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ABSTRACT 

Morphological and compositional self-assembly can be manipulated by the long-range 
elastic field.  This paper gives a universal formulation that determines the dependence of 
energetically favored orientation of those self-assembled structures on the elastic interaction.  
Elasticity anisotropy can lead to symmetry breaking and herringbone structures.  A layered 
substrate can tune the feature size by modulus mismatch, or tune the orientation if the layers 
have different orientation preference, or guide the self-assembly by embedded structures.  A 
closed-form result is derived for elastically isotropic layers by using Dundurs parameters.  The 
self-assembled structures can also be affected by a nonuniform residual stress field or external 
force field.  Higher order (nonlinear) perturbation theory, coupling between morphology and 
composition, and other issues are also addressed in the discussion. 

INTRODUCTION 

Nanoscale self-assembled structures offer many opportunities in growing uniform 
nanostructures with long-range orders and regular sizes.  Surface self-assembly is usually due to 
the competition of surface energy and a force field [1-6].  This paper discusses how to 
manipulate nanoscale self-assembly by engineering the long-range elastic field.  We focus our 
attention to morphological and compositional self-assembly.  Examples of such phenomena can 
be found in adsorbate-induced surface restructuring, quantum dot formation, binary epitaxial thin 
films, among many others. 

Morphological self-assembly 

Under certain conditions, the nominally flat surface of a stressed solid can be unstable, 
leading to morphological instability (see, for instance, [1] and references therein).  The elastic 
energy of a stressed solid with a wavy surface is always smaller than that with a flat surface.  
Elastic interaction can be better accommodated for morphological modulations with large 
frequencies (short wavelengths), which, however, gives rise to large surface energy.  The 
competition between elastic energy and surface energy selects a critical wavelength above which 
perturbations grow and below which they decay.  The morphological change is effected either by 
materials diffusing on the surface or by directly exchanging materials with the environment (e.g., 
evaporation/condensation, chemical etching).   

The chemical potential field along the surface is ( )w+Ω+= γκχχ 0 , where 0χ  is the 

chemical potential field of the stress-free flat solid, Ω  is the atomic volume, γ  is the interface 
energy density, κ  is the curvature (positive if the surface is convex), and w  is the strain energy 
density on the solid surface.  The mechanical equilibrium is assumed to be always attained, but 
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the system is not in chemical equilibrium.  The morphological modulation gives rise to a 
nonuniform chemical potential field along the surface, which provides the driving force for 
diffusive mass transport or direct mass exchange with the environment.  

 

 

Figure 1.  Schematic of a semi-infinite solid subjected to uniform remote stress fields 0
αβσ  and 

with a single sinusoidal surface height modulation. 

The elastic field due to the small morphological modulation consists of the uniform stress 
fields 0

αβσ  and perturbation solutions.  The linear perturbation solution (notations with 

superscript asterisk) is equivalent to that of a half-space subjected to surface tractions 

βαβα σσ ,
0*

3 h=  [1].  The elasticity boundary value problem can be solved analytically in the 

Fourier space.  Represent the surface roughness ( )21 , xxh  by a two-dimensional Fourier 
transformation: 

( ) ( ) ( )∫∫ += 2122112121 exp,ˆ, ωωωωωω ddxixihxxh ,    (1) 

where ( )21 ,ωω  is the wavevector.  The elastic field in the solid depends on three spatial 
coordinates, but is a linear superposition of many Fourier components, each being a two-
dimensional field in the plane spanned by 3x  and ααω x  (see Fig. 1).  Pick up one Fourier 

component that varies along x  direction, which makes an angle θ  from 1x  direction in ( )21 , xx  

plane.  Let 2
2

2
1 ωωω += , so that ( ) ( )θθωωω sin,cos, 21 = . 

The elastic field of a semi-infinite space (which could be a laminated structure) subjected to 
surface sinusoidal traction is given in previous work [2].  To the first order, the elastic energy 
scales as 

BmmT=Θ ,        (2) 

where  
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( )T0
22

0
12

0
12

0
11 0,sincos,sincos θσθσθσθσ ++=m ,   (3) 

and matrix B  depends on the elastic constants and the orientation θ .  This representation is 
independent of mass transport mechanism on the surface.  The orientation of fastest growth 
frequency is determined by maximizing Eq. (2) as a function of θ  with varying anisotropy in the 
applied stress and substrate stiffness [3]. 

Compositional self-assembly 

Consider the surface stress-stabilized phase patterns in a binary monolayer [2, 4-6].  When 
the concentration modulates in an adsorbed binary monolayer on a solid surface, the surface 
stress becomes nonuniform, causing an elastic field inside the substrate.  To better accommodate 
the surface stress nonuniformity, large phases will break into small phases.  The total length of 
phase boundaries, however, increases and so does the phase boundary energy.  It is the 
competition between the phase boundary energy and the elastic energy that stabilizes the phase 
patterns and selects an equilibrium phase size.   

Schematic in Fig. 1 is also applicable to this problem if we replace the surface roughness 
( )21 , xxh  by the concentration field ( )21 , xxC , and the applied stress 0

αβσ  by the surface stress.  

The surface stress is the excess work per unit area done when the surface enlarges per unit strain, 
and in general is a second-rank tensor αβf .  We assume that the surface stress is linear in the 

concentration C .  That is, when the concentration changes by C∆ , the surface stress changes by 
Cf ∆=∆ αβαβ φ .  The slope tensor αβφ  can be measured by the wafer curvature method or 

determined by electronic structure calculations.   
The thermodynamic theory [4-6] shows that the substrate is stressed with surface traction 

βαβα φσ ,3 C=  (at 03 =x ).  Similar as the procedure in the previous subsection, we solve the 

elasticity boundary value problem in the Fourier space.  The concentration field can be 
represented by a two-dimensional Fourier transformation, similar as Eq. (1). Pick up one Fourier 
component, and the surface traction is also in a sinusoidal form.  The elastic interaction also 

scales as Eq. (2) with ( )T
22121211 0,sincos,sincos θφθφθφθφ ++=m .   The orientation of 

equilibrium compositional pattern is again determined by maximizing Eq. (2) as a function of θ  
with varying anisotropy in the surface stress and the substrate stiffness tensor.  

We obtain the same orientation dependence function Θ  for morphological and 
compositional self-assembly, because the elasticity boundary value problem is the same if we 
replace the height field by the concentration field, and regard the surface stress as the applied 
stress in a thin membrane.  Consequently, results in [2, 5-6] can be directly applied to 
morphological self-assembly.  The following section gives a brief summary of results. 

ELASTICITY AND SYMMETRY BREAKING 

The dependence of energetically favored orientation on the anisotropy is called symmetry 
breaking in this paper.  As pointed out in previous section, same results are anticipated for the 
anisotropy in the applied stress tensor for the morphological self-assembly and the anisotropy in 
the surface stress tensor for the compositional self-assembly.  Consequently, those kinds of 
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anisotropy will be called the anisotropy in vector m .  Anisotropy in stiffness tensor is called the 
anisotropy in matrix B .   

When the solid is elastically isotropic, we have shown that depending on the anisotropy in 
vector m , the energetically favored orientation could orient along or at an angle from a principal 
axis of the surface stress tensor or applied stress tensor.  This phenomenon has been studied in 
[5], and a physical interpretation is given.  That is, the along-axis to off-axis transition 
compromises the elastic energy of the inplane and antiplane deformation, where the plane is 
( )3, xx  as shown in Fig. 1.  If one nontrivial angle θ  is selected, symmetry operation dictates that 

θπ −2  is also possible.  The coexistence of them leads to a mesoscale herringbone structure, 
further relaxing the elastic free energy.  Similar results have also been found in the formation of 
herringbone structure in thin film buckling problem [7].   

When vector m  is isotropic, elementary consideration shows that the energetically favored 
orientation should be the most compliant direction in tension and shear [2, 6].  For the (100) 
surface of a cubic crystal, the shear modulus in any ( )3, xx  plane is the same.  The most 
compliant directions in tension are the crystalline axes.  Numerical simulation of strained 
epitaxial thin film indeed shows that quantum dots form regular arrays along <100> directions 
[8].  In general, there could be many forms of anisotropy, and one needs to evaluate function Θ  
to determine the preferred orientation. 

LAYERED SOLID 

When the solid is of a layered structure, the effect of stiffness tensors of underneath layers 
will be passed to the surface through the long-range elastic field.  Consequently, we can tune the 
wavelength of morphological and compositional modulation by modulus mismatch of those 
layers.  For example, a compliant layer inside will amplify the effect of elastic interaction and 
lead to smaller feature size.  We can also tune the orientation if the layers have different 
orientation preference.  However, the elastic field in a half-space subjected to a sinusoidal 
traction decays exponentially into the solid with a decay length proportional to the wavelength of 
the surface waviness or the concentration modulation.  Consequently, in order to make the 
stiffness tensors of underlying layers effective, the thickness of the first layer must be 
comparable with the decay length.  For example, at the early stage of epitaxial growth of thin 
film on a substrate, the formation of quantum dots can follow the orientation preference of the 
substrate. 

The elasticity boundary value problem is solved in [2], and many examples of passing 
stiffness anisotropy in multilayer and the effect on nanoscale compositional self-assembly have 
been discussed there.  When the substrate is of two elastically isotropic materials, we can derive 
a closed-form solution of matrix B  in Eq. (2).  Suppose layer I is at the top with thickness d  and 
layer II extends to −∞→3x .  Matrix B  is then a function of elastic constants of the two layers 

and dω , where ω  is the frequency of a given morphological or compositional sinusoidal 
modulation.  Define two Dundurs parameters 

( ) ( )
( ) ( )IIIIII

IIIIII

11

11

νµνµ
νµνµα

−+−
−−−

= , 
( ) ( )

( ) ( )[ ]IIIIII

IIIIII

112

2121

νµνµ
νµνµβ

−+−
−−−

= ,    (4) 

which are restricted in the parallelogram bounded by 1±=α  and 14 ±=− βα .  The matrix B  is 
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( ) ( ) ( ) ( )( ) ( ) ( ) 22222 2exp]214[4exp1 βαωβαβαβωωβ −+++−−+−= dddR ,         (6) 

( ) ( ) ( )( ) ( ) 222
11 2exp144exp1 αβωβαβωωβ −+−−+−= dddR ,           (7) 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( )[ ] 22

II
2

I
22

13

211122exp2

212exp144exp1

αβνναββαω
νωβαβωωβ

−+−−+++−+

−−−+−=

d

dddR
,          (8) 

( ) ( ) ( )( ) ( ) 222
33 2exp144exp1 αβωβαβωωβ −+−−−−= dddR .                      (9) 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]ddddR ωµµωµµωµµωµµ −−++−−−+= expexpexpexp IIIIIIIIIIII22 ,    (10) 
 

If the surface stress or the applied stress is isotropic, the function Θ  scales as 
( )

R

R

I

11I1

µ
ν−

.  

Figure 2 plots RR11  as a function of normalized thickness of layer I with several values of 
Dundurs parameters.  Cleary, to change the magnitude of elastic interaction significantly, the 
thickness must be comparable with the self-assembly feature size.  The method presented here 
gives more general results than that in Spencer et al. [9], and it can be directly used for elastically 
anisotropic materials (see [2] for calculations of matrix B  for general cases).  Furthermore, using 
the above method, one can easily obtain the dependence of critical and fastest growth 
frequencies as a function of thin film thickness for morphological self-assembly with a given 
type of kinetics [3]. 
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Figure 2. The magnitude of elastic interaction, RR11 , as a function of the normalized thickness 
of the first layer dω  with several values of Dundurs parameters.  

GUIDED SELF-ASSEMBLY 

Using anisotropy to break the orientational symmetry is promising but might have many 
other practical difficulties.  One more powerful method is to guide the self-assembly by an 

RR11
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external force field.  For electrically-induced compositional self-assembly, the introduction of 
external charge field can successfully guide the concentration field [10].  Let us consider the 
morphological self-assembly discussed in this paper.  If there is an external force field (notations 
with superscript “ext”), by the elasticity reciprocal theorem, the strain energy density at the 
surface changes by extuhw αβαβσ ,

0−=∆ .  The external field will affect the natural frequency 

spectrum of the self-assembly [3].  An external field can be obtained by introducing defects such 
as dislocations, or residual stress field. 

DISCUSSIONS 

Nanoscale self-assembly on solid surfaces has offered many opportunities in nanostructure 
fabrications, e.g., as templates for making devices.  We consider morphological and 
compositional self-assembly and investigate how to manipulate those self-organized structures 
by the elastic field.  A quadratic form, Eq. (1), is derived to determine the energetically favored 
orientation with varying anisotropy in stiffness and applied stress or surface stress.  This 
representation is the same for morphological and compositional self-assembly to the first order 
of perturbation.  Consequently, if an epitaxial thin film has both morphology and composition 
modulation and the coupling contains only higher order term, we expect no difference from 
individual self-assembly [11]. 

Generally, higher order perturbation solution will give us different orientation preference 
[3].  However, this is hardly observed in experiments because the magnitude of nonlinear 
interaction is usually small compared with the linear interaction.  Currently, we are trying to 
apply the higher order perturbation solution to a fractal rough-surface subjected to stress and 
surface reaction [3].  The higher order perturbation allows us to couple the scales and explore the 
size effect.  The effect of higher order perturbation is also pronounced near surface defect [12]. 
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