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Abstract— A model reduction strategy using isostable co-
ordinates is developed and applied to a prototype nonlinear
convective flow past an obstacle. The flow is governed by
the two-dimensional Burgers’ equation subject to Dirichlet
boundary controls. The Burgers’ equation is used as a surrogate
to the Navier-Stokes equations. The isostable coordinates are
fully nonlinear and based on the infinite time convergence
of transient behavior to a stationary solution. Linearization
yields a model reduction strategy that explicitly accounts for
the temporal dynamics of the underlying nonlinear flow and a
strategy is developed for fitting observed data to the isostable
reduced model. Open loop simulations of the isostable reduction
outperform a previously validated nonlinear reduction strategy
based on proper orthogonal decomposition. Additionally, the
resulting isostable reduced framework is amenable for feedback
control as demonstrated by solving a linear quadratic regulator
problem in an isostable reduced coordinate system and applying
the result to the full order system. To our knowledge, the use of
isostable coordinates for reduced order modeling of fluid flows
is novel.

I. INTRODUCTION

Various applications such as drag reduction of road vehi-
cles, airplanes, ships and submarines, drag reduction in pipes
and air-conditioning systems, lift increase of airfoils, effi-
ciency increase of harvesting wind and water energy, of heat
transfer and of chemical and combustion processes [1][4][6],
require the integration of feedback control because of the
need for robustness to elements such as flight condition,
vehicle attitude, precision tracking, and low fidelity models.

Unfortunately, models that capture the relevant dynamics
of the input-output system and are amenable to control
design are difficult to develop due to the to the extremely
high order of these systems [2][3][4][5]. In particular, in
certain applications such as in highly resolved flow solutions
which require thousands of states, systematic development of
feedback controls is a computationally intractable problem.
The order of the system must be reduced before control
design [20][9][11][2][3]. Much of this effort focuses on
the proper orthogonal decomposition (POD) [7], Karhunen-
Loeve expansion, or principal component analysis [5][6][1],
clustering POD [13], spectral POD (SPOD) [14], balanced
POD [5], and adaptive POD [15]. In [16][17] reduced order
models based on POD have been obtained for linearized
compressible flow equations. However, it is not clear how to
extend these methods to nonlinear flows with high Reynolds
numbers where the nonlinear terms dominate.
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Dynamic mode decomposition (DMD) is a more recently
developed data-driven flow decomposition designed to match
stability eigenmodes under suitable conditions [1][6]. DMD
trades the optimal resolution efficiency of POD against
distillation of pure eigenfrequencies in short-time sampled
data. DMD has a strong connection to the Koopman operator,
which is an infinite dimensional linear operator describing
the evolution of an observable function of a nonlinear dy-
namical system on a manifold [18][19][1]. Using Koopman
based formalism, various data-driven techniques have been
developed in order to identify representative reduced order
linear models for that can be used to model the dynamics
of nonlinear differential equations and subsequently apply
active control [28][27][29].

In this paper, an alternative model reduction strategy using
isostable coordinates is developed and applied to a prototype
nonlinear convective flow past an obstacle. These isostable
coordinates are related to level sets of the Koopman operator
[22] and have been shown to be useful in other control ap-
plications [25][26]. The nonlinear convective flow problem,
first proposed in [9], is governed by the two-dimensional
Burgers’ equation subject to Dirichlet boundary controls.
The Burgers’ equation, which has a convective nonlinearity
like that in the Navier-Stokes momentum equations, is often
used for the development of control methods relevant to flow
control [9][10]. The isostable coordinates are fully nonlinear
and based on the infinite time convergence of transient be-
havior to a stationary solution. Linearization yields a model
reduction strategy that explicitly accounts for the temporal
dynamics of the underlying nonlinear flow and a strategy is
developed for fitting observed data to the isostable reduced
model. Open loop simulations of the isostable reduction
outperform a previously validated nonlinear reduction strat-
egy based on proper orthogonal decomposition. Additionally,
the resulting isostable reduced framework is amenable for
feedback control as demonstrated by solving a simple linear
quadratic regulator problem, as proposed in [20][8] in an
isostable reduced coordinate system and applying the result
to the full order system. While the notions of isostable
coordinates and isostable reduction have been applied in
other contexts [22][24][26], to our knowledge this technique
has not been previously used for reduced order modeling of
fluid flows.

II. PROTOTYPE PROBLEM: A NONLINEAR CONVECTIVE
FLOW

Here we consider a prototype problem for a nonlinear
convective flow past an obstacle as a testbed for the isostable

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1397-5/19/$31.00 ©2019 IEEE 2138



a a
1

a
2

b

c

b
1

b
2

d

48476

43421

Γ
B






















Γ
in






















Γ
out

Γ
T

Ω

Fig. 1. Problem geometry is specified in the above figure. An identical
geometry was considered in [20].

reduction methodology. As shown in Figure 1, we consider
a rectangular domain Ω1 ∈ R2 given by (a,b)× (c,d) with
a rectangular obstacle Ω2 = [a1,a2]× [b1,b2] so that the full
domain is Ω = Ω1\Ω2. Dirichlet boundary conditions are
given on the top and bottom (ΓT and ΓB, respectively). An
identical model was considered in [20]. The spatiotemporal
dynamics are given by the two-dimensional Burgers’ equa-
tion [20][11]

∂

∂ t
w(t,x,y) =

1
Re

∆w(t,x,y)−∇ ·F(w),

F(w) =
[
C1

w2(t,x,y)
2 C2

w2(t,x,y)
2

]T
. (1)

Here C1 = 1 and C2 = 0 are constants which determine
the magnitude of the horizontal and vertical convection,
respectively, Re is the counterpart of the Reynolds number
from the Navier-Stokes equation, and w(t,x,y) is the solution
to the nonlinear PDE. For simplicity, boundary conditions
on the top and bottom of the obstacle are assumed to be
separable in space and time

w(t,ΓT ) = uT (t)ϒT (x), w(t,ΓB) = uB(t)ϒB(x). (2)

The inflow, outflow, and remaining boundary conditions, Γin,
Γout and Γu, respectively are

w(t,Γin) = f (y),
∂

dx
w(t,Γout) = 0, w(t,Γu) = 0, (3)

where f (y) is a parabolic inflow.

III. MODEL REDUCTION USING ISOSTABLE
COORDINATES

Intuitively, isostable coordinates give a sense of the time it
takes for an initial condition to approach its associated attrac-
tor. A formal definition was presented in [22] for use with
ordinary differential equations (ODEs) where its relation to
the Koopman operator was highlighted. Subsequent inves-
tigation of isostable coordinates for reduced order control
strategies is presented in [25] for ODEs and in [26] for partial
differential equations (PDEs). The notion of using isostable
coordinates for reduced order control is perhaps most closely
related to techniques involving inertial manifolds [21] (or
transient attractors [23]), i.e., exponentially attracting, finite
dimensional manifolds to which solutions rapidly collapse.
However, a significant benefit of using isostable methods
is that they do not require a large spectral gap between
consecutive eigenvalues.

To begin, consider a PDE on some domain Ω

∂

∂ t
X(r, t) = F(X(r, t),r)+G(X(r, t)), (4)

with boundary control

X(∂Ω, t) = f0(∂Ω)+ f1(∂Ω, t). (5)

Equation (5) specifies Dirichlet boundary conditions, but
both Neumann or mixed boundary conditions could also
be specified. In the above equations, X(r, t) ∈ Rm is the
state at location r and time t, F gives the local dynamics,
G represents spatial coupling, (e.g. advection or diffusion),
f0(∂Ω) gives the nominal boundary conditions on the bound-
ary ∂Ω and f1(∂Ω, t) is a time dependent control. It will
be assumed that when f1(∂Ω, t) = 0 (i.e., in the absence
of boundary control) that a stationary solution XSS(r) of (4)
exists that satisfies F(XSS(r),r)+G(XSS(r)) = 0. Addition-
ally, for the nominal boundary conditions, we will assume
that J ≡∇[F(XSS(r),r)+G(XSS(r))] exists and is a compact
operator. Here, J is a local linearization of (4) evaluated at
the stationary solution.

Isostable coordinates will be defined as in [26]. These
coordinates represent the asymptotic convergence of initial
conditions in the basin of attraction of the stationary solution
XSS. Note here that these coordinates are defined with respect
to the nominal boundary conditions (i.e., taking f1(∂Ω, t)
= 0). Additionally, we will suppose that solutions of (4)
near the stationary solution can be written to leading order
accuracy as an infinite sum of eigenfunctions, φ j(r) of J with
associated eigenvalues λ j

X(r, t)−XSS =
∞

∑
j=1

s j[X(r,0)−XSS]φ j(r)eλ jt . (6)

Here s j(X) represent the coordinates of X in the basis of the
eigenfunctions, X(r,0) is the initial state, and the eigenvalues
are sorted according to 0 ≥ Re(λ j) ≥ Re(λ j+1) so that λ1
corresponds to the eigenfunction with the slowest rate of
decay. This eigenfunction basis is used to define isostable
coordinates in the basin of attraction of the stationary solu-
tion [26]

Ψ j{X(r)}= lim
t→∞

e−λ jt
∫

Ω

QT
j (r)(X(r, t)−XSS)dr, (7)

where Q j projects the solution onto φ j(r),
i.e.,

∫
Ω

QT
j (r)φk(r)dr = 1 for k = j and 0 for k 6= j. Note

that the eigenfunctions φ j(r) are not generally orthogonal
to each other; consequently Q j and φ j are usually different.
The relationship between isostable coordinates and level
sets of the Koopman operator was noted established in [22]
in ODEs.

A. Dynamics of Isostable Coordinates

The definition of isostable coordinate is particularly useful
because

∫
Ω

QT
j (r)(X(r, t)−XSS)dr ∝ φ j(r)eλ jt as t→∞. This

relationship can be used to show that (as in [26])

dΨ j{X(r, t)}
dt

= λ jΨ j{X(r, t)}. (8)
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Equation (8) states that without boundary control, isostable
coordinates decay exponentially towards zero. Recall that
for states close to the stationary solution, to leading order
accuracy

X(r,0)−XSS =
∞

∑
j=1

s j[X(r,0)−XSS]φ j(r)

=
∞

∑
j=1

Ψ j{X(r,0)}φ j(r). (9)

In the second line in the above equation, the relationship
s j[X(r,0)−XSS] = Ψ j{X(r,0)} is used which can be shown
using the definition of isostable coordinates from (7). For
convenience of notation in the following analysis, we will
drop the dependence of Ψ j on X and write it solely as
a function of time. Equation (9) is valid for any initial
conditions which implies

Y (r, t) =
∞

∑
j=1

Ψ j(t)φ j(r), (10)

where Y (r, t)≡ X(r, t)−XSS is the observed output.
For the model (1), the effect of boundary control for

small inputs (i.e., when w(t,ΓT ) and w(t,ΓB) are order ε

terms with 0 < ε� 1) can be understood with the following
derivation. First, taking the inner product of both sides of (1)
with Q j(x,y) as defined in (7) yields∫

Ω

∂

∂ t
w(t,x,y)Q j(x,y)dxdy =

− 1
2

∫
Ω

[
∂

∂x
w2(t,x,y)

]
Q j(x,y)dxdy

+
1

Re

∫
Ω

[∆w(t,x,y)]Q j(x,y)dxdy. (11)

Manipulating (11) using Green’s identities yields∫
Ω

∂

∂ t
w(t,x,y)Q j(x,y)dxdy =

− 1
2

∫
Ω

[
∂

∂x
w2(t,x,y)

]
Q j(x,y)dxdy

− 1
Re

∫
Ω

∇w(t,x,y) ·∇Q j(x,y)dxdy

+
1

Re

∫
∂Ω

Q j(x,y)∇w(t,x,y) ·ndS(x,y). (12)

where n is a unit vector oriented normal to the
surface element dS. To proceed, we let f j

β
(x,y, t) ≡

− 1
2
∫

Ω

[
∂

∂x w2(t,x,y)
]

Q j(x,y)dxdy − 1
Re
∫

Ω
∇w(t,x,y) ·

∇Q j(x,y)dxdy. Here f j
β
(x,y, t) consists of all terms of (13)

that do not depend on the flux across the boundary, and
hence do not respond directly to the boundary control. For
the remaining terms of (13), we use the results from (9)∫

Ω

∂

∂ t

[
wSS(x,y)+

∞

∑
k=1

Ψk(t)φk(x,y)
]

Q j(x,y)dxdy = f j
β
(x,y, t)

+
1

Re

∫
∂Ω

Q j(x,y)∇w(t,x,y) ·ndS(x,y), (13)

where wSS(x,y) denotes the steady state solution. We sim-
plify the left hand side of the above equation by recalling
that

∫
Ω

Q j(x,y)φk(x,y)dxdy = 1 for k = j and 0 otherwise.
This yields

Ψ̇ j = f j
β
(x,y, t)+

1
Re

∫
∂Ω

Q j(x,y)∇w(t,x,y) ·ndS(x,y).

(14)

The boundary integral from (14) can be simplified using the
boundary equations from (3); the solution of (1) along Γu
and Γout is specified to be zero resulting in∫

∂Ω

Q j(x,y)∇w(t,x,y) ·ndS(x,y) =∫ a2

a1

(
∂

∂y
w(t,x,b1)Q j(x,b1)−

∂

∂y
w(t,x,b2)Q j(x,b2)

)
dx

+
∫ b

a

(
∂

∂y
w(t,x,d)Q j(x,d)−

∂

∂y
w(t,x,c)Q j(x,c)

)
dx

+
∫ b2

b1

(
∂

∂y
w(t,a1,y)Q j(a1,y)−

∂

∂y
w(t,a2,y)Q j(a2,y)

)
dy

−
∫ d

c

∂

∂x
w(t,a,y)Q j(a,y)dy. (15)

Partial derivatives in (15) that are influenced by the boundary
control can be approximated for h > 0 as

∂

∂y
w(t,x,b1)≈

uB(t)ϒB(x)−w(t,x,b1−h)
h

,

∂

∂y
w(t,x,b2)≈

w(t,x,b2 +h)−uT (t)ϒT (x)
h

. (16)

Taking the results of (16) and (15), substituting them into
(14) yields

Ψ̇ j = f nbc
j (t,x,y)+α j,1uT (t)+α j,2uB(t), (17)

where α j,1 = 1
hRe
∫ a2

a1
Q j(x,b2)ϒT (x)dx, α j,2 =

1
hRe
∫ a2

a1
Q j(x,b1)ϒB(x)dx, and f nbc

j (t,x,y) is the summation
of all terms that do not depend on either of the boundary
controls. Recalling from (8) that Ψ̇ j = λ jΨ j in the absence
of boundary control, this implies that for small enough h,
f nbc

j (t,x,y) is well approximated by λ jΨ j. Furthermore, the
analysis can be repeated for all isostable coordinates and
we write

Ψ̇ j = λ jΨ j +α j,1uT (t)+α j,2uB(t), j = 1,2, . . . . (18)

B. Fitting a Reduced Model to Data

Here, we provide a strategy to estimate the constants α j,k
from (18) from observed behavior. To begin, suppose we
have M independent boundary inputs yielding a more general
version of (18)

Ψ̇ j = λ jΨ j +
M

∑
k=1

α j,kuk(t), j = 1,2, . . . . (19)

A subset of the isostable coordinates will be fit to a reduced
NM-dimensional model of the form

Ψ̇ j,k = λ jΨ j,k +α j,kuk(t)

j = 1, . . . ,N, k = 1, . . . ,M, (20)
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i.e., using N isostable coordinates associated with eigenval-
ues λ1, . . . ,λN which have the smallest real component. The
rational behind this choice is that perturbations to the trun-
cated isostable coordinates will decay quickly and will not
have a lasting effect on the dynamical behavior. The strategy
of neglecting isostable coordinates which decay rapidly has
been used successfully in other applications [25][26], how-
ever, the models used in these examples were simple enough
so that the reduced equations could be calculated numerically
using an “adjoint equation”. In the above equation, each input
receives its own set of isostable coordinates to allow for the
possibility of repeated eigenvalues in (8). The state to output
relationship for (20) follows

Y (x,y, t) =
M

∑
k=1

N

∑
j=1

φ j,k(x,y)Ψ j,k(t). (21)

The ultimate goal here is to infer the coefficients α j,k and
eigenfunctions φ j,k(x,y) given knowledge of the eigenvalues
λ j. To do so, consider the following control input: uk(t) =
ρ sin(ωt) where ρ is a small constant. With this input, the
steady state behavior of (20) (and corresponding output) can
be found analytically:

Ψ
ss
j (t) =

−ρα j,k

ω2 +λ 2
j
(λ j sin(ωt)+ω cos(ωt)) ,

Y ss(x,y, t,ω) =
N

∑
j=1

−ρα j,kφ j,k(x,y)
ω2 +λ 2

j
(λ j sin(ωt)+ω cos(ωt)) .

(22)

The above relationship is valid for any choice of ω , and
therefore yields the following strategy for finding the un-
known eigenfunctions: 1) Apply a sinusoidal input uk(t) =
ρ sin(ωit) 2) Measure the steady state output Y ss(x,y, t,ω)
at all locations of interest. 3) Repeat steps 1 and 2 for
inputs with q different frequencies where q>N. 4) Obtain an
estimate for the eigenfunctions according to the relationshipα1,kφ1,k(x,y)

...
αN,kφN,k(x,y)

=− 2
ρ

Σ
†


1
T
∫ T

0 Y ss(x,y, t,ω1)sin(ω1t)dt
...

1
T
∫ T

0 Y ss(x,y, t,ωq)sin(ωqt)dt

 ,
(23)

where the element in the ith row and jth column of Σ∈Rq×N

is equal to λ j(ω
2
i +λ 2

j )
−1, and † denotes the pseudoinverse.

Intuitively, (23) provides a least squares fit for the unknown
coefficients. 5) Repeat steps 1-4 to calculate α j,kφ j,k for all
j and k. 6) Because α j,k and φ j,k cannot be resolved indi-
vidually, define scaled variables and eigenfunctions Ψ j,k =
Ψ j,k/α j,k and φ j,k = φ j,kα j,k. Starting with (20) and (21), a
coordinate transformation yields the state space representa-
tion

dΨ j,k

dt
=−λ jΨ j,k +uk(t),

j = 1, . . . ,N, k = 1, . . . ,M,

Y (x,y, t) =
N

∑
j=1

M

∑
k=1

φ j,k(x,y)Ψ j,k(t). (24)

IV. REDUCTION AND CONTROL APPLIED TO NONLINEAR
CONVECTIVE FLOW

In the following simulations, Ω1 = (0,0.99]× (0,0.48],
Ω2 = [0.15,0.24]× [0.15,0.33] with a uniform spatial step
of h = 0.015 yielding 1955 states in the discretized model.
Letting Re = 300 and taking the inflow f (y) =−625y2/36+
25y/3 (so that the maxy( f (y)) = 1) yields the steady state
distribution shown in Figure 2A. The eigenvalues corre-
sponding to the temporal decay of transient behavior towards
the stationary solution are estimated by spatially discretizing
(1), taking the Jacobian of the resulting equations evaluated
at the stationary solution, and calculating the eigenvalues
of the resulting matrix. Eigenvalues with the 30 smallest
magnitude real components (and hence slowest decay) are
shown in Figure 2D. The first 9 eigenvalues are real numbers.
Using the methodology presented in Section III-B, The
model (1) is simulated taking ϒT (x) = ϒB(x) = 1 with inputs
uT (t) = 0.3sin(ωt) for 61 values of ω ranging from 0.3
to 6.3. The resulting steady state behavior is used to fit
a model with the first 6 eigenvalues (red dots from the
bottom panel of Figure 2). The same procedure is repeated
taking uB(t) = 0.3sin(ωt). The resulting isostable modes
φ1,a through φ3,a (resp., φ1,b through φ3,b) corresponding to
boundary control on the top (resp., bottom) surface of the
obstacle are shown in Figure 2B, (resp. 2C). These modes
(and higher modes that are not shown) all have approximately
the same shape, but different magnitudes and decay rates.

Fig. 2. Panel A shows the stationary solution for Re = 300. Panels B and
C show a subset of the isostable reduced modes associated with boundary
control on the top and bottom surface of the obstacle, respectively. The
30 eigenvalues with the smallest magnitude real components (and hence
slowest decay) are shown in panel D. Six eigenvalues per control input are
used to obtain resulting modes in panels B and C.

The efficacy of the isostable reduction framework is com-
pared to a reduction strategy using proper orthogonal decom-
position (POD) [20], a well established, model independent
technique used to represent simulation (or experimental) data
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using an optimal set of modes in an L2 energy sense. We
implement the same method used in [20], whereby a set
of snapshots is generated by numerical simulation of (1) for
different time-varying boundary inputs and the resulting data
is used to construct the POD basis. There are 20 resulting
modes required to capture 99.9 percent of the resulting
energy

A. Comparison Between Open-Loop Simulations

0

2

4
10-4

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02 Isostable 20 Modes
Isostable 10 Modes
POD 20 Modes
POD 10 Modes

-1

0

1 A

B

C

Fig. 3. Panel A shows an open-loop boundary control applied to the model.
Panel B (resp., C) shows how the resulting L2 (resp., L1) error between the
full model solution and the reduced model solution changes over time. By
both measures of error, the isostable based model results in significantly
better agreement, even while using fewer modes.

Direct comparisons of the full model to the reduced
isostable and POD based reduced models are shown in Figure
3. The isostable coordinate dynamics are simulated according
to (20) with the state mapped to the output behavior accord-
ing to (21). The dynamics of the POD reduced model are
taken to be identical to the nonlinear reduced model derived
in [20]. Figure 3A shows an example open-loop boundary
input applied to the top and bottom of the obstacle and the
resulting L2 and L1 error (panel 3B and 3C, respectively)
between full and respective reduced model solutions. For this
and other open-loop inputs (not shown) the isostable reduced
model significantly outperforms the POD based model, even
when fewer modes are used.

B. Feedback Control Using Isostable Methods

The system from (24) can be represented with the state
space equations

ḋ = Ad +Bu, (25)

where d is a vector comprised of each Ψ j,k, u accounts for
each separate control input, and A and B are appropriately
sized matrices. For this system we will consider a tracking
problem whereby a target reference solution w(x,y)ref is
specified for the PDE (1). This solution is projected onto
an 8 mode isostable basis for the Re = 300 simulations

yielding tracking coefficients dref. The augmented state-space
equations can be written as

˙[ d
dref

]
=

[
A 0
0 0

][
d

dref

]
+

[
B
0

]
u

= ĀD+ B̄u. (26)

Following a similar setup to [20][8] in order to provide a
direct comparison, a control problem can be formulated using
the γ-shifted linear quadratic regulator (LQR) cost function

Jc(d(0),u,dref) =
∫

∞

0

[
(d−dref)

T Q(d−dref)+uT Ru
]

e2γtdt,
(27)

where Q and R are both diagonal and positive semi-definite
and represent the state and control weights, respectively, and
γ ∈ R+ provides robustness to the resulting controller. The
optimal control problem to be considered is to minimize Jc
over all possible controls u ∈ L2(0,∞) subject to the state-
space dynamics (26).

Fig. 4. From left to right, panel A (resp. B) shows the first (resp. second)
target solution, the controlled solution at t = 12 (resp. t = 18), right before
the target solutions switch, and the absolute error between the target and
actual solutions is shown in the far right panel. Panel C shows the control
magnitude on both the top and bottom of the obstacle. Targets 1 and 2
when the background of panel C is white and gray, respectively. The error
between the target solutions and the actual solution is shown in panel D.

As detailed in [20], the LQR optimization problem has a
unique solution

uopt =−KD, (28)

so that the resulting closed loop system follows

Ḋ = (Ā− B̄K)D, (29)

where,
K =

[
R−1BT Π1 R−1BT Π2

]
. (30)

In the feedback law, Π1 is the solution to the algebraic
Riccati equation

(A+ γI)T
Π1 +Π1(A+ γI)−Π1BR−1BT

Π1 +Q = 0, (31)

and Π2 solves[
(A+ γI)T −Π1BR−1BT ]

Π2 = Q. (32)
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This feedback control strategy is implemented using two
target solutions, the first being the steady state solution when
Re = 600, and the second being the steady state solution
when Re = 50. These targets are shown in Figures 4A
and 4B, respectively. In order to implement this control
strategy for the full model, the K matrix from (30) is first
calculated taking Q and R to be appropriately sized identity
matrices. Next, target solutions 1 and 2 are projected onto
a basis of modes of the isostable reduction to determine
dref for each solution. The full model (1) is then simulated
and the boundary control is determined using (28) where
at each instant in time, d determined by projecting the
current state onto the set of isostable modes. After every
6 units of time, the target solutions are interchanged, and
results are shown in Figure 4. While this system is highly
underactuated, the controller is successful at tracking the
reference functions. Figure 4C shows the top and bottom
control input which are identical. Panel D shows the L2 and
L1 errors between the targets and the resulting full model
solutions as black and dashed-red lines, respectively. Note
here that the error is calculated at locations to the right of
the obstacle (i.e., where x > a2); this choice is made because
in this example boundary control has a negligible influence
on the solution left of the obstacle.

V. CONCLUSION

In this paper, an isostable based reduction strategy is
developed for a nonlinear convective system similar to the
Navier-Stokes equations. A strategy for inferring the reduced
model behavior from model data is also suggested. This
strategy is compared to another reduction strategy based
on POD and was found to replicate model features better
than the nonlinear POD based reduced model. Additionally,
the isostable reduced model outperforms the POD reduction
while using significantly fewer modes. Successful feedback
control was implemented using the isostable reduced model
control framework when applied to the full order, nonlinear
system.
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