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Abstract— Despite recent advancements in understanding the
mechanisms underlying sudden cardiac death due to cardiac
fibrillation, new defibrillation techniques have been slow to
manifest. The reasons for this are manifold, but from a
controls perspective, the spatiotemporal behavior exhibited
by the electrical activity of the heart during fibrillation is
high-dimensional, chaotic, and fundamentally nonlinear making
standard control techniques difficult to implement. In this work,
we investigate the use of a reinforcement learning framework
to identify a control strategy to eliminate reentrant spiral
waves that are associated with cardiac fibrillation. We propose
a reduced order model that replicates the behavior of an
idealized spiral wave core traveling in an excitable medium. We
implement the Q-learning method with function approximation
using a neural network to learn a control strategy that actively
drives a spiral core to the boundary of the domain where it can
be absorbed. Results indicate that the reinforcement learning
algorithm is able to rapidly learn an effective control strategy
for use in the reduced order model. Continued development
of this framework for implementation in more realistic models
could inform the design of active control strategies to achieve
low-energy control of spatiotemporal chaos in the heart asso-
ciated with cardiac arrest.

I. INTRODUCTION

Cardiac arrest, caused by fibrillation occurring in the lower
chambers of the heart, is a particularly deadly manifestation
of heart disease occurring in more than 300,000 patients
annually in the United States [1]. It is well established that
cardiac arrest is caused by electrical turbulence resulting
from self-sustaining spiral waves in the heart [2], [3]. High
energy shocks remain the most clinically effective way to
eliminate fibrillation, however, these shocks cause severe
secondary side effects such as electroporation, intense pain,
and additional damage to already diseased hearts [4].

More recently, alternative low-energy and pain-free ap-
proaches to defibrillate have been proposed. For instance,
antitachycardia pacing [5] represents a promising strategy
whereby traveling waves emanating from a point source can
overtake and replace the reentrant spiral waves. Additionally,
the application of multiple low intensity defibrillating pulses
instead of one large shock has been shown to reduce the
energy threshold required for successful defibrillation [6],
[7], [8].

While much progress has been made on these aforemen-
tioned open-loop defibrillation strategies, effective feedback
control strategies for elimination of spiral waves have been
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slower to manifest. One significant barrier to the devel-
opment of feedback control strategies is the dynamical
complexity of fibrillation: spiral waves dynamics during
fibrillation are often dynamically unstable, being created and
disappearing in an irregular manner [9], [10]. Additionally,
the dynamical behavior of spirals is significantly influenced
by the geometry of an individual’s heart [11], [12] which
would necessitate a personalized and adaptable control strat-
egy in a clinical setting.

In light of these considerations, in this paper we investigate
the feasibility of using a reinforcement learning framework
to actively learn and implement a strategy for controlling
the behavior of reentrant spiral waves. The organization
of this paper is as follows: Section II gives background
information on the behavior of spiral waves in excitable
media and proposes a reduced order model that represents
the behavior of an idealized spiral wave core. Section III
describes the reinforcement learning algorithm that will be
used to learn an effective control strategy to guide spiral
wave cores to an inexcitable tissue boundary (through which
it can be absorbed and eliminated). Section IV shows results
of the learning algorithm and describes the learned control
strategy. While results are promising, additional work must
be done in order make the control problem more applicable
to the problem of eliminating cardiac arrest in real cardiac
tissue and Section V gives concluding remarks highlighting
opportunities for extension in future work.

II. PROTOTYPE PROBLEM: SPATIOTEMPORAL CONTROL
OF A IDEALIZED SPIRAL CORE

Numerical models of cardiac tissue vary greatly in terms of
their physiological complexity. A commonality among most
models is that they characterize the spatiotemporal evolution
of transmembrane voltage subject to the local dynamics
of ion concentrations and gating variables. In many cases,
it is possible to replicate complicated electrical behaviors
observed in cardiac tissue using a so-called monodomain
model [2]

Cm
∂

∂ t
u(x,y, t) = D∆u(x,y, t)

− Iion(x,y, t)+
N

∑
j=1

I j(x,y, t). (1)

Above, x and y are coordinates on a 2D spatial domain,
D is a matrix of diffusion coefficients, ∆ is the Laplacian,
u corresponds to the transmembrane voltage, Cm is the
membrane capacitance, Iion is a membrane current density
that depends on the local cellular dynamics, and I j is a
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current controlled input applied by an external stimulator
with N being the total number of stimulators. Eq. (1) supports
self sustaining spiral wave patterns that are associated with
the emergence of cardiac fibrillation. The primary goal of this
work is to identify an effective control strategy to eliminate
a spiral wave using a small number of electrical stimualtors.

To approach this problem using a reinforcement learning
framework, we must decide how to define our state space
on which to take actions. A naive way of doing this would
be to take the raw voltages of the membrane as our state.
However, this approach would use a very high-dimensional
representation of the state. The agent would need to learn
how to interpret all of the available data and translate it into
useful information from which it can decide on the correct
action. Similar to other problems in computer vision, learning
will be prohibitively slow under these conditions. Therefore,
using model reduction techniques to simplify the problem
and operate in a lower dimensional state space is critical for
this application.

In order to simplify the problem, we will consider a
reduced order model inspired by other reduction frameworks
[13], [14], [15], [16], [17] which seek to understand the
behavior of Eq. (1) using center manifold theory. Such
analysis generally reduces the behavior of a spiral wave to a
rigidly rotating core subject to spatial translation (see Figure
1A for example). As a prototype model, we will assume
that the behavior of a single spiral wave can be modeled
according to:

ẋc = α sin(θc)+
N

∑
j=1

ρ j(t)〈I j(x,y),Sx(x,y,xc,yc,θc)〉,

ẏc = α cos(θc)+
N

∑
j=1

ρ j(t)〈I j(x,y),Sy(x,y,xc,yc,θc)〉,

θ̇c =−1+
N

∑
j=1

ρ j(t)〈I j(x,y),Sθ (x,y,xc,yc,θc)〉. (2)

Above, xc and yc give the spatial location of a spiral core
on a 2D domain, θc ∈ [0,2π) represents the orientation
of the spiral core, α sets the nominal translation rate
of the core, I j(x,y) represents the spatial influence of an
exogenous stimulator and ρ j(t) gives its magnitude as a
function of time, SA for A = {x,y,θ} represent sensitivity
functions of the state variables to exogenous perturbation,
and 〈·, ·〉 denotes the L2 inner product. In the examples
to follow, we take α = 0.1, I j(x,y) = exp(−50r2

j ) for j =
1, . . . ,N where r2

j = (x− x j)
2 + (y− y j)

2, with x j and y j

being the location of the jth stimulator. Additionally, Sx =
exp(−200r2

c)sin(θp + θc) where r2
c = (x− xc)

2 + (y− yc)
2,

θp = atan2(y−yc,x−xc), and atan2 is the signed arctangent
function. Likewise, Sy(x,y) = exp(−200r2

c)cos(θp +θc) and
Sθ (x,y) =−exp(−200r2

c)sin(θp +θc). Note that this choice
of reduced model parameters and functions is not directly
derived from any particular model, but that Eq. (2) can
be used to qualitatively replicate the perturbed behavior of
models of the form Eq. (1). For instance, the perturbed
behavior of the Barkley model (with voltage-like variable

u and gating variable v) is shown in Figure 1A. The large-
core parameters as described in [18] are used to simulate
Eq. (1) on a square domain with side length 13.4 units with D
taken to be the identity matrix. Simulations are performed on
400×400 discretized grid. This model supports spiral waves
with cores (defined as the intersection of the u = 0.2 and
v= 0.2 level set) that have a circular trajectory when Istim = 0
(black line). When taking Istim(x,y) = −0.5 (resp., +0.5)
in a circle of radius 2.2 centered in the middle of the
square (and zero elsewhere) and lasting 0.5 time units, the
resulting core trajectory is shown by the red (resp. blue)
traces. Qualitatively similar behaviors can be observed in
the prototype model on a square domain with side length 1.
Here, placing a single stimulator at (x1,y1) = (0.5,0.5) and
applying a perturbation of ρ1 = −40 (resp., +40) lasting 1
time unit yields the trajectory shown in red (resp. blue). In
the results to follow, in an effort to focus on the challenges
associated with the reinforcement learning paradigm, Eq. (2)
model will be used as a surrogate for Eq. (1).

Fig. 1. Comparisons between the monodomain model (panel A) Eq. (1)
and the prototype model (panel B) Eq. (2). The perturbed behavior of the
prototype model is qualitatively similar to the spiral core trajectory of Eq. (1)
when using the Barkley model from [18] to define Iion(x,y).

III. REINFORCEMENT LEARNING MODEL

Using this reduced ordered model, we seek to learn and
implement a control strategy for (2) that is able to remove
the core from the domain. We therefore model the process as
a Markov Decision Process (MDP), and use reinforcement
learning to find a suitable strategy.

Assume an agent can observe the current state of the
process st ∈ Rd . In our case the state should be able to
describe the location and orientation of the spiral core. The
agent also has a set of action it can take A = {a1,a2, ...ak}.
The goal of the agent is to take the optimal action for a given
state in order to eliminate the core producing a sequence of
states and actions: s1,a1,s2,a2, ...sT .

We therefore would like the agent to learn a policy
π∗(sn)= an, where an is the optimal action for state sn. We do
this by defining a reward signal rt , which is sent to the agent
after each action it performs. That is, we have a sequence of
states actions and rewards: s1,a1,r1s2,a2,r2, ...sT . The goal
of the agent is to learn a policy which maximizes the return,
which is the discounted sum of all future rewards:

Rt =
T

∑
t ′=t

γ
t ′−trt , (3)
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where T is the final step of our process and γ is a discount
factor which describes how much weight we give future
rewards. Using this definition of return we can define an
action-value function as follows:

Qπ(s,a) = E[Rt |st = s,at = a]. (4)

The above function describes the expected return value when
using a certain policy π(s). Our learning goal is to find the
policy π∗(s) which gives us the maximum action value for
all states and actions. The optimal action value function is
defined as:

Q∗(s,a) = max
π

Qπ(s,a) ∀ s ∈S ,a ∈A . (5)

The optimal action value function follows the Bellman
optimality equation:

Q∗(s,a) = E[rt + γ max
a′

Q∗(s′,a′)|st = s,at = a]. (6)

Therefore, one way reinforcement learning tries to learn the
optimal policy is by iteratively estimating the optimal action
value function. More specifically in this work we use the
Q-learning [19] update rule which is an off-policy temporal
difference control algorithm. The update rule for Q-learning
is:

Q(s,a) = Q(s,a)+α
[
rt + γ max

a′
Q∗(s′,a′)−Q(s,a)

]
, (7)

where α is the step size which defines how much weight
will be given to the current update. As shown in [19] as
long as all state-action pairs are continually visited, this
iterative approach is guaranteed to converge to the optimal
action value function Q∗(s,a). However, as in our case
the state vector is continuous it is unfeasible to visit each
state. Therefore, we try to learn Q∗(s,a) using a function
approximator. In this work we use a neural network as our
approximator, where our learning goal is to try and minimize
the mean square error between the output of the network and
our desired output as calculated by Eq. (7). That is, our loss
is defined as:

L = E
[
(rt + γ max

a′
Q∗(s′,a′)−Q(s,a))2]. (8)

We can then use methods like stochastic gradient descent
to learn the optimal weights. Once we have learned this
function we can simply define our optimal policy as π(s) =
maxa Q∗(s,a).

When training, the agent must strike a balance between
exploration in order to find the best actions, and exploitation
in order to take the best actions and reach the goal. We
therefore use epsilon-greedy training [19] : with probability
ε , the agent takes a random action, and with probability 1−ε ,
the agent takes π(s) at state s. ε decays from 1.0 to 0.1
over the course of training. This means that at the beginning
of training, the agent explores all actions to find the best
starting actions, and then the agent gradually starts following
its policy to move closer and closer to the goal while still
exploring new routes.

As show in [20], when learning our function approximator
it is inefficient to learn from consecutive steps. Therefore

Fig. 2. A diagram of our process model and our reinforcement model. On
the left we show our four stimulators (in blue) numbered 1-4 and our core
(in orange) with the black line signifying θ . On the right we show our neural
network model, with the input state, our hidden layer (128 neurons in our
simulations) and our function output Q(s,a). Here a = +n (resp., a = −n
corresponds to application of positive (resp., negative) input using stimulator
n, and a = 0 means all stimulators are off.

we utilize experience replay [21]. Each time the agent takes
an action we store the experience et = (st ,at ,rt ,st+1). This
creates a database of experiences. During training we simply
select a random batch of experiences and use that in our mini
batch gradient descent. This means that experiences will not
be consecutive in a single batch and each one can be used
more than once during training. As the experience database
size is limited we discard old experiences when new ones
arrive.

In addition, these networks tend to be unstable when
updating the parameters of the action value function, if the
new weights are directly used for finding the max action
value of the next step (the right side in Eq. (7)). Therefore,
as is done in [20] we use two separate networks with the
same architecture. One network has its weights changed each
batch, while the other ones remain frozen. Every C steps we
copy the updated weights to the frozen network and continue
in our learning.

A. Implementation

We model the process described in Sec. II using our
reinforcement learning notation the following way. Our state
st = {xt ,yt ,sin(θt)cos(θt)} is a vector in R4 which describes
the location and orientation of the spiral core. The xt and yt
inputs are normalized between 0 and 1 so that the model can
generalize to a square area of any size. We use the trigono-
metric functions instead of using θ directly in order to ensure
continuity in feature space. That is, the angle θ = 2π should
be close both to ε and 2π − ε in feature space. Our action
set A is made out of 9 separate possible actions. The first
four actions a1, ...,a4 turn on each of the stimulators with a
positive perturbation, the second four actions a5, ...,a8 do the
same with a negative perturbation, and finally the last action
a9 turns all stimulators off. We chose to simplify the space
of possible actions by allowing only one stimulator to be
activated at a time, for faster training. The 4 stimulators are
placed at (0.25dx,0.25dy), (0.25dx,0.75dy), (0.75dx,0.25dy),
(0.75dx,0.75dy) where dx,dy are the x and y dimensions of
our media respectively. See Fig. 2A for a diagram.
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It has long been known that self-sustaining spiral waves
can be absorbed by an inexcitable tissue boundary and
hence eliminated [22], [13]. This mechanism provides a
theoretical underpinning for the efficacy of antitachycardia
pacing [23]. As such, we will design a reinforcement learning
strategy that learns a control policy that drives a core to an
inactive tissue boundary where the core can be absorbed and
eliminated. We define the reward function the following way:

rt =


+10 Core has been eliminated,
+1 Core is moved farther from center,
−1 All other cases,

(9)

Although our final goal is to eliminate the core, we found
that simply giving a reward of 10 when the goal is achieved
resulted in a slow learning rate. As such, we also add a +1
reward when the core is moved towards the boundary (farther
from the center). This allows our agent to get more feedback
during the episode and thus learn the optimal moves faster.
The -1 reward at any other step ensures that the agent tries
to find the quickest way to eliminate the core.

We perform function approximation using a simple multi-
layer artificial neural network (NN). We experimented with
various architectures and found that a network with a single
hidden layer seemed to work the best. Therefore the network
has an input layer with 4 nodes (st ), a hidden layer with
128 neurons, and finally an output layer with 9 neurons
(Q(s,a) ∀ a ∈ A ). See Fig. 2B for our NN model. The
magnitude of stimulation when the stimulators are turned
on is taken to be ρ j =±50 (with the sign determined by the
learned control policy). After searching the parameter space
we use the following parameters in the learning algorithm:
γ = 0.99, α = 0.001. ε decays from 1.0 to 0.1 at a rate of
0.0005 per step.

We also investigate a modified situation that considers
two cores instead of one. Here, the reinforcement learning
algorithm incorporates the state variable of each core as well
as an extra input for each core set to 1 if that core has been
pushed out of bounds and 0 otherwise. In this situation, we
take the hidden layer of the neural network to include 256
neurons instead of 128. The maximum distance from the
center over the course of the simulation is tracked separately
for each core, and a reward is given whenever either core
exceeds its previous maximum distance. Once a core reaches
the edge, that core is marked as successful, and the episode
succeeds if both cores are marked as successful. In this setup,
the reward function is replaced with:

rt =


+10 Both cores have moved out of bounds,
+1 At least one core is farther from center,
−1 All other cases,

(10)
The process could similarly be extended to accommodate
three or more cores.

Fig. 3. Results from our single core trials. We present three different
measures of the effectiveness of our reinforcement learning framework as
a function of the number of episodes experienced. Each measure is the
average over 25 episodes. Panel A shows the average reward achieved by our
algorithm. Panel B shows the success rate, i.e., the percentages of episodes
in which the cores were eliminated. Panel C shows the amount of time each
episode lasts.

Fig. 4. A representation of actions taken at corresponding to various model
states. For example, “up left +” denotes that the learned control policy would
give a positive stimulus in the upper-left stimulator. “Pass” indicates that no
control application is given. Each circle represents possible states (x,y,θ)
of the core, where x and y correspond to the center of the circle. For each
of the 9 actions, the dark segments of the circle indicate the range of θ for
which that action was chosen at each position.
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Fig. 5. Examples of trajectories from our single core trials. Each continuous
line represents the motion of the core during a single episode (We present
these on a single image for the sake of brevity). Blue represents the first
position and red represents the last position of each core. In each of these
episodes the core is successfully forced to the boundary of the domain.

IV. RESULTS

We trained for 10,000 time units, containing approxi-
mately 900 complete episodes. Training took approximately
2 hours on a Tesla V100 GPU. For each episode, we record
total reward (determined by Eq. (9)), success (whether or not
the core is pushed to the edge), and total time required to
complete the episode. If the learned control algorithm does
not eliminate a core withing 50 time units, the trial is deemed
not successful. Results during training are shown in Fig. 3.
These results are an average over the last 25 episodes used in
training. After training, a final evaluation over 1000 steps was
performed, yielding a success rate of 100% and an average
of 6.7 time units per episode.

As shown in Fig. 3B, the model starts at around a 60%
success rate. That means that 60% of the cores are eliminated
while taking random actions. This is reasonable given that
the core starts at a random position. Therefore, when starting
close to the edges of the tissue the core may simply cross
the tissue boundary due to its internal dynamics or a random
action. As learning progresses the success rate quickly rises
until it achieves approximately 100%.

Fig. 4 gives a representation of the learned policy, repre-
senting actions taken for each state (core position and θ ).
We generated sample states with 25 possible core locations
with θ ranging from 0 to 2π , sent these states into the
learned control policy, and recorded which action was taken
for each one. Because the final agent is deterministic, the
same action will always be taken for a given state. Perhaps
unsurprisingly, the agent tends to activate the stimulator
closest to (and having the most influence on) the core;
whether the activation is positive or negative depends on θ .
At the same time, the policy is not completely symmetrical,
and occasionally the farthest core is activated instead of the
closest. Such behavior is likely a product of randomness
in the training process, where multiple policies lead to a

Fig. 6. Results from our double core trials. Explanations of the different
measures is given in the caption of Fig. 3

successful outcome and the model arbitrarily picks the first
such policy it finds. Additionally, the learned control policy
rarely takes no action, likely because we did not penalize the
application of control input.

Fig. 5 shows the trajectory of the core in several episodes
with different starting positions. The trajectories confirm that
the model learns to push the core toward the nearest edge,
even while the core is rotating due to its changing θ .

Fig. 6 shows the same metrics as in Fig. 3 for our trials
with two simultaneous cores. The model steadily improves
with training over 30,000 time units, corresponding to about
1300 episodes. In the final evaluation over the course of
1000 time units, the model reaches a 94.7% success rate,
averaging 17.5 time units per episode. However, this result
was obtained after required three times as much training as
the single core model took to reach a perfect success rate.
Further extension of this approach to include additional cores
may be possible, but would likely require refinements to the
learning algorithm.

V. DISCUSSION AND FUTURE WORK

The results presented above provide proof of concept
that the reinforcement learning framework suggested here
can rapidly learn strategies for control of the location of
individual spiral cores using reduced order models. While
initial results are promising, they only considered control
of uncoupled spiral wave cores with relatively simple dy-
namics. In reality, fibrillation is usually caused by multiple
dynamically coupled spiral waves [24], [9], [10]. As such,
coupling between spiral cores with more complicated dynam-
ical behaviors would need to be considered moving forward.
Additionally, we have assumed that the underlying behavior
governing fibrillation and tachycardia can be represented by
a finite number of spiral cores. In practice this would likely
require an accurate, real-time description of the transmem-
brane voltage in the heart which would be difficult to obtain
in a clinical setting. Future work will investigate in situations
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where only a sparse representation of the transmembrane
voltage is available as might be measured near a small
number of recording electrodes or using measurements from
an electrocardiogram. Successful implementation in these
settings would make this control framework much more
likely to succeed in an implantable device.

In order to allow the reinforcement learning algorithm to
accommodate more complicated model behaviors we would
need to incorporate more sophisticated learning techniques.
First, we would like to structure the reward in such a way
that the agent is positively rewarded only when the cores
are completely eliminated as opposed to our implemented
reward structure from Eq. (9) which gives a reward for each
step the core is moved further out. This will be necessary
since this will allow the agent to learn the optimal policy
without the reward biasing it towards certain actions. This
reward structure would be sparse and therefore new learning
techniques will be necessary.

Future work will investigate dividing our hard problem
into simpler problems and then use those to help in learning
the optimal policy. We can think of these simpler problems
as different goals g than our final goal. In this multi-goal
reinforcement learning we would have a reward function
which is parameterized by the goal, rg and an optimal policy
which depends on the goal π∗(s|g) = a. These goals can be
designed manually given an expertise in the subject area [25],
[26] or found automatically [27], [28].
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