

) divided by volume each time there

is a collision, it keeps up with the actual distance travelled (a.k.a. sum of “track lengths” in the

material) divided by the volume, which is proportional to how many collisions there should have

been.

This is a recurring theme that we will encounter later in our study of variance reduction schemes

(i.e., techniques to improve Monte Carlo efficiency): You usually get an increased efficiency if

you score the expectation of events occurring rather than scoring actual events. Not always, but

most often.

Time

This might be a good time to discuss the issue of time in Monte Carlo calculations. For the most

part (except for kinetic Monte Carlo, which keeps up with the instant of birth, time of flight, etc.,

to solve time-dependent problems), Monte Carlo is a timeless calculation—the distinction

3-21

between time-integrated and time-rate tallies is left to the user to keep up with in the numbers

specified for the source.

For example, assume a Monte Carlo case is run with a source normalized to 1 (which is

automatically done by MCNP and the other standard Monte Carlo codes) and the resulting cell

average flux in some cell is 0.1 +/- 0.005. In such a case, it is up to the user to interpret this

answer appropriately. If the source strength is one curie (3.7x1010 particles/sec) then the cell

flux should be interpreted as 3.7x109 particles/cm2/sec. On the other hand, if the source

represents burst that releases 1x1017 neutrons, then the results should be interpreted as a fluence

of 1x1016 particles/cm2. The flux “inherits” the time unit from the source time unit—the Monte

Carlo code doesn’t care.

3.7 Surface and point fluxes
In addition to the volumetric (3D) cell averaged fluxes, Monte Carlo codes can also calculate the

average flux on a surface (2D) or the average flux at a point (0D).

[NOTE: MCNP also has a ring tally that is, formally, 1D, but it is really a rotated

point tally and can only be used on problems with rotational symmetry. We will

not work out the details here.]

Surface flux tally

The surface flux tally is based on a straight-forward application of the track-length estimator on a

surface “cell” of area A and infinitesimal thickness t:

Because the particle passes through at an oblique angle, its path through the thin surface element

is stretched by the secant (inverse of cosine). The resulting contribution to the surface flux is

then:

Track length 1

Volume

t
n

A t A n

 = = =

(3-43)

Where is the unit vector in the direction of travel and n is a unit vector perpendicular to

the surface at the point of crossing.

Point flux tally

Determining the flux at a point is an impossible task for a cell flux tally because the point has no

volume. Although it is possible to let the average flux in a small cell (which include the desired

point) approximate this value, another approach is taken.

3-22

The theoretical approach is similar to the idea of a track-length estimator using (particle distance

travelled)x(probability of interactions per cm travelled) to represent the expected number of

collision along a path travelled by a particle (in place of actual collisions observed). Once again

we are goint to score expected contributions to flux rather than actual collisions or path length

contributions.

Consider the case that we want to calculate the flux at a point P.

When the particle begins its life we make three initial choices

• Original position, sr

• Original energy, sE

• Original direction, s

The point flux estimator does its thing between the second and third decisions (which is why

energy goes before direction).

Once a position sr and energy sE

have been selected, we score the expected contribution to the

flux at point P, which is computed using the traditional equation for the flux from a

monoenergetic point source of strength p :

 () (),

2
4

s P s P s
r r r r E

p

s P

e
r r

→ − →

 =
−

(3-44)

where

()

 unit direciton vector that points from to

 Probability that particle starts in direction

 Distance between and

,

s P

s P s P

r r s P

r r r r

s P s P

s P

r r

r r r r

r r

→

→ →

−

→()

(),

Number of mean free paths between and for particle

 of energy

 Probability that particle travels from to without collidings P s

s s P

s

r r E

s P

E r r

E

e r r
− →

But we are not through. We must repeat this calculation every time the particle scatters. For

example, if the particle travels to 1r and has a collision that results in a particle of weight 1w and

energy 1E , we then make another contribution of:

3-23

 () ()1 1 1,

2

14

P P
r r r r E

p

P

e
r r

→ − →

 =
−

(3-45)

This is conceptually complete but has a practical shortcoming: The distance squared in the

denominator creates disruptively large contributions from collisions close to pr . MCNP deals

with this problem by having the user specify an “exclusion radius” within which a track-length

estimator is used. Since the cell flux tally previously discussed is formally defined as:

()
0

,cell

V

dV dE r E

=

(3-46)

 (i.e., the same except for the weight function), these cell tallies are computed exactly like the

cell-averaged flux tallies but with the tally contribution multiplied by ()1xR E evaluated at the

particle energy).

The very same analogy holds for modifying the surface flux tallies and point flux tallies to tally

responses or reaction rates: Multiply by the appropriate response function ()xR E . This works

for either cell, surface, or point flux tallies.

3.8 Adding response functions to flux tallies
General tallies build on the flux tallies by making applying specific desired responses, with the

total response defined by:

 ()

() ()

()

1 for cell-averaged flux tally

 for tally of reaction rate in cell i, reaction type x

General pre-determined response function for cell i

 dose, detector response, kerma, e

x

x x

x

R E

R E E

R E

=

=

=

tc.

(3-47)

with the type of tally defined by the ()xR E weight function used:

• 1 for cell-averaged flux tallies.

• ()x E for the tally of a reaction in cell i, reaction type x;

• ()xR E for general pre-determined response functions for cell i dose, detector response,

kerma, etc.

3-24

3.9 K-effective calculations
The particle lifetime described previously assumed a source with known (and unchanging)

spatial, energy, and direction distributions; furthermore, subsequent lessons assumed that we

wanted to know one or more tallies on a “per source particle” basis. Monte Carlo calculations of

k-effective differ from this in several respects:

4. There is no fixed and unchanging source to select from. The source particles are fission

neutrons whose spatial distribution depends on where fission events occur. (Lucky for us,

the energy and directional distributions of fission neutrons are known and unchanging.)

Therefore, the source spatial distribution depends on the neutron flux, so must be

determined while the code runs.

5. The main tally of interest is k-effective, the ratio of fission neutrons in a generation to the

number in the previous generation.

Because of this generation-to-generation dependency, k-effective calculations proceed somewhat

differently from fixed source calculations:

• The fission neutrons are released in “batches” or “generations” of several hundred or

more. This is done in order to (hopefully) get a good number of new fission events from

which to obtain a good estimate of k-effective from the generation and a good spatial

distribution of new fission sites.

• The code gets one estimate of the k-effective per batch, rather than one per neutron

history.

• The starting location of fission neutrons in one generation are selected from the fission

sites of the preceding generation. This practice has several ramifications:

1. The user must specify the number of batches to run and the number of neutrons in

each batch (instead of just specifying the total number of histories as is true in a

fixed source calculation).

2. The first generation has no “previous generation” to choose sites from, so some

method must be implemented in the code to choose the initial fission sites or the

user must provide the original fission locations.

3. As a result, the first fission site distribution is unlikely to give a good estimate of

k-effective. Nor is the second. Nor the third, etc. The assumption is made that

the fission site distribution will eventually settle down to a realistic distribution.

Although it is difficult to determine, the user has to specify a number of

generations to skip before the code really starts to keep statistical estimates of k-

effective.

4. The resulting generation-to-generation dependence violates the LLN assumption

that each k-effective sample is independent from the other samples.

5. Because each fission event releases, on average, more than two neutrons, an

“analog” simulation would result in fewer fission sites than fission neutrons (~40

sites per 100 fission neutrons). So, either fission sites must be reused regularly

(which degrades the statistics of the fission distribution) or some technique must

be used to increase the number of fission sites.

3-25

3.10 Example: Writing a 2-group transport code.
Actually, I have made it easy for you by giving the all the algorithms in this lesson. Code it and

verify that your results are statistically consistent with my results. Be able to justify each line of

the code!

Our first step into actual Monte Carlo programming of neutral particle transport will be the

development of a simple Java code to solve a particular problem. The problem will be the

simplest that I can think of—a 1D slab transport penetration problem in two energy groups.

The analog transport solution for this problem is a series of probabilistic choices that are made

following the guidance of Lesson 6 using the problem data.

Our description will be in the following sections:

• A problem description and setup

• An accounting of the overhead parts of the computer code, including statistical setup and

treatments

• Details of the coding for the individual choices made during an individual particle history

• Results of running the resulting program

Description of Problem and problem setup

The problem that we will attack is a 50-cm thick 1D slab problem that has a single material

throughout, but the source region is only the left-most 5 cm. This distance corresponds to 5

mean free paths in Group 1 and 10 mean free paths in Group 2. The cross sections were chosen

so that there is no upscatter from Group 2 to group 1, but downscatter dominates the Group 1

cross sections. The first section of the coding includes a crude drawing of the problem and

variable declarations and definition.

import java.util.Scanner;

class Slab

{

 public static void main(String[] args)

 {

 int nhist;

//***

// *

// Monte Carlo calculation of a slab: *

// *

// | | g | *

// | | ----------------- | *

// | | Grp 1 Grp 2 | *

// | | Total 0.1 0.2 | *

// | | G1->g 0.05 0.04 | *

// |S1 4 | G2->g 0 0.1 | *

// |S2 6 | | *

// | | | *

// | | | *

// | | | *

// | | | *

// | 5 cm | 45 cm | *

// |<---->|<----------------------------------->| *

// | | | *

// *

//***

// *

3-26

// Variable definitions: *

// totxs(ig) Total cross section in group ig, 1/cm *

// scat(ig,jg) Scattering cross section from group ig to jg, 1/cm *

// totscat(ig) Total scattering in group ig (i.e., sum of scat *

// for all other groups jg *

// sour(ig) Source in group ig, #/cm3/sec *

// bin(ib) Bin values *

// ib = 1 Left leakage for group 1 *

// = 2 Left leakage for group 2 *

// = 3 Right leakage for group 1 *

// = 4 Right leakage for group 2 *

// = 5 Flux for group 1 *

// = 6 Flux for group 2 *

// ig Current energy group of the particle *

// mu Current direction cosine of the particle, (-1,1) *

// x Current position of particle *

// dd Distance to next collision *

// dx x dimension distance to next collision = dd*mu *

// mfp Mean free paths to next collision *

// *

//***

// *

// Set the source and cross sections *

// *

//***

 double[] totxs={0.1,0.2};

 double[][] scat=new double[2][2];

 scat[0][0]=.05;

 scat[0][1]=0.04;

 scat[1][0]=0.;

 scat[1][1]=0.1;

 double[] sour={4.,6.};

In addition to the crude drawing, the variables that will be used in the problem are defined and

the cross section data is set.

Problem overhead -- Statistical setup and treatment

In this section, the source and scattering cross section data for the problem is translated into

CDFs for use in the discrete probability testing that will be done later.

//***

// *

// Find total scattering cross section for each group *

// *

//***

 int ng=2;

 double[] totscat=new double[2];

 for(int ig=0;ig<ng;ig++)

 {

 totscat[ig]=0.;

 for(int jg=0;jg<ng;jg++)

 {

 totscat[ig]+=scat[ig][jg];

 }

 }

//***

// *

// Convert source to CDF *

// *

//***

 for(int ig=1;ig<ng;ig++)

 {

 sour[ig]+=sour[ig-1];

 }

 for(int ig=0;ig<ng;ig++)

 {

 sour[ig]/=sour[ng-1];

3-27

 }

//***

// *

// Convert scattering cross sections to CDF *

// *

//***

 for(int ig=0;ig<ng;ig++)

 {

 for(int jg=1;jg<ng;jg++)

 {

 scat[ig][jg]+=scat[ig][jg-1];

 }

 for(int jg=0;jg<ng;jg++)

 {

 scat[ig][jg]/=scat[ig][ng-1];

 }

 }

In addition, the bins for the problem are emptied. Because of the Neumann process that is used

for particle transport Monte Carlo, we need PROBLEM bins and HISTORY bins. The former

are the bins that collect the binned data for the problem as a whole (i.e., that each history

contributes to); these use the variables BIN (for the bin data itself) and BIN2 (for the squared

data that are needed for determining the standard deviations.

The set of HISTORY bins are needed to collect data as a single particle moves around the

problem, possibly leaving and re-entering regions, a given particle's history may involve several

"pieces" that add up to the particle's contributions to the statistics.

We use 6 different bins in the problem:

• Bins 1 and 2 for the group 1 and group 2 (respectively) LEFT LEAKAGE.

• Bins 3 and 4 for the two group's RIGHT LEAKAGE

• Bins 5 and 6 for the two group's average flux rates in the problem.

In this section of the coding, we also begin each particle's history; we begin a history by

emptying the HISTORY bins, which are kept in the variable TBIN.

//***

// *

// Empty the total bins *

// *

//***

 double[] bin=new double[6];

 double[] bin2=new double[6];

 for(int ib=0;ib<6;ib++)

 {

 bin[ib]=0.;

 bin2[ib]=0.;

 }

//***

// *

// For each history: *

// *

//***

 System.out.println(" No. of histories?");

 Scanner sc=new Scanner(System.in);

 nhist=sc.nextInt();

 for(int ih=0;ih<nhist;ih++)

 {

//***

3-28

// *

// Empty the history bins *

// *

//***

 double[] tbin=new double[6];

 for(int ib=0;ib<6;ib++)

 {

 tbin[ib]=0.;

 }

Java coding for the individual decisions

Choosing an initial particle position

Since the source is only in the left 5 cm of the problem, we pick the original source location

uniformly over this domain.

//***

// *

// Find the original position *

// *

//***

 double x=Math.random()*5.;

Choosing an initial particle direction

Since the source is isotropic, we pick a direction by choosing the cosine of the polar angle

uniformly over the domain -1 to 1. Note that the coordinate system has been chosen so that the

polar axis points to the right, eliminating the need to keep up with an azimuthal angle.

//**

// *

// Find the original direction *

// *

//***

 double mu=Math.random()*2.-1.;

Since the Group 1 source is 0.4 and the group 2 source is 0.6, we choose the initial group

discretely from the two choices with a 40%/60% bias toward group 2. Note that Monte Carlo

results are usually on a "per particle" basis. (So, in this problem, the user would have to know

that the source adds up to ten, and multiply the answers by 10.)

//**

// *

// Find the original energy group *

// *

//**

 double xsi=Math.random();

 int ig=0;

 for(ig=0;ig<ng;ig++)

 {

 if(xsi < sour[ig])break;

 }

Choosing the distance traveled to next collision site and scoring escape events

The choice of distance traveled to the next collision site is divided (as is traditional) into a

selection of the number of mean free paths chosen and a translation of this into distance by

dividing the number of mean free paths by the total cross section.. In this coding, this distance

traveled is multiplied by the direction cosine in the x dimension to get distance traveled in the x

axis; this is then added to the current x position to get the new position.

3-29

Since all of our bins are triggered by particle movement, coding follows to score:

• a left leakage if x < 0

• a right leakage if x > the problem width (50 cm)

If a leakage occurs, this constitutes the end of the current particle history.

//**

// *

// Find how many mean free paths it travels to next position *

// *

//**

 boolean historyThrough=false;

 while(!historyThrough)

 {

 double mfp=-Math.log(1.-Math.random());

//**

// *

// Convert mfp to distance in cm *

// *

//**

 double dd=mfp/totxs[ig];

//**

// *

// Translate into a new position *

// *

//**

 double dx=dd*mu;

//**

// *

// If particle has exited the left boundary: *

// *

//**

 if(x+dx < 0.)

 {

//**

// *

// Contribute to bins 1 or 2 *

// *

//**

 tbin[ig]+=1.;

//**

// *

// Contribute to flux bins 5 or 6 *

// End the history *

// *

//**

 historyThrough=true;

 }

//**

// *

// If particle has exited the right boundary *

// *

//**

 else if(x+dx > 50.)

 {

//**

// *

// Contribute to bins 3 or 4 *

// *

//**

 tbin[ig+2]+=1.;

//**

// *

// Contribute to flux bins 5 or 6 *

// End the history *

// *

3-30

//**

 historyThrough=true;

 }

Choosing the collision type and scoring absorptions

If the particle has not leaked by this time, the total path length divided by cell volume is

contributed to the flux tally and a decision is made about the collision type. This decision is

made based on the collision being a scatter event if a test random number is less than the ratio of

scattering to total cross section in the current energy group; if the test random number is greater

than the scattering ratio, then an absorption has occurred and the particle history is terminated.

//**

// *

// If you got this far, must have been a collision. *

// Contribute to the flux bins 5 or 6 *

// If it was an absorption collision: *

// *

//**

 else if(Math.random() > totscat[ig]/totxs[ig])

 {

//**

// *

// End the history *

// *

//**

 historyThrough=true;

 }

For scattering events, choosing the new direction

If the event was a scatter (which must be true if this part of the coding is reached), a new

direction for the outgoing particle is chosen, again uniformly (in cosine) over the domain -1 to 1.

//**

// *

// If it was a scattering collision: *

// Pick the new direction *

// *

//**

 else

 {

 x+=dx;

 mu=Math.random()*2.-1.;

Choosing the new particle energy

The post-scatter energy is chosen by choosing from the discrete distribution determined from the

group-to-group scattering cross section PDFs for particles born in the current group. (For

example, if the scattering even occurred in group1, there is a 0.05/(0.05+0.05) or 5/9 probability

that the particle will emerge in group 1 and a 4/9 probability that it will emerge in group 2.)

After the new particle characteristics are known, we loop back in the coding to the point where

the distance traveled is determined and continue.
//**

// *

// Pick the new energy group *

// *

//**

 xsi=Math.random();

 int jg=0;

 for(jg=0;jg<ng;jg++)

3-31

 {

 if(xsi < scat[ig][jg])break;

 }

 ig=jg;

//**

// *

// Return to the point where we find the # of mfps travelled *

// *

//**

 }

Statistical wrap-up and presentation of final results

At the end of the history, we dump the temporary HISTORY bin information for the just-ended

particle history into the PROBLEM bins that are collecting the total information for the Monte

Carlo run.

Likewise, once all particle histories have been run, we compute the final best estimate of the

value for each bin (using BIN data) and the standard deviation of our result (using both the BIN

and BIN2 data).

C//**

// *

// If the history is over, dump the history bins into the total *

// bins *

// *

//***

 for(int ib=0;ib<6;ib++)

 {

 bin[ib]+=tbin[ib];

 bin2[ib]+=tbin[ib]*tbin[ib];

 }

 }

 }

//***

// *

// When the problem is over, print the results for each bin: *

// *

//***

 for(int ib=0;ib<6;ib++)

 {

 double xhat=bin[ib]/(double)(nhist);

 double x2hat=bin2[ib]/(double)(nhist);

 double sample_variance=(double)(nhist)/(double)(nhist-1)*(x2hat-xhat*xhat);

 double sample_sd=Math.sqrt(sample_variance);

 double mean_variance=sample_variance/(double)(nhist-1);

 double mean_sd=Math.sqrt(mean_variance);

 double fsd=mean_sd/xhat;

 System.out.printf(" For bin %1$1d ==> %2$8.6f +/- %3$8.6f “+

 “(FSD=%4$8.4f)\n",ib,xhat,mean_sd,fsd);

 }

 }

}

Results of problem execution”

Here is the result from running a 1,000,000 history calculation. (The code does not yet have flux

estimates—bins 4 and 5—coded; you will have that chance.)

 No. of histories?

 For bin 0 ==> 0.153845 +/- 0.000361 (FSD= 0.0023)

 For bin 1 ==> 0.208604 +/- 0.000406 (FSD= 0.0019)

 For bin 2 ==> 0.001108 +/- 0.000033 (FSD= 0.0300)

3-32

 For bin 3 ==> 0.000324 +/- 0.000018 (FSD= 0.0555)

 For bin 4 ==> 0.000000 +/- 0.000000 (FSD= NaN)

 For bin 5 ==> 0.000000 +/- 0.000000 (FSD= NaN)

Chapter 3 Exercises

3-1. Code and test an algorithm for choosing points uniformly in a 10x20x30 cm

cube. Bin your results in 100 equal probability bins.

3-2. Code and test an algorithm for choosing points uniformly in a radius=10,

ht=20 cm cylinder. Bin your results in 100 equal probability bins.

3-3. Code and test an algorithm for choosing points uniformly in a radius=10

sphere. Bin your results in 100 equal probability bins.

3-4. Code and test an algorithm for choosing energy from a Watt spectrum. Bin

your results in 0.1 MeV wide bins.

3-5. Code and test an algorithm for choosing distance to next collision along a

path consisting of (in order) the following segments:

• 1 cm with total cross section of 3 cm-1

• 2 cm with total cross section of 2 cm-1

• 3 cm with total cross section of 1 cm-1

• Rest of infinite medium with total cross section of 0.1 cm-1

3-6. For a neutron with an initial energy of 1 keV, find the expected distribution

of energies for neutrons after 3 elastic collisions (Use A=12).

3-7. For an angular distribution given by:

2

0 1 2

3 1
()

2
S S S S

 −
= + +

code and test an algorithm for choosing the deflection angles. Set the S

coefficients all to 1.

3-8. Get a version of the 2-group example problem up and running. Compare your

results to those from the exercise.

3-33

3-9. Modify your version of the program to include a collision estimator of the

group 1 and group 2 fluxes. Use the particle balance to check your results

(i.e., source=leakage+absorption).

3-10. Modify your version of the program to include a track-length estimator of

the group 1 and group 2 fluxes. Again use the particle balance to check your

results.

3-11. Modify your 2-group code to calculate k-effective. Make the material

nu*fission cross sections be:

Group 1: 0.005 cm-1

Group 2: 0.12 cm-1

Answers to selected exercises
Chapter 3

3-11. 0.875effk =

