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ABSTRACT

Objectives: Skeletal asymmetries reflect developmental stability and mechanical, functional, and physiological
influences on bone growth. In humans, researchers have documented the greatest limb bone bilateral asymmetry in
diaphyseal breadths, with less asymmetry in articular and maximum length dimensions. However, it remains
unclear as to whether the pattern observed for humans is representative of nonhuman primates, wherein bilateral
loading may minimize directional asymmetry. This study adds to the small body of asymmetry data on nonhuman
primates by investigating patterns of long bone asymmetry in a skeletal sample of Saguinus oedipus (cotton-top
tamarin).

Materials and Methods: Humeri, radii, ulnae, femora, and tibiae of 76 adult captive cotton-top tamarin skele-
tons (48 males, 28 females) were measured bilaterally. We included maximum length, midshaft diaphyseal breadths,
and at least one articular measurement for each bone to assess directional (DA) and fluctuating asymmetry (FA) in
each dimension.

Results: Most dimensions exhibit significant FA, and very few have significant DA; DA is limited to the lower
limb, especially in knee dimensions. Overall, the magnitudes of asymmetry in tamarins have a consistent ranking
that follows the same pattern as found in humans.

Discussion: This first study of DA and FA among multiple dimensions throughout the limbs of a non-hominoid
primate suggests that previously-reported patterns of human bilateral asymmetry are not exclusive to humans. The
results further indicate potential underlying differences in constraints on variation within limb bones. While proc-
esses shaping variation await further study, our results argue that different long bone dimensions may reflect dis-
similar evolutionary processes. Am J Phys Anthropol 160:41–51, 2016. VC 2016 Wiley Periodicals, Inc.

Bilateral symmetry is thought to be adaptive for verte-
brates since it has been linked, both theoretically and
empirically, to a variety of measures of fitness (Møller,
1997). Increased levels of asymmetry are associated with
sources of stress during development (Brown et al.,
1989; Swaddle and Witter, 1994), increased parasitism
and predation (Møller, 1996; Thornhill and Møller,
1997), and potentially lower survivorship (Novak et al.,
1993). Functionally, symmetry is important for the bilat-
eral coordination of limb movement during locomotion.
Thus, it appears that mechanisms that decrease asym-
metry are selectively advantageous (Gangestad and
Thornhill, 1999).

Departures from symmetry have the potential to eluci-
date the role developmental, mechanical, genetic, and
physiological factors play in growth and development
(Hallgr�ımsson et al., 2002; Willmore et al., 2005).
Numerous studies have documented a consistent asym-
metry in human upper limb bones, with right side ele-
ments typically being larger, while lower limb bones
tend to be more symmetric (reviewed in Auerbach and
Ruff, 2006). Asymmetry, which consistently favors one
side across a population, is referred to as directional
asymmetry. Additionally, there appears to be a consist-
ent pattern of directional asymmetry within skeletal ele-
ments across human populations (Auerbach and Ruff,

2006). Diaphyseal measurements display the greatest
directional asymmetry, followed by articular dimensions,
and lengths display the lowest levels of directional asym-
metry. The absolute asymmetries provided by Auerbach
and Ruff (2006) also present the same pattern, and may
be used as proxies for fluctuating asymmetry, small ran-
dom deviations from symmetry that do not consistently
favor one side (Palmer, 1994).

The uniform patterns within human limb bones may
have broader implications for the ability of traits within
limbs to evolve, as reduced fluctuating asymmetry indi-
cates greater developmental stability (Hallgr�ımsson
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et al., 2002). Developmental stability is one mechanism
that buffers developmental processes against perturba-
tions and serves to decrease variation. Research to date
has largely focused on limb lengths to examine develop-
mental stability (e.g., Hallgr�ımsson, 1999; Hallgr�ımsson
et al., 2003), leaving open the question of differences in
stability among traits within limbs. If the pattern of
fluctuating asymmetry among limb dimensions is con-
sistent among primates with long-divergent evolution,
we would conclude that a hierarchy exists in the devel-
opmental stability of traits within bones. While the sta-
bility of a trait may not perfectly reflect its evolvability
(Hansen and Houle, 2008), greater developmental stabil-
ity does have implications for the ability for traits to
respond to selection (Møller and Swaddle, 1997;
Hallgr�ımsson et al., 2002).

To examine indicators of developmental stability
within limbs, here we examine patterns of asymmetry in
the cotton-top tamarin (Saguinus oediupus) to determine
if human patterns are present in non-hominoid taxa,
which in turn would suggest a broader pattern among
primates. We selected tamarins because they are quad-
rupedal primates without documented species-wide pat-
terns of asymmetry (Diamond and McGrew, 1994;
Gangestad and Thornhill, 1999; Papademetriou et al.,
2005; Chapelain et al., 2006; Smith and Thompson,
2011; cf. Hook and Rogers, 2002); this, coupled with the
use of all limbs during locomotion, argues against an
expectation of significant directional asymmetry. By
examining patterns of fluctuating asymmetry among
limb dimensions in tamarins, we investigate whether
the broader pattern of variation among limb dimensions
indicated by studies on humans is present in a monkey
species.

ASYMMETRY

Patterns of asymmetry within a population are com-
monly described as one of three types: directional asym-
metry (DA), fluctuating asymmetry (FA), and
antisymmetry (AS) (Van Valen, 1962; Palmer et al.,
1993). These types of asymmetry are distinguished
based on the shape of the distribution of differences
between sides of bilateral traits (i.e. right-left).

Directional asymmetry characterizes consistent
greater development of one side of the body among indi-
viduals in a population. The distribution of differences
between sides is normally distributed with a mean that
differs significantly from zero (Van Valen, 1962; Palmer
and Strobeck, 2003). As a species, humans preferentially
use the right upper limb (Ambrose, 2001), and many
skeletal studies have argued that lateralized behaviors
among humans (e.g. handedness) lead to the differences
in bone size and shape between sides, especially of the
upper limb (Trinkaus et al., 1994; Ruff, 2000; Steele,
2000; Lieberman et al., 2001, 2003; Kontulainen et al.,
2003; Auerbach and Ruff, 2006; Auerbach and Raxter,
2008; Lazenby et al., 2008a,b; Fatah et al., 2012; Ireland
et al., 2013). Directional asymmetry provides research-
ers with the opportunity to examine the effects of differ-
ent mechanical loading regimes, as it is hypothesized
that genetic, hormonal, climatic, and nutritional factors
affect both sides equally. Directional asymmetry may be
easier to detect in the upper limb of modern humans
because the limb has been decoupled from load bearing
during habitual locomotion (Sylvester, 2006), allowing
non-locomotor behaviors to become the dominant loading

regime. An important caveat to this observation, how-
ever, is that not all lateralized behaviors will be reflected
by skeletal asymmetry, as variation in the developmen-
tal stage and the duration, frequency, and magnitude of
loads associated with specific lateralized tasks will have
unequal effects on bone asymmetry (Ruff et al., 2006;
Ubelaker and Zarenko, 2012).

Together, antisymmetry and fluctuating asymmetry
are known as nondirectional asymmetry (nDA), and are
characterized as asymmetry with no population-level
directional bias (Palmer, 1994). More specifically, FA is
asymmetry that arises from the inability of individual
organisms to develop perfectly along a predetermined
path (Van Valen, 1962) and can be detected as a distri-
bution of differences between sides (i.e. right–left) that
is normally distributed around a mean of zero (Palmer,
1994) with a nonzero variance. It represents a measure
of “developmental noise” or minor deviations from an
ideal symmetric developmental program (Van Valen,
1962; Palmer and Strobeck, 1986). Deviations from sym-
metry within an individual are stochastic with respect to
side, but patterns within a sample can be used to infer
levels of developmental stability for the character.
Hallgr�ımsson et al. (2002) found that FA in fetal mice is
correlated with heritability, suggesting that there are
mechanisms in place to reduce phenotypic plasticity for
some features. Based on this logic, researchers have
examined independence in patterns of FA to establish
independent developmental modules within skeletal ele-
ments (e.g., Klingenberg et al., 2003), as well as estab-
lish genetic and environmental factors that affect
development (Sciulli et al., 1979; Leamy and Klingen-
berg, 2005).

Antisymmetry arises from a mechanism similar to DA,
in which individuals are lateralized for particular behav-
iors, but differs in that the population does not show a
bias towards one particular side (Van Valen, 1962). Anti-
symmetry will have a distribution of differences between
sides centered about a mean of zero, but will either be
platykurtic or in extreme cases will exhibit a bimodal
distribution with each peak representing either the left-
dominant or right-dominant portion of the population
(Van Valen, 1962). Fluctuating asymmetry is best
assessed after ruling out the presence of both DA and
AS (Palmer, 1994; Kujanov�a et al., 2008), and although
FA is ideally normally distributed, it often manifests as
a leptokurtic distribution (Gangestad and Thornhill,
1999; Babbitt, 2006). Palmer (1994) argues that deter-
mining whether nDA is FA or AS is a crucial step in
asymmetry analyses.

Research in the last twenty years indicates that bone
does not react uniformly throughout an element to
asymmetric loading (Lieberman et al., 2003). While
directional asymmetries in bones are present in maxi-
mum lengths, articular breadths, and diaphyseal meas-
ures, it has been noted that diaphyseal measures are the
most asymmetric (Biewener and Bertram, 1994; Auer-
bach and Ruff, 2006). The reason for this difference
within elements is attributed by these authors to differ-
ences in canalization and/or developmental stability of
the traits. Both canalization and developmental stability
refer to the tendency of a developmental process to fol-
low a particular trajectory (Hallgr�ımsson et al., 2002).
Canalization refers to the tendency of a specific genotype
to follow the same phenotypic trajectory under varied
developmental and environmental influences; develop-
mental stability refers to the tendency of a specific
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genotype to follow the same phenotypic trajectory under
constant developmental and environmental influences.
In this context, bone maximum lengths and articular
sizes appear to be more developmentally stable within
an individual and more canalized among populations.
External diaphyseal breadths are shown to have the
most variance of limb bone measures among individuals
(e.g., Auerbach and Ruff, 2006) and throughout growth
(Ruff et al., 1991; Lieberman et al., 2001; Ruff, 2007;
Cowgill, 2010). This is likely a result of bone apposition
that accommodates variation in mechanical loading pat-
terns among and within individuals.

LIMB ASYMMETRY IN NONHUMAN PRIMATES

In part spurred by interest in the evolution of human
handedness, there is a large body of literature focusing
on behavioral laterality in nonhuman primates. Unlike
humans, however, which clearly show a species-level
right-side bias for behaviors (i.e. handedness, after
McGrew and Marchant (1997)), the result for nonhuman
primates are equivocal. In a meta-analysis of 48 studies,
McGrew and Marchant (1997) concluded that there was
insufficient evidence to support lateralization in nonhu-
man primates. This general finding is supported by field
studies (Marchant and McGrew, 1996; McGrew and
Marchant, 2001; Corp and Byrne, 2004) and captive
data (Palmer, 2002).

By contrast, task-specific handedness has been docu-
mented among several species, including Rhinopithecus
roxxellana (Zhao et al., 2012), Cebus apella (Spinozzi
et al., 1998), Gorilla gorilla (Hopkins, 2008; Meguer-
ditchian et al., 2010; Hopkins et al., 2011), and Pan trog-
lodytes (Lonsdorf and Hopkins, 2005; Bogart et al.,
2012). Olsen and Sommer (2014) reviewed 24 studies on
hand use in callitrichid monkeys, all of which detected
hand preference (biased hand use within individuals and
tasks), although only two detected handedness. In short,
the question of population-level handedness among non-
human primates remains an area of considerable debate,
although it seems absent in callitrichids (Hopkins, 2008;
Olsen and Sommer, 2014).

While a substantial literature exists on behavioral lat-
erality among nonhuman primates (e.g., Boesch, 1991;
Hopkins, 1993; McGrew and Marchant, 1997; Lacreuse
et al., 1999; Hopkins and Bard, 2000; Hopkins et al.,
2005, 2011; Marchant and McGrew, 2007, 2013), fewer
studies have investigated skeletal asymmetries, and
skeletal asymmetries in nonhuman primates are also
less well established than those in humans. An early
study by Schultz (1937) documented absolute asymme-
tries of humeral and radial length in gorillas, chimpan-
zees, and orangutans, finding asymmetry to be smaller
than humans. Much later, Dhall and Singh (1977) docu-
mented a right-side dominance in most of the muscles
and skeletal elements of the upper limb of rhesus maca-
ques, a finding supported by other researchers (Falk
et al., 1988; Helmkamp and Falk, 1990). Morbeck et al.
(1994) did not find clear patterns in the asymmetry of
bone lengths, areas, weights, or mineralization for six
known Gombe chimpanzees. In a study of 189 catarrhine
postcrania, Buck et al. (2010) found greater variation in
forelimb measures than those of the hindlimb and in
diaphyses relative to articular dimensions. Hallgr�ımsson
et al. (2002) detected greater variation and greater FA
in the distal elements of rhesus macaque limbs com-
pared to proximal elements. Sarringhaus et al. (2005)

and Stock et al. (2013) demonstrated that chimpanzees
have mixed patterns of DA in the upper limb: a left-
biased asymmetry in humeral diaphyseal breadth and
right-biased asymmetry in the midshaft of the second
metacarpal. Additional nonhuman primate skeletal stud-
ies, which consider fluctuating and directional asymme-
tries throughout long bones, are needed to determine
whether the patterns of asymmetry noted for humans
are unique.

To address the questions indicated in the review
above, we examine both directional and fluctuating
asymmetries in three sets of dimensions in the quadru-
pedal, nonlateralized cotton-top tamarin: bone maximum
lengths, articular dimensions, and external diaphyseal
breadths. As noted above, we expect no DA in any of
these dimensions among the tamarins. However, we
anticipate FA to have the same pattern in tamarins as
has been reported for DA in humans, where diaphyseal
asymmetries are much greater than articular and length
asymmetries, and that length asymmetries will be the
smallest in magnitude. Given the quadrupedal nature of
tamarin locomotion, as well as greater limb integration
among monkeys, we furthermore do not expect differen-
ces in FA between the upper and lower limbs.

METHODS

Sample and measurements

One limitation for studies of limb asymmetries in non-
human primates is the rarity of large skeletal samples
that preserve all elements of interest. Access to a large
primate sample, such as the Oak Ridge Small Primate
Collection curated at The University of Tennessee, pro-
vides an opportunity to assess variability within and
between limb dimensions of nonhuman, non-ape prima-
tes. The animals were part of a pedigreed colony raised
at the Oak Ridge Associated Universities (ORAU) Mar-
moset Research Center (Clapp and Tardif, 1985). The
colony was initiated in 1961 by importing animals from
the wild, with a total of 451 cotton top tamarins
imported from 1961 to 1981 (Cheverud et al., 1993);
approximately one-third of these wild-caught tamarins
reproduced as part of the breeding program established
at ORAU, where every effort was made to enhance out-
breeding, with mating pairs selected based on genealogy
and compatibility (Clapp and Tardif, 1985; Cheverud
et al., 1993).

Clapp and Tardif (1985) provide the most detailed
description of the housing and breeding conditions for
this sample and describe the facility as a large all-
weather enclosure with 40 family-unit apartments with
two interconnected 0.9 3 0.9 3 1.5 m wire mesh cage
sections suspended 0.6 m from the floor. The enclosure
was heated during cold months, and humidity was con-
trolled via exhaust fans in the roof to remove moisture
or a sprinkler system to produce moisture. Each family-
unit apartment was provided with water ad libitum, a
17.8 3 20.32 3 40.6 cm removable nest box, and small
diameter tree substrate. Animals were fed twice per day
on a diet of bananas, applesauce, monkey chow, and die-
tary supplements (Clapp and Tardif, 1985).

During their time at the ORAU Marmoset Research
Center, the tamarins were used in experimental studies,
especially the examination of colon cancer (Clapp et al.,
1985). However, as explored elsewhere (Hutchison and
Cheverud, 1995), these studies were limited to adults,
and so should not have affected the development of the
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limb bones during ontogeny, when environmental effects
have the greatest influence on bone shape and size. Indi-
viduals with evidence of disease were excluded from the
study. In our sample of 76 adult cotton-top tamarins
(Saguinus oedipus; 48 males, 28 females), 24 were wild-
caught, 38 were born in captivity to wild-caught parents,
10 were born in captivity to one wild-caught parent and
one captive-born parent, and four were offspring of two
captive-born parents. In all cases of animals born to
captive-parents, pedigree information indicated descent
from independent wild-caught lineages, arguing that
inbreeding should have minimal impact on estimates of
asymmetry.

Twenty-nine limb dimensions were measured bilater-
ally by one of us (N.M.R.) for humeri, ulnae, radii, fem-
ora, and tibiae (Fig. 1) of each individual. Skeletal
dimensions were selected to assess the relative magni-
tudes of asymmetry in length, articular, and diaphyseal
dimensions in light of the patterns previously reported
among humans. The maximum length, midshaft antero-
posterior (AP) and mediolateral (ML) diaphyseal
breadths, as well as at least one articular measurement
were included for each bone to compare these types of
dimensions. Maximum lengths were taken using a
Paleo-Tech mini-osteometric board. Diaphyseal midshaft
positions (50% of maximum length), and the AP and ML
breadths at the midshaft were collected using Mitutoyo
Digimatic 150 mm (sliding) calipers. Articular dimen-
sions for these nonhuman primates were chosen after
Ruff (2002) and were collected with the same digital slid-
ing calipers. All measurements were taken to the near-
est 0.01 mm. Metacarpals and phalanges were not
included in the study because their small size made it
difficult to obtain reliable mid-shaft and articular dimen-
sions (although lengths were generally measurable and
repeatable). Since the goal was to include each type of
dimension (length, articular and diaphysis) for each
bone, measurement difficulties precluded including hand
and finger bones.

All dimensions were measured three times each over
several weeks by the same researcher (N.M.R.). These
repeated measurements were used to estimate measure-
ment errors for all dimensions (Supporting Information
Table SI1), which were calculated by averaging the abso-
lute deviations of each measurement from the mean of
the three trial measurements, then expressing this
mean deviation as a percentage of the mean measure-
ment. Most dimensions are considered to have high pre-
cisions, with measurement errors less than 1% for most
dimensions, and less than 3% for all dimensions.

Analyses

Before assessing sources of asymmetry, male and
female skeletal measurements (average of sides within
each individual specimen) were compared using ANOVA
tests to decide if the sexes should be analyzed separately
or pooled. Asymmetry values for wild-caught and
captive-born specimens were also compared using
ANOVA tests before pooling all specimens for asymmetry
analyses. Asymmetry was examined following Palmer
(1994) by subtracting the left measurement from the
right side measurement, and differences were converted
into percentages by dividing by their average value
using the following equation:

%Asymmetry 5 R2Lð Þ= R1Lð Þ=2ð Þ3 100

Percent asymmetry indicates the magnitude and direc-
tion of biases, with positive values for right-biased asym-
metries and negative values for left-biased asymmetries.

Potential sources of total asymmetry (DA, FA, and AS)
were assessed by procedures outlined by Palmer and
Strobeck (1986), Palmer (1994), and Palmer and Stro-
beck (2003), which have been used by other researchers
to assess asymmetry in a variety of species (Klingenberg
and McIntyre, 1998; Klingenberg et al., 2003; Trotta
et al., 2005; Willmore et al., 2005). To address the poten-
tial confounding effect of AS in assessing FA, the distri-
butions of differences between sides (i.e. R-L) were
checked for normality using conventional skewness and
kurtosis statistics (Sokal and Rohlf, 1987; Palmer and
Strobeck, 1992; Palmer, 1994). Confidence intervals (99%
confidence limits) for kurtosis and skewness statistics
were generated using a bootstrap procedure with 1,000
iterations of resampling with replacement, followed by
kurtosis and skewness estimates. Ninety-nine percent
confidence intervals were employed to guard against
Type I errors given the large number of variables.
Departures from normality were indicated by confidence
intervals for skewness statistics that did not include
zero and for kurtosis values that did not include the
value three. In the absence of departures from normal-
ity, nDA may be interpreted as FA (Palmer, 1994).

Directional and nondirectional asymmetry (nDA) were
assessed using a two-factor mixed model ANOVA, with
“individual” as a random factor and “side” as a fixed

Fig. 1. Limb dimensions of tamarin long bones used in this
analysis. Midshaft AP and ML breadths for each bone, RCML,
RCAP, FMCSI, FLCSI are not pictured. Pictures not to scale.
See Ruff (2002) for more detailed depictions of generalized pri-
mate bones; abbreviations correspond with this publication.
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factor, after Palmer and Strobeck (1986), Palmer (1994),
and Merila and Biorklund (1995). This approach parti-
tions the variances into several sources: The “individual”
animals (variation is size and shape among the animals),
“side” (systematic differences between side, i.e. DA), the
interaction between “individual” and “side” (nDA), and
measurement error.

The effect of trait size (e.g. bone length vs. articular
dimensions) on the estimate of FA was removed by natu-
ral log-transforming all raw data measurements to
obtain size-scaled measures of FA (Wright, 1952; Van
Valen, 1978; Palmer and Strobeck, 2003; Willmore et al.,
2005). The presence of DA can be tested using the facto-
rial ANOVA approach using an F-test, with F 5 MSside/
MSside 3 individual (Palmer, 1994) which determines if the
mean difference between sides is greater than expected
given the amount of nDA. Nondirectional asymmetry
was also tested with an F-test, with F 5 MSside 3 individu-

al/MSmeasurement error, and asks if the amount of nDA is
greater than expected given the amount of measurement
error. This second test was only conducted if the test for
DA was nonsignificant (Palmer, 1994).

Palmer and Strobeck (2003) provide several indexes
for estimating FA. Descriptors of FA estimate a variance
because FA is recognized by a distribution of between
side differences (R–L) centered around zero with a non-
zero standard deviation. Several FA indexes use the
standard deviation of the between side differences to
estimate FA (e.g. Palmer and Strobeck (2003) FA4a,
FA5a, FA6a). Fluctuating asymmetry can also be esti-
mated as the mean of the absolute value of between side
differences, which can be size scaled by the individual or
the sample. Fluctuating asymmetry estimators that uti-
lize the absolute values of the differences between sides
(|R-L|) flip the left side of the distribution (below zero)
onto the right side. The mean of this strongly asymmet-
ric distribution is tightly linked with the distribution
variance, hence also providing a measure of FA (e.g.
Palmer and Strobeck (2003) FA1, FA2, FA3). For normal
distributions, the expected mean of the asymmetric dis-
tribution of absolute values differs from the standard
deviation of the signed distribution by a constant (2/
p)0.5 5 0.798 (Kendall and Stuart, 1951; Palmer and
Strobeck, 2003). In the present study, FA was estimated
using Palmer and Strobeck’s (2003) FA10b index, which
uses the partitioned mean sum of squares (MS) from the
ANOVA and is calculated using the following formula
where M represents the number of measurement
replicates:

FA10b 5 0:798

3 ð2 3 ðMSside 3 individual2MSmeasurement errorÞ=MÞ1=2

The advantage of this approach is that variance attrib-
uted to measurement error, which can inflate measures
of nDA, is subtracted from the variation attributed to
nDA. As discussed, the leading constant (0.798) makes
the above index (FA10b) comparable to indexes based on
the mean of absolute values of between side differences.
This is also true of the internal constant (Palmer and
Strobeck, 1986; Palmer, 1994). This approach describes
the total nDA as a proportion of the trait mean after
partitioning out measurement error (following Palmer
and Strobeck, 1986; Palmer, 1994; Fields et al., 1995; see
also Palmer and Strobeck, 1997). Alpha values were set
at 0.01 for all tests to guard against Type I errors,

however no sequential Bonferroni correction was used
for these F-tests in order to maximize the statistical
power available for these analyses and minimize Type II
errors (Perneger, 1998). Original measurements and cal-
culations were performed using Microsoft Excel 2011 for
Apple Macintosh. All statistical analyses were performed
using built-in statistical procedures in Matlab.

RESULTS

Means and standard deviations for the 29 bone dimen-
sions by side are provided in Table 1. Twenty-eight of
the 29 measurements have measurement errors less
than 2.0%1 (Supporting Information Table SI1). Closer
examination of the measurements reveals a general pat-
tern in the percent error values. The smallest dimen-
sions, articular sizes and diaphyseal diameters, have the
highest measurement errors. Consequently all errors are
considered to have negligible effects on the further anal-
yses, especially as the FA10b index takes measurement
error into consideration, and all twenty-nine dimensions
were analyzed for sources of asymmetry.

Individual ANOVA tests indicate that for all 29 traits,
there was not a significant difference between the male
and female measurements (P> 0.01; Table SI2). This is
unsurprising, as cotton-top tamarins do not exhibit sex-
ual dimorphism in size (Savage et al., 1993). In addition,
analyses did not reveal differences between wild-caught
and captive-born specimens in asymmetry values
(P> 0.01; Supporting Information Table SI3). Conse-
quently data for wild-caught and captive-born specimens
were also pooled for further analysis.

Asymmetry

Skewness and kurtosis values for all distributions of
differences between measurements of sides (i.e. R-L) are
provided in Table 2. None of the 29 bone measurements
displayed significant departures from normality as the
99% confidence intervals for all traits includes the value
0 for skewness and the value 3 for kurtosis (Table 2).

Mean and median percent asymmetries for the total
sample, with sexes pooled, are presented in Table 3.
Mean values range from a minimum of 21.13% (indicat-
ing the left side is larger) for the superoinferior dimen-
sion of the lateral femoral condyle to a maximum of
2.65% (indicating a right side bias) for the anteroposte-
rior dimension of the radius midshaft. For most meas-
urements, the median percent asymmetry has the same
sign as the mean value, but this is not the case for all
dimensions. For humerus maximum length, ulna medio-
lateral diaphyseal midshaft and radius mediolateral dia-
physeal midshaft, the mean value is positive (suggesting
a right bias) while the median is negative (indicating a
left bias). These findings indicate that there are more
individual tamarins with a left bias for these measure-
ments, but for those tamarins with a right bias, the bias
is of a greater average magnitude. None of the measure-
ments showed the reverse trend.

The two-factor mixed model ANOVA and the resulting
F-tests indicate that directional asymmetry is present in

1The mediolateral midshaft diaphyseal measurement of the ulna is
the only dimension with an error greater than 2% on average; this
measurement imprecision is likely attributable to the difficulty of ori-
enting the bone and the small magnitude of the dimension
(mean 5 1.83 mm, 1.82 mm; s 5 0.22 mm; 0.21 mm), which is the small-
est measurement taken in this study.
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eight of the bone dimensions measured (P values <0.01;
Table 4). Two are measurements of the radius (antero-
posterior diameter of the midshaft and the anteroposte-
rior distal radius articular diameter), four are
measurements of the femur (anteroposterior diameter of
the midshaft, superoinferior dimension of both condyles,
and femoral bicondylar breadth), and two are measure-
ments of the tibia (maximum length and mediolateral
diameter of the plateau). For those measurements that
do exhibit DA, there is a general trend of percent asym-
metry in which lengths exhibit the lowest amount of
asymmetry, followed by articular dimensions, and mid-
shaft dimensions have the largest percent asymmetry
values. This is true even when all bones are considered
together.

Nondirectional asymmetry (nDA)

In contrast to the results of statistical tests for the
presence of significant DA among the limb bone dimen-
sions, results calculated from the mixed-model ANOVAs
indicate that significant nondirectional asymmetries are
present in almost all other measurements; these are pre-
sented in Table 4. Of all the dimensions for which the
test for nDA was conducted (those that exhibited no DA)
only the humeral head diameter does not have a statisti-
cally significant nDA (i.e. asymmetry that cannot be dis-
tinguished from measurement error). The significant
nDA values can be interpreted as FA because earlier
tests do not indicate departures from normality. Also
included in Table 4 are the size-scaled estimates of FA
for each bone dimension, as well as their rank values
(within a bone). In the upper limb, there is a very clear
trend of increasing FA in which maximum lengths

TABLE 1. Means and standard deviations for long bone dimen-
sions by side

Bone Measurement

Mean (mm)
Std. Dev.

(mm)

Right Left Right Left

Humerus HML 51.22 51.20 1.56 1.56
HHML 6.27 6.19 0.27 0.25
HDML 8.57 8.60 0.32 0.31
H50AP 3.82 3.84 0.23 0.23
H50ML 3.89 3.86 0.27 0.27

Ulna UML 53.88 53.86 1.92 1.92
UTML1 3.88 3.92 0.19 0.19
U50AP 3.54 3.51 0.25 0.26
U50ML 1.83 1.82 0.21 0.22

Radius RML 46.44 46.38 1.74 1.86
RheadL 4.83 4.83 0.20 0.20
RHeadW 3.85 3.85 0.14 0.15
RCML 5.31 5.32 0.17 0.18
RCAP 3.07 3.03 0.17 0.16
R50AP 2.38 2.32 0.18 0.16
R50ML 2.77 2.75 0.22 0.23

Femur FML 66.29 66.24 2.10 2.06
FHSI 6.07 6.09 0.28 0.27
FCML 9.39 9.43 0.25 0.25
FMCML 3.21 3.19 0.18 0.17
FMCSI 5.61 5.56 0.17 0.17
FLCSI 5.58 5.64 0.17 0.17
F50AP 4.18 4.09 0.23 0.22
F50ML 4.23 4.21 0.23 0.22

Tibia TML 67.22 67.05 2.26 2.13
TPlatML 9.42 9.47 0.27 0.26
TTAP 4.58 4.62 0.20 0.19
T50AP 4.33 4.29 0.27 0.25
T50ML 3.10 3.12 0.17 0.18

TABLE 2. Skewness and kurtosis values for all distributions of differences between measurements of sides (i.e. right-left)

Bone Measurement
Type of
measure

Skew
(99% CI)

Kurtosis
(99% CI)

Humerus HML Max. Length 20.28 0.97 2.09 4.21
HHML Prox. Articular 20.14 1.03 2.13 4.95
HDML Dist. Articular 20.79 0.42 2.05 4.25
H50AP Diaphysis 20.8 0.84 2.6 4.99
H50ML Diaphysis 20.67 0.43 1.91 4.12

Ulna UML Max. Length 21.95 1.62 2.97 10.08
UTML1 Prox. Articular 20.22 1.01 2.17 4.58
U50AP Diaphysis 20.47 0.39 1.82 3.08
U50ML Diaphysis 21.42 0.56 2.15 5.97

Radius RML Max. Length 20.85 2.03 2.34 11
RheadL Prox. Articular 20.76 0.86 2.33 5.04
RHeadW Prox. Articular 20.83 1.28 2.48 6
RCML Dist. Articular 20.72 0.91 2.65 4.77
RCAP Dist. Articular 20.65 1.07 1.8 5.41
R50AP Diaphysis 20.72 2.68 1.91 16.22
R50ML Diaphysis 23.02 2.45 2.44 18.47

Femur FML Max. Length 20.64 1.22 2.75 6.47
FHSI Prox. Articular 20.98 0.33 1.82 4.68
FCML Prox. Articular 20.48 3.1 1.86 19.46
FMCML Dist. Articular 20.26 0.57 1.93 3.56
FMCSI Dist. Articular 20.92 0.52 2.09 4.55
FLCSI Dist. Articular 20.25 0.79 2.11 3.78
F50AP Diaphysis 20.8 0.5 1.93 4.19
F50ML Diaphysis 20.58 0.45 2.04 3.57

Tibia TML Max. Length 20.06 1.36 2.27 5.47
TPlatML Prox. Articular 20.3 0.61 1.79 3.07
TTAP Dist. Articular 20.76 1.37 2.78 6.77
T50AP Diaphysis 20.75 1.55 2.13 8.04
T50ML Diaphysis 20.42 0.74 2.11 4.03

46 N.M. REEVES ET AL.

American Journal of Physical Anthropology



TABLE 3. Mean and median percent asymmetries for the total sample (N 5 76)

Bone Measurement
Mean difference

right–left side (mm)

Mean unsigned
difference

right–left side (mm) %DA mean %DA median

Humerus HML 0.02 0.32 0.044 20.074
HHML 20.01 0.10 20.169 20.105
HDML 20.04 0.14 20.426 20.306
H50AP 20.02 0.10 20.399 20.546
H50ML 0.02 0.09 0.634 0.744

Ulna UML 0.02 0.28 0.033 0.037
UTML1 20.04 0.11 21.019 20.619
U50AP 0.03 0.10 0.990 0.540
U50ML 0.01 0.09 0.301 20.001

Radius RML 0.05 0.30 0.129 0.194
RHeadL 20.01 0.05 20.099 20.141
RHeadW 0.00 0.05 0.070 0.169
RCML 0.00 0.09 20.032 20.374
RCAP 0.04 0.10 1.235 1.078
R50AP 0.06 0.10 2.647 2.650
R50ML 0.02 0.11 0.591 20.062

Femur FML 0.06 0.33 0.086 0.123
FHSI 20.02 0.06 20.265 20.396
FCML 20.04 0.11 20.442 20.509
FMCML 0.02 0.10 0.643 0.345
FMCSI 0.05 0.09 0.969 1.181
FLCSI 20.06 0.10 21.130 21.093
F50AP 0.10 0.13 2.341 2.188
F50ML 0.02 0.07 0.388 0.231

Tibia TML 0.17 0.41 0.246 0.207
TPlatML 20.05 0.10 20.541 20.595
TTAP 20.03 0.10 20.766 20.829
T50AP 0.03 0.10 0.705 0.483
T50ML 20.02 0.06 20.630 20.792

TABLE 4. Limb asymmetry values and statistics

Bone Measurement Type of measure
Significant DA

P value
FA (rank

within bone)

Humerus HML Max. Length 0.64 0.0064 (1)
HHML Prox. Articular 0.48 0.0091
HDML Dist. Articular 0.07 0.0112 (2)
H50AP Diaphysis 0.29 0.0233 (3)
H50ML Diaphysis 0.05 0.0222 (4)

Ulna UML Max. Length 0.71 0.0062 (1)
UTML1 Prox. Articular >0.01 0.0235 (2)
U50AP Diaphysis 0.02 0.0270 (3)
U50ML Diaphysis 0.66 0.0448 (4)

Radius RML Max. Length 0.23 0.0074 (1)
RheadL Prox. Articular 0.57 0.0115 (2)
RHeadW Prox. Articular 0.73 0.0126 (3)
RCML Dist. Articular 0.90 0.0163 (4)
RCAP Dist. Articular <0.01 0.0240
R50AP Diaphysis <0.001 0.0318
R50ML Diaphysis 0.35 0.0414 (5)

Femur FML Max. Length 0.28 0.0054 (1)
FHSI Prox. Articular 0.06 0.0091 (2)
FCML Dist. Articular <0.01 0.0097
FMCML Dist. Articular 0.13 0.0264 (4)
FMCSI Dist. Articular <0.001 0.0092
FLCSI Dist. Articular <0.001 0.0111
F50AP Diaphysis <0.001 0.0190
F50ML Diaphysis 0.17 0.0191 (3)

Tibia TML Max. Length <0.01 0.0060
TPlatML Prox. Articular <0.001 0.0084
TTAP Dist. Articular >0.01 0.0094 (1)
T50AP Diaphysis 0.04 0.0163 (2)
T50ML Diaphysis 0.04 0.0199 (3)

Bold values are significant (P<0.01).
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exhibit the least FA, followed by proximal articular
dimensions, distal articular dimensions, and finally mid-
shaft dimensions with the greatest FA values. The trend
was also generally true of the hind limb elements, with
the exception of the femur in which bicondylar width
exhibits the greatest amount of FA. Thus, the following
general pattern emerges for magnitudes of FA within
tamarin long bones (from smallest to greatest): maxi-
mum lengths, proximal articular size, distal articular
size, and diaphyseal midshaft diameters (Fig. 2).

DISCUSSION

As this is the first time that patterns of all types of
asymmetry have been examined in multiple dimensions
of the limbs in a nonhominoid primate, expectations
were set using human patterns for relative magnitudes
of asymmetry among limb dimensions. With regard to
asymmetry within a bone (i.e. comparing length, articu-
lar dimensions, diaphyseal dimensions) these results
show that patterns of asymmetry in tamarins are simi-
lar to those published for humans (Trinkaus et al., 1994;
Auerbach and Ruff, 2006; Auerbach and Raxter, 2008).
Diaphyseal breadths have the most DA or FA in the
limbs, and generally, maximum lengths have the least
asymmetry either in terms of DA or FA. Articular sur-
face measurement asymmetry measures fall in between
these other two classes of dimensions. The exception to
this general pattern was that the mediolateral width of
the femoral condyles expressed more FA than did the
midshaft (Table 4, Fig. 2).

Contrary to the hypothesis set out in the Introduction,
there is population-wide DA found for some limb dimen-
sions, especially diaphyseal breadths and distal articula-
tion size, and this was largely found in the lower limb
skeletal elements. The source of skeletal asymmetry in
the radius is unknown as the literature suggests that
tamarins are not lateralized at the population or species
level (i.e. handedness), like humans (Olsen and Sommer,
2014). Before considering the implications of these
results further, it is important to point out that none of
the asymmetry observed exceeds 0.5 mm in total (abso-
lute) deviations (Table 3). Given the small magnitude of
most limb bone dimensions these deviations may be bio-
logically consequential for the tamarins, though any
such assertions are speculative. Thus, more emphasis is

placed on patterns of asymmetry among the limb bone
dimensions in the analysis of these results.

Unlike humans, the majority of the significant DA val-
ues for the tamarins occur in the lower limb. This result
is somewhat unexpected given the quadrupedal locomo-
tion of the tamarins, although Hook and Rogers (2002)
demonstrate that common marmosets may use left and
right limbs consistently for specific roles during leaping
behaviors. Since there are only six measurements of the
lower limb that exhibit directional asymmetry, it is diffi-
cult to discern a particular pattern. Four of the measure-
ments are articular dimensions, three of which show a
left side bias (femoral bicondylar width, superoinferior
dimension of the lateral condyle, and the mediolateral
width of the tibial plateau). These three measurements
are consistent with one another, making it hard to
ascribe the pattern to an artifact of sampling; taken
together these suggest the left knee is, overall, larger.
The fourth articular measurement (superoinferior
dimension of the medial condyle) is biased to the right
side, thus opposite of the general knee trend and may
reflect differences in the angle between the distal femur
and proximal tibia. Of the other two dimensions showing
DA, one is a diaphyseal measurement (anteroposterior
diameter of the femur) and the other, the maximum
length tibia, is the only bone to show a length DA, and
both are biased to the right side. While the DA of tibial
length is significant, it appears to be driven mainly by
six captive-born individuals with highly asymmetric
tibiae (>1.4% of mean bone length). If these six speci-
mens are removed from the analysis the test for DA
becomes nonsignificant (P> 0.05).

The most important conclusion drawn from the analy-
ses of asymmetry, in light of the hypotheses set out in
the introduction, is that tamarin long bones follow a pat-
tern of asymmetry similar to those reported for humans
(Auerbach and Ruff, 2006). Regardless of the association
of these results with specific lateralized behavior or
other factors, the identical pattern of asymmetry is note-
worthy for additional discussion. Moreover, the pattern
of FA in the limb bones supports this finding, and has
important implications for developmental stability
within the limb bones of primates, as well as the rela-
tionship of DA and nDA.

The magnitudes of asymmetry and the pattern of sig-
nificant FA in the tamarin sample suggest a consistent
ranking in the amount of asymmetry in long bone
dimensions. Coupled with results from previous studies
on other primates, this ranking may reflect general pat-
terns of developmental instability among primate limbs.
Simply, variance in the diaphyseal external dimensions
is less constrained than the variance in external articu-
lar dimensions or lengths. If this variance were an indi-
cator of potential evolution of the limb—as phenotypic
variance should be proportional to genetic variance
(Steppan et al., 2002; Roseman and Auerbach, 2015)—
then it suggests that limb bone lengths and articular
dimensions are evolutionarily constrained relative to
diaphyseal dimensions. Our study, however, does not
take a quantitative genetic approach, and so we cannot
extrapolate more about evolution from our results;
future studies using quantitative evolutionary genetic
models should look into canalization and evolvability of
different dimensions within limbs. Furthermore, the uni-
versality of the pattern of magnitudes of asymmetry
among primate limb dimensions should be assessed with
more taxa across the order.

Fig. 2. Fluctuating asymmetry of limb dimensions.
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Our results do argue further for independence in the
development of long bone lengths and diaphyseal
breadths. The findings in general support the hypothesis
that long bone lengths are more developmentally stable
and less responsive to local effects of activity than dia-
physeal measures, a finding now borne out in multiple
studies (Biewener and Bertram, 1994; Lieberman et al.,
2003; Auerbach and Ruff, 2006; Auerbach and Raxter,
2008; Auerbach et al., 2010; Fatah et al., 2012). Func-
tional constraints resulting from locomotion may be one
factor driving this pattern, but differences in the regula-
tion and apposition of bone between sides may also serve
a more fundamental governing role in the maintenance
of limb bone length symmetry (Hallgr�ımsson et al.,
2003). Diaphyseal dimensions, in contrast, must adjust
to loading behavior throughout life in order to resist
mechanical stresses (e.g., Ruff et al., 2006; but see Wal-
lace et al., 2014), and while this allows for greater flexi-
bility in local responses—and therefore higher amounts
of asymmetry compared with all other external dimen-
sions—diaphyses still maintain a general pattern of
development and correspondence between limb elements,
at least in humans (Cowgill, 2010; Ruff et al., 2013).

The moderate asymmetry in articular surfaces bears
additional attention. The correspondence of patterns and
magnitudes of both fluctuating and directional asymme-
tries between functionally related articular dimensions
is likely due to the fact that they must conform within
the same side, and affect each other in development
(Carter and Beaupr�e, 2001). A new finding in this study,
however, is that asymmetry in external articular dimen-
sions increases distally; and both the FA and DA show
this pattern. Safety factors of bone (a ratio of fracture
stress to peak functional stress, that is, how “over engi-
neered” a bone is (Biewener, 1983)) have been docu-
mented to decrease distally along limbs (Alexander,
1981; Young et al., 2014), and patterns of bone func-
tional adaptation likewise differ between the proximal
and distal cortices of limb bones (Lieberman et al.,
2003). Whether these biomechanical aspects of limb
bones correspond with the proximodistal pattern in
asymmetry cannot be made, however the link among
them is compelling; it is possible that the distal portions
of bone are more sensitive to their mechanical environ-
ment than proximal portions, and therefore lead to more
asymmetry (Lieberman et al., 2003). It is also possible
that differences in shape and joint motion in distal rela-
tive to proximal articulations are an important factor
driving this pattern. An examination of asymmetry in
the trabecular bone in these articulations would further
illuminate this pattern, as trabecular bone is more
responsive to loading after the end of primary growth
than the cortical shells of articulations (Ruff et al., 1991;
Plochocki et al., 2006).

Finally, this study shows correspondence between the
patterns of magnitudes between directional and fluctuat-
ing asymmetries. It is difficult to compare the residual
variance of FA analyses with the scaled percentages cal-
culated from arithmetic differences in dimensions for DA
analyses. Other studies have suggested the possibility of
the presence of developmental noise within measures of
DA (e.g., Markow, 1992; Graham et al., 1993). Palmer
(1994) and Palmer and Strobeck (2003) argue that asym-
metries are additive not only in a statistical sense, but
biologically as well. This is the first study to demon-
strate similar patterns of asymmetry among primate
limb dimensions for both directional and fluctuating

asymmetry. Future studies should address the interac-
tion between these by experimentally assessing develop-
mental instability in the limbs and the manifestation of
asymmetry types.

In conclusion, the pattern of DA and FA within indi-
vidual limb bones of tamarins matches that of DA pub-
lished for humans, but is distinguished from the human
pattern in that the hind limb skeletal elements of tamar-
ins are more asymmetric. These results support a gener-
alized model of limb bone development where different
dimensions of each limb bone show varying amounts of
stability, as well as independence from each other. The
more asymmetric measures of the diaphyses suggest
that they have greater variance, are likely more develop-
mentally plastic, and might be better indicators of an
individual’s behavior. In contrast, the more symmetric
articular and length dimensions may be more develop-
mentally stable and/or canalized, and potentially would
be useful for classifying or interpreting the evolution of
locomotor behaviors and phylogenetic relationships.
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