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Abstract— The temporal features of a cylinder-generated
shock-wave/transitional boundary-layer interaction (XSWBLI)
in response to supersonic flow (Mach 2) are investigated
using various model reduction techniques. Experimental data
are obtained using schlieren imaging at 100 kHz and image
analysis is performed using proper orthogonal decomposition
(POD). The POD framework is used as a starting point
to define a reduced set of data-driven isostable coordinates
that characterize the transient behavior of an underlying
dynamical system. Observed unsteady behaviors in the shock-
wave/boundary-layer interactions are well-represented as an
externally forced dynamical system with a pair of complex-
conjugate isostable coordinates. Results are validated against
well-established reduction methodologies including POD and
spectral POD. These results indicate that the isostable reduced
coordinate framework can be used to provide an accurate,
low-dimensional representation of the dynamical features of
supersonic fluid flow, even when the relationships between
underlying dynamical model and observed output are not
explicitly known.

I. INTRODUCTION

Recent years have seen a resurgence of interest in model
reduction techniques for extracting low-dimensional repre-
sentations from high-dimensional models. Among the most
well-established reduction methods is proper orthogonal de-
composition (POD) [1], [2], [3], which seeks to find an opti-
mal orthogonal basis to characterize observed data; variants
include clustering POD [4], spectral POD [5], balanced POD
[6], and adaptive POD [7]. Dynamic mode decomposition
(DMD) is a more recently developed methodology that can
be used to represent the spatiotemporal evolution of a dynam-
ical system using a finite number of basis elements [2], [8].
DMD is closely related to Koopman analysis, a framework
that represents the evolution of system observables using an
infinite-dimensional, linear operator [9], [10].

A commonality among each of these aforementioned
methods is that they try to characterize the underlying
dynamical features of high-dimensional experimental data
using a reduced order basis. When that data is generated
by a dynamical system that is fundamentally nonlinear, the
identification of a suitable basis poses significant challenges.
POD is able to represent experimental data efficiently, but
subsequent extraction of dynamical information is typically
difficult. On the other end of the scale, DMD (and related
analysis methods using the Koopman operator) can be used
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to represent the temporal evolution of the observables of
a nonlinear system, but in most cases a large number of
basis elements is required, limiting the utility of the re-
duction strategy. Refined methods for the identification of
representative observable functions to represent the Koopman
eigenfunctions are actively being developed [6], [11], [12].

In this work, we investigate the use of isostable coor-
dinates to define a basis of functions that can be used to
represent fluid flow data. In the basin of attraction of a fixed
point or stationary solution, these isostable coordinates are
directly related to the level sets of the most slowly decaying
Koopman modes [13], i.e., they characterize the infinite time
convergence of initial conditions to the stationary solution.
We apply this framework to experimental data of shock-
wave/transitional boundary-layer interaction resulting from
Mach 2 flow past a standing cylinder. Shock-wave/boundary-
layer interactions (SWBLI) are one of the dominant sources
of scientific uncertainty and resultant technical risk in the
development of planned hypersonic capabilities for national
defense and responsive space access. Although SWBLI have
been the subject of significant research for more than 50
years [14], [15], only recently have experimental and com-
putational capabilities become available to effectively resolve
and characterize the critical fluid dynamic phenomena that
drive their behavior. Characterizing SWBLI that occur with
boundary layers undergoing laminar-turbulent transition can
be challenging as shock-wave/transitional boundary-layer
interactions (XSWBLI) may have significant unsteady com-
ponents which can be difficult to model and predict. Here,
we investigate the application of isostable coordinates on
experimental data of an XSWBLI resulting from Mach 2 flow
past a standing cylinder. This configuration is an ideal test-
bed for the proposed method due to the unsteady behavior
of the interaction. Using the isostable reduced framework,
we identify a reduced set of dynamical features responsible
for the unsteady behavior of the shock structure. The results
using the isostable method are compared and validated
against more well-established model reduction frameworks.

The organization of this paper is as follows: in Section
II we describe the experimental setup used to obtain the
fluid flow data. Section III details the isostable coordinate
based reduction method and gives related results. Section IV
provides comparisons with other well-established reduction
frameworks, and Section V gives concluding remarks.

II. EXPERIMENTAL METHODS

The experimental data analyzed within the present work
were obtained in the Mach 2 low-enthalpy blowdown wind
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tunnel facility at the University of Tennessee Space Insti-
tute (UTSI). The wind tunnel test section has a constant
cross-section of 203×203 mm, and the plenum pressure is
maintained by a control valve at approximately 240 kPa. The
freestream velocity is on average 507 m/s, and the freestream
Mach and unit Reynolds numbers are 2.01 and approximately
3.0×107 m−1, respectively. Optical access for the schlieren
imaging is provided by BK7 glass viewports on the wind
tunnel side walls.

A Z-type schlieren system was used for flow visualization
of the shock interaction. The primary field elements are 2.67-
m-focal-length mirrors, and pulsed illumination is provided
by a high-powered light-emitting diode (LED). The LED and
a Photron FASTCAM Mini UX100 high-speed camera are
synchronized at a 100 kHz repetition rate. An exposure of
700 nanoseconds is short enough to effectively freeze the
high-speed flow in each image. The resulting images (32×
1024 pixels) have a resolution of 6 pixels/mm.

The test model utilizes a 3.2-mm-diameter (d), 12.7-mm-
tall (h) cylinder mounted to an inclined (−6.3deg) flat plate
with a sharp leading edge (8deg). The negative angle of at-
tack prevents flow separation near the leading edge and yields
an edge Mach number of approximately 1.78. Experiments
were conducted at a variety of cylinder locations relative to
the flat plate leading edge, though data presented here are
shown for the cylinder placed 7d (22.2 mm) downstream
of the leading edge. At these locations, the boundary layer
on the flat plate is undergoing laminar-turbulent transition,
such that a shock-wave/transitional boundary-layer interac-
tion (XSWBLI) is present.

A typical schlieren image of the cylinder-generated
XSWBLI is shown in Panel A of Figure 1. Here, the flow
is from left-to-right, the flat plate is at the bottom edge of
the image, and the cylinder is on the right. The various
flow features associated with this interaction are shown in
the schematic in Panel B. The relevant features of interest
to the present study are the forward shock foot, upstream
influence, flow separation region, and inviscid shock. Further
details on the experiments and the fluid dynamics analyses
are presented in [16].

III. IMAGE ANALYSIS OF EXPERIMENTAL DATA BASED
ON ISOSTABLE COORDINATES

The notion of isostable coordinates has been used to
characterize the transient decay of solutions to an attractor
of a nonlinear dynamical system, [13], [17], [18]. When
the attractor is a fixed point, these isostable coordinates are
directly related to level sets of a particular mode of the Koop-
man operator [13]. In these instances, isostable coordinates
can be computed by comparing the infinite time behavior
of solutions within the basin of attraction of a limit cycle
to the eigenfunctions associated with the linearized fixed
point. When working with low-dimensional or numerical
simulations, it is relatively straightforward to compute the
required eigenfunctions and associated eigenvalues. When
working with high-dimensional systems or with experimental
data, direct computation of eigenvalues and eigenfunctions

Fig. 1. Cylinder-generated shock-wave transitional boundary-layer inter-
action (XSWBLI). The schematic is reproduced from [16].

is impractical. The authors of [19] propose one method for
inference of eigenfunctions if the associated eigenvalues are
known a priori. Here we describe a different approach that
can be implemented without explicit knowledge of these
eigenvalues.

Consider a general PDE on the domain Ω,

∂

∂ t
X(r, t) = F(X(r, t))+G(X(r, t)),

Y (r, t) =C(X(r, t)), (1)

with boundary conditions

X(r, t) = bnom(r)+bt(r, t) for r ∈ ∂Ω. (2)

Here, X(r, t) represents the state as a function of location,
r, and time, t, Y (r, t) is a measured observable, C a lin-
ear function of the state, local dynamics are given by F ,
spatial coupling is represented by G (e.g., advection and
diffusion in the case of the Navier-Stokes equation), bnom(r)
gives the nominal Dirichlet boundary conditions and bt(r, t)
accounts for temporal fluctuations, for instance, to char-
acterize statistical fluctuations observed in an experiment.
We will take the mean value of bt(r, t) to be zero for all
r which can always be accomplished with an appropriate
choice of bnom(r). In the derivation to follow, we assume
the bt(r, t) = 0, but will lift this restriction as part of the
experimental imaging analysis. As in [20], we assume that
when bt(r, t) = 0, Equation (1) has a stationary solution
XSS(r) for which F(XSS(r))+G(XSS(r))= 0. We also assume
that the operator J≡∇[F(XSS(r))+G(XSS(r))] (i.e., the local
linearization with respect to the stationary solution) exists
and is compact. As illustrated in [19], near XSS, a leading
order accurate solution to the PDE can be written using
a basis of eigenfunctions ρ j(r) of J with corresponding
eigenvalues λ j:

X(r, t)−XSS(r) =
∞

∑
j=1

s j [X(r,0)−XSS(r)]ρ j(r)eλ jt , (3)

where s j(x) give the coordinates of X in the eigenfunction
basis, and X(r,0) is an initial state. Let the eigenvalues be
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sorted so that 0 ≥ Re(λ j) ≥ Re(λ j+1), i.e., with λ1 corre-
sponding to the eigenfunction with the slowest rate of decay.
For the slowest decaying eigenfunctions, an eigenfunction
basis can be used to define isostable coordinates according
to [20]

ψ j{X(r)}= lim
t→∞

e−λ jt
∫

Ω

QT
j (r)(X(r, t)−XSS)dr, (4)

where Q j(r) is used to to project the solution onto ρ j(r) and
is defined so that

∫
Ω

QT
j (r)ρk(r)dr = 1 when k = j and 0 oth-

erwise. For more rapidly decaying isostable coordiantes, no
constructive definition can be written, rather, these isostable
coordinates can be thought of as level sets of Koopman
eigenfunctions [21]. Note that these isostable coordinates
are defined in the entire basin of attraction of the stationary
solution. The relationship between isostable coordinates and
level sets of the Koopman operator was highlighted in [13].

As illustrated in [20], under the flow of (1), the
isostable dynamics are simply, dψ j/dt = λ jψ j. Furthermore,
near the steady state solution, to a linear approximation,
s j [X(r,0)−XSS] = ψ j{X(r,0)}. As implemented in other
applications [18], [17], it is often possible to obtain a good
approximation for the output by only considering the first
N isostable coordinates (i.e., truncating the rapidly decaying
components of the transient solution). By letting y(t) and
Cd(ρ j) represent discretized versions of the solution output
≡ Y (r, t)−YSS(r) and C(ρ j), respectively, in column vector
format and assuming that y(t) is small, then to leading order
accuracy

y(t)≈
N

∑
j=1

ψ jCd(ρ j),

= PΨ(t), (5)

where Ψ(t) =
[
ψ1(t) . . . ψN(t)

]T and P =[
Cd(ρ1) . . . Cd(ρN)

]
. The POD framework [1] can

also be used to represent the outputs as

y(t)≈
Np

∑
j=1

φ jµ j(t) = ΦM(t), (6)

where φ1, . . . ,φNp are a set of orthogonal POD modes
(stacked as column vectors), µ j are associated coefficients,
Np is the number of modes required to capture the desired
amount of energy, M(t) =

[
µ1(t) . . . µNp(t)

]
, and Φ is a

matrix comprised of each of the POD modes. Assuming the
columns of P are linearly independent, and drawing on the
orthogonality of the modes comprising Φ, Equations (5) and
(6) can be manipulated to yield Ψ = P†ΦM and M = ΦT PΨ,
where † and T indicate the pseudoinverse and transpose,
respectively. This implies

Ṁ = Φ
T PΨ̇

= Φ
T PΛΨ

= Φ
T PΛP†

ΦM = Aµ M. (7)

where in the second line, the relationship Ψ̇ = ΛΨ is used
where Λ is a diagonal matrix comprised of eigenvalues λ j as-
sociated with the isostable coordinates, and Aµ ≡ΦT PΛP†Φ.

Using standard techniques one can write Aµ = WΣW−1

where Σ is in the Jordan normal form. Similar to the approach
illustrated in [22], taking λ D

j be the jth element on the
diagonal of Σ, one can define a so called “data-driven”
isostable model of the form

ψ̇
D
j = λ

D
j ψ

D
j ,

y(t) =
Np

∑
k=1

ϒkψ
D
k , (8)

for j = 1, . . . ,Np. Above ϒk is the mode associated with
ψD

k and is given by the kth column of ΦW , and ψD
j is

a data-driven isostable coordinate (with similar dynamics
to standard isostable coordinates). Furthermore, each ψD

j
coordinate can be inferred directly from the state according to
ψD

j = eT
j W−1ΦT where e j is the jth element of the standard

unit basis.
In experiments, in order to extract isostable modes from

the flow data, it is explicitly assumed that bt(r, t) from (2)
is responsible for statistical fluctuations observed in the data
and acts to continually excite the system, keeping it from
reaching its steady equilibrium. In this case, the underlying
isostable coordinates themselves will not perfectly follow
ψ̇D

j = λ D
j ψD

j , however, provided bt(r, t) is small in magnitude
one can still obtain an estimate of Aµ from the experimental
data from the slowly decaying modes. Isostable modes are
extracted from experimental imaging data using the follow-
ing procedure: 1) POD is performed on the data, 9 POD
modes are used to determine a basis for the data. 2) At
∆t = 100 microsecond intervals, coefficients of the POD
basis are calculated according to M(t) = ΦT y(t), a least
squares fitting strategy is used to find the elements of the
matrix A which best captures the relationship

µ(t +∆t) = Aµ(t). (9)

This is accomplished as in [22] by taking ζ = 2501 mea-
surements equally spaced in time, defining two different
matrices B1 =

[
µ(0) µ(∆t) . . . µ((ζ −1)∆t)

]
, B2 =[

µ(∆t) µ(2∆t) . . . µ(ζ ∆t)
]

and taking A = B†
1B2. 3)

The matrices Aµ from Equation (7) and A from Equation
(9) describe continuous time behavior and discrete time
relationships for the same system, respectively. The eigen-
values of Aµ and A (λ D

j and λ A
j , respectively) are related by

λ D
j = log(λ A

j )/∆t. Eigenvectors of A and Aµ are identical.
This reduction strategy is applied to the hypersonic flow

data, and a subset of the resulting modes are shown in
Figure 2. The modes shown in panels B-D are associated
with the largest average square of the corresponding isostable
coordinate, 1

Tr

∫ Tr
0 ψD

j ψD
j
∗dt where ∗ denotes the complex

conjugate and Tr is the duration of the experiment. Panel A
shows the average measured value of the experimental data
which is taken to be YSS. The first mode in panel B is strictly
real and captures the boundary layer on the flat plate. The
negative amplitude regions correspond to the regions where
the forward lambda-shock foot oscillates. The second mode
is complex corresponding to an exponentially decaying sinu-
soid with an associated frequency of Imag(λ D

2 )/2π = 4.73
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kHz. This mode characterizes the oscillations in the lambda-
shock structure. Interestingly, this frequency corresponds
exactly to the peaks in the power spectrum observed in [16]
using techniques involving Fourier transformations applied
to the same dataset. Using (8) with only the three modes
shown in panels B-D of Figure 2 can be used to qualitatively
replicate the unsteady dynamical behavior of observed in
experimental data.

Fig. 2. Panel A shows the average of the imaging data taken over the
course of the experiment. Two modes obtained using isostable methods are
also shown. In panel B, a strictly real mode which captures the boundary
layer region and lambda-shock foot oscillation region is shown. Panels C
and D show real and imaginary components, respectively, of a mode that
characterizes oscillations in the lambda-shock structure.

IV. COMPARISON TO WELL-ESTABLISHED STRATEGIES

Here we investigate the same dataset using other well-
established model reduction strategies including POD and
spectral POD. We emphasize that while the data-driven
isostable reduced framework above uses POD as a starting
point, POD alone does not contain underlying information
about the dynamical behavior.

A. Image Analysis Based on POD

We now compare the isostable reduction method to more
well-established reduction frameworks. Proper orthogonal
decomposition (POD), introduced by [23] and detailed by
[24] is an efficient model reduction technique used to re-
duce nonlinear infinite dimensional systems to lower order
finite dimensional systems, especially those that describe the
dynamics of fluid flows. POD has increasingly been used
recently as a model order reduction technique to achieve
faster simulations of complicated high-dimensional systems.
POD models of only a few dozen states have been shown
to accurately capture the system dynamics of the full order
system model of thousands of states [25]. POD provides
an optimal set of orthogonal basis functions, which when
visualized, shows the coherent structures of the system
dynamics over the spacial domain. Given a function w(x, t)
in the standard Hilbert space L2(Ω,T ) where x ∈ Ω for
some Ω ⊂ Rp and T is a finite time interval. The n POD

basis functions set {φi}n
i=1 is computed by minimizing the

following cost function:

J(φ) :=
∫ T

0

∫
Ω

|w(x, t)−
n

∑
i=1

αi(t)φi(x)|2dxdt, (10)

where w(x, t) is the solution of the governing PDE which
is usually difficult to analytically compute and αi is the
temporal coefficient of each basis function. Alternatively,
numerical simulations are easier to compute and the solution
is defined at the mesh locations at different times (snapshots)
{si}N

i=1, then the optimization problem becomes discrete as
follows:

J(φ) := ∑
k

∑
m
|s(xm, tk)−

n

∑
i=1

αi(tk)φi(xm)|2. (11)

For a given snapshots matrix s, the solution of the optimiza-
tion problem (11) up to n pod basis functions is given by the
n eigenvectors corresponding to the largest n eigenvalues of
the eigenvalue problem [24]:

ssT
φ = λφ . (12)

Figure 3 shows the dominant POD modes ranked by pre-
served energy in descending order for the supersonic flow
data.

B. Image Analysis Based on Spectral POD

Snapshot-based POD does not explicitly contain any in-
formation about the frequency content of each mode. Some
frequency content can be revealed by computing the power
spectrum of each each αi(t) (as shown in Figure 4), however,
this by itself will not give a full picture of the spatiotemporal
behavior. Such information can be gained by using spectral
POD (SPOD) analysis [5] which considers the frequency
domain form of POD. SPOD is derived from a space-time
POD problem for statistically stationary flows and leads to
modes that each oscillate at a single frequency. SPOD modes
represent structures that evolve coherently in space and
time while POD modes in general give space-only coherent
structures.

Let w(x, t) ←F−→ W (x, f ) be the Fourier transform pair
defined as:

w(x, t) =
∫

∞

−∞

W (x, f )e j2π f td f , (13)

W (x, f ) =
∫

∞

−∞

w(x, t)e− j2π f tdt, (14)

The n SPOD basis functions set {ψi}n
i=1 is computed by

minimizing the following cost function:

J(ψ) :=
∫ T

0

∫
Ω

|W (x, f )−
n

∑
i=1

Fi( f )ψi(x)|2dxdt, (15)

where ψ is the spectral modes and F is the frequency
coefficients. The discrete form is:

J(ψ) := ∑
k

∑
m
|S(xm, fk)−

n

∑
i=1

Fi( fk)ψi(xm)|2. (16)
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Fig. 3. Dominant POD modes ranked by the preserved energy in descending order. In each mode the lambda-shock structure can be observed, however,
it is not possible to identify the temporal characteristics of the flow using POD alone.

Fig. 4. POD temporal coefficients and their frequency spectrum. Each of
the modes has significant frequency content near 4.7 kHz.

The solution is given by the n eigenvectors that correspond
to the maximum n eigenvalues in the eigenvalue problem:

SST
ψ = λψ, (17)

where s(xm, tk)←
F−→ S(xm, fk). Real and Imaginary parts of

the first 5 SPOD modes at 4.7 kHz are shown in Figure 5.

Fig. 5. Real and Imaginary parts of the first 5 SPOD modes at 4.7
kHz. Similar features are observed as compared to the isostable reduction
methodology from Section III even though the two modes are obtained
through fundamentally different approaches.

C. Image Analysis Based on DMD

Image analysis using DMD was performed on similar
experimental datasets in [26] and is not repeated here. The
DMD framework was able to identify modes that correspond
to shock breathing when considering experimental setups
with both turbulent and transitional boundary layers. As with
most applications of DMD applied to experimental data, the
authors of [26] remark that because DMD analysis outputs a
large number of modes and that the modes are not sorted by
order of importance it somewhat subjective to identify which
modes are worth investigating.

V. CONCLUSION

In this work, a strategy is developed for identifying a
first order accurate isostable reduced model from noisy
experimental data. This strategy is applied to analyze the un-
steady, temporal characteristics of cylinder-generated shock-
wave/transitional boundary-layer interaction resulting from
Mach 2 flow. Using this approach, the temporal behavior is
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well-characterized with a pair of complex-conjugate isostable
coordinates that are driven by exogenous input. This ap-
proach identifies two modes that correspond to exponentially
decaying sinusoids with frequency 4.73 kHz. For this same
dataset, this frequency corresponded to peaks found in the
power spectrum of the imaging data [16], and also coincided
with the dominant frequency in the spectral POD strategy
shown here.

It is notable that the imaginary mode shapes from panel
C and D of Figure 2 are very similar to those observed
in Figure 5 despite the fact that the two methods approach
the reduction from a different perspective, with the former
identifying a dynamical model for the most important mode
shapes and the latter attempting to identify dominant modes
that characterize the data across both space and time. It
is feasible that there could be an unexplored connection
between both of these reduction strategies, especially when
considering the reduced isostable framework in the vicinity
of a stationary solution so that linearization is possible.

The methodology described in Section III gives a linear
approximation of the isostable mode shapes for use when
the dynamics are close to a stationary solution. It may be
possible to develop strategies to provide higher order accu-
rate approximations for the model dynamics similar to the
strategy suggested in [17]. Additionally, given that isostable
coordinates are valid in the entire basin of attraction of a
limit cycle, it may be possible to characterize the behavior
along trajectories for initial conditions that have been per-
turbed farther from the stationary solution. Finally, it would
be of interest to incorporate the influence of perturbations
into the reduced model dynamics from (8) using a ‘direct
method’ that characterizes the influence of spatiotemporal
perturbations (i.e., pulsed jet injection upstream of the shock
interaction region) on the reduced isostable coordinates after
the rapidly decaying transients have died out. Such strategies
would allow for active control strategies to be implemented
in experiments even when a full dynamical description
(based on the Navier-Stokes equations) is unavailable. Such
considerations will be investigated in future studies.
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