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Phase-isostable reduction is an emerging model reduction strategy that can be used to accurately replicate
nonlinear behaviors in systems for which standard phase reduction techniques fail. In this work, we derive
relationships between the cycle-to-cycle variance of the reduced isostable coordinates for systems subject to
both additive white noise and periodic stimulation. Using this information, we propose a data-driven technique
for inferring nonlinear terms of the phase-isostable coordinate reduction framework. We apply the proposed
model inference strategy to the biologically motivated problem of eliminating cardiac alternans, an arrhythmia
that is widely considered to be a precursor to more deadly cardiac arrhythmias. Using this strategy, by simply
measuring a series of action potential durations in response to periodic stimulation, we are able to identify
energy-optimal, nonfeedback control inputs to stabilize a period-1, alternans-free solution.
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I. INTRODUCTION

Nonlinear oscillations are of key importance in the phys-
ical, chemical, and biological sciences. In high-dimensional
settings, phase reduction is often used as a first step to ana-
lyze the oscillations in greater mathematical detail [1,2] and
to implement effective control strategies to produce desired
behavior [3–6]. While phase reduction is a well-established
theoretical framework for analyzing the dynamical behaviors
of weakly perturbed oscillatory systems, its underlying as-
sumptions often break down as the magnitude of the control
input becomes large necessitating the incorporation of addi-
tional information.

Model reduction strategies based on the Koopman operator
[7–9] have seen a surge of interest in the past decade as a
framework by which the fundamental properties of a nonlinear
dynamical system can be analyzed in a reduced order setting.
The Koopman operator framework can be used to represent
the dynamics of a fully nonlinear dynamical system in terms
of a linear but infinite dimensional operator. In principle, a
reduced order model of a nonlinear dynamical system can
be obtained by finding a suitable finite-dimensional basis of
Koopman eigenmodes [10]. General techniques such as dy-
namic mode decomposition (DMD) [11,12], extended DMD
[13], deep-learning approaches [14,15], and delay embed-
dings [16,17] have all been proposed to identify suitable bases
in various contexts.

In this work we consider the phase-isostable coordinate
framework [18,19] that characterizes the slowest decaying
Koopman eigenmodes of an oscillatory dynamical system.
While strategies have been developed for computation of all
of the necessary terms of the phase-isostable reduction when
the right hand side of the underlying equations are known
[18,20], robust strategies have yet to be developed to compute
the reduced functions in experimental situations where the full
equations are not known but data is readily available. In light
of these limitations, as a primary contribution of this work, an

experimentally feasible strategy for computation of nonlinear
terms of the phase-isostable reduced equations is proposed
and illustrated. This strategy explicitly considers the change in
variance of the isostable coordinates associated with entrained
oscillations on a cycle-by-cycle basis in the presence of white
noise. This information is then used to infer the nonlinear
terms of the corresponding phase-isostable reduction.

The resulting reduced order model is used to implement
and evaluate a nonfeedback control strategy for eliminating
cardiac alternans in a computational model of an excitable car-
diomyocyte [21]; the alternans arrhythmia is widely viewed
as a precursor to cardiac fibrillation [22,23] and subsequent
cardiac arrest. From a dynamical systems perspective, alter-
nans emerges as a result of a period-doubling bifurcation
[24], whereby the principle Floquet exponent of a periodic
orbit transitions from a negative to a positive value. Previ-
ous authors have developed feedback control strategies for
stabilizing the resulting unstable period-1 orbit, thereby elim-
inating alternans [25–27]. Here, we investigate a nonfeedback
control strategy suggested in Ref. [28] for achieving the same
objective; nonfeedback methods can be particularly useful for
biological applications when real-time measurements of the
system’s state can be difficult to obtain. Using our proposed
strategy, by simply measuring a series of action potential
durations in response to periodic stimulation, we are able to
identify energy-optimal, nonfeedback control inputs to stabi-
lize a period-1, alternans-free solution.

The organization of this paper is as follows: Section II pro-
vides a background on cardiac alternans as well as a summary
of the phase and isostable coordinate reduction framework
used in this work. In Sec. III, we leverage the isostable co-
ordinate reduction framework to identify an energy-optimal,
nonfeedback control strategy for eliminating alternans. We
subsequently propose a data-driven strategy to infer the terms
of the reduction necessary to implement this optimal control
strategy. This strategy only requires measured information
about the action potential durations of the cardiac action
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FIG. 1. Steady state pacing of the Noble model from Appendix A. Panel (A) illustrates representative period-1 behavior that occurs for
slower pacing rates. Panel (B) shows representative period-2 behavior that emerges for faster pacing rates. This stable period-2 behavior is
known as action potential duration alternans. On each beat, action potentials are taken to be the time between successive crossings of the −70
mV threshold, as denoted above with a dashed horizontal line.

potentials (as could be measured in an experimental setting)
and does not require any information about the underlying
system equations. Section IV illustrates and evaluates the
resulting control strategy, and Sec. V provides concluding
remarks.

II. BACKGROUND

Here, we provide background information about the moti-
vating problem of developing a nonfeedback control strategy
for eliminating cardiac alternans as well as the phase-
isostable-based reduced order modeling frameworks that will
be used in this work.

A. Models for the dynamical behavior of excitable
cardiomyocytes and the emergence of cardiac alternans

Consider a general model for the cellular behavior of a
single cardiomyocyte

Cm
dV

dt
= −[Iion(V, m) + Iext (t )] + εη(t ) + αu(t ),

dm

dt
= fm(V, m), (1)

where V denotes the transmembrane voltage, m ∈ RN is a
collection of auxiliary variables that can be used to represent
ion concentrations, gating variables, and other dynamical pro-
cesses, Iext represents the influence of an external pacemaker,
Iion is a collection of ionic currents, fm sets the dynamics of the
auxiliary variables, Cm is the membrane capacitance, η(t ) is
a unit intensity, independent and identically distributed noise
process, and both 0 < ε � 1 and 0 < α � 1. Additionally,
u(t ) is a transmembrane current input (in μA/cm2) used for
control and will be considered later. Most cardiac cells are
excitable, and the external pacemaker Iext (t ) sets the pacing
rate in Eq. (1).

In this work, we will consider the Noble model [21] with
model equations given in Appendix A. Here, we will take
Iext (t ) = −150 exp{−[mod(t, Tpace ) − 8]2}. This pacemaker
input provides a periodic input to elicit action potentials at
a pacing period Tpace. Representative behavior of this model is
shown in Fig. 1 taking ε (which sets the noise intensity) to be
0.14. Cardiac cellular dynamics are often represented in terms
of the beat-to-beat action potential durations (APDs), defined
as the amount of time the transmembrane voltage remains de-
polarized above a certain threshold on a given action potential.
For slower pacing rates action potentials are nearly constant
on a beat-to-beat basis shown in Fig. 1(a). As the pacing rate
increases, a period-doubling bifurcation occurs yielding stable
period-2 behavior as shown in Fig. 1(b).

The steady state period-2 behavior highlighted in Fig. 1(b)
is generally referred to as APD alternans, that is, a beat-
to-beat alternation of the APD despite a constant rate of
pacing. Cellular cardiac alternans is generally considered to
be proarrhythmic as it can lead to dispersion of refractoriness
in tissue, wave break, and subsequent transition to more lethal
cardiac arrhythmias [22,24,29]. From a biological perspec-
tive, alternans is usually attributed to steep APD restitution
[30], instabilities in the calcium cycling dynamics [31], or a
combination of both factors [32]. From a dynamical systems
perspective, both calcium-driven and voltage-driven alternans
arise due to a period-doubling bifurcation. This work uses
methods that are independent of the exact cause of the bifur-
cation (e.g., calcium or voltage-driven alternans) and focuses
on the problem from the point of view of eliminating the
dynamical instability.

B. Isostable coordinates and phase-amplitude reduction

Toward applying a reduced order modeling framework
for general cardiac cell models, the model Eq. (1) can be
represented by a dynamical system that is entrained to an
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exogenous periodic input:

ẋ = F (x) + Iext (a) + αIinp + εInoise(t ),

ȧ = 1. (2)

Here, x ∈ RN is the state of the system ordered so that the first
element corresponds to the transmembrane voltage variable
and the remaining elements correspond the auxiliary vari-
ables, Iext (a) is a Tpace-periodic input with a ∈ S1 being a
timelike variable that takes values in the range [0, T ) where
T is a multiple of Tpace, Iinp = [u(t ) 0 . . . 0]T , and

Inoise = [η(t ) 0 . . . 0]T . Letting y ≡ [x a]T ∈ RN+1,
define yγ (t ) of Eq. (2) to be a periodic orbit (either stable or
unstable) that exists in the absence of control and noise. To
further analyze Eq. (2) in a reduced order setting we will con-
sider the phase-isostable coordinate framework [18,19]. This
reduction strategy leverages Floquet theory [33] to define a
set of exponentially decaying isostable coordinates (which can
also be thought of as level sets of the Koopman eigenfunctions
[9,34] with decay rates governed by the Floquet exponents). It
will be assumed that all but one of the nonunity Floquet mul-
tipliers of this orbit are close enough to zero so that only one
isostable coordinate is required to characterize the dynamics
transverse to the limit cycle. While somewhat restrictive, the
single amplitude coordinate assumption has been successfully
applied in a variety of other applications [35–37]. Here, we
are considering dynamics that are close to a period-doubling
bifurcation in which a Floquet exponent transitions between
positive and negative values. If none of the other Floquet
exponents are close to zero, it is reasonable to expect that
the salient dynamics can captured by this single, near-zero
isostable coordinate. With these assumptions, one can use the
isostable reduction framework to transform a general model
of the form Eq. (2) to a phase-isostable based model of the
form

θ̇ = ω + [Z (θ ) + ψB(θ )][αu(t ) + εη(t )], (3)

ψ̇ = κψ + [I (θ ) + ψC(θ )][αu(t ) + εη(t )]. (4)

Here, θ is the phase coordinate which gives the timing of the
oscillation, ψ is the isostable coordinate which characterizes
deviations transverse to the limit cycle, ω = 2π/T is the
natural frequency, κ is the principle Floquet exponent, Z (θ )
and I (θ ) are the phase and isostable response curves that
characterize the response to inputs near the limit cycle, and
B(θ ) and C(θ ) provide nonlinear corrections that are valid to
first-order accuracy in the isostable coordinate. Above, it is
assumed that the noise intensity is small enough so that the
Ito correction [38] can be ignored.

We note that while the periodic orbit of Eq. (1) results
from an externally applied periodic input, when the system
is augmented with a timelike variable in Eq. (2), it becomes
autonomous and the notion of asymptotic phase is still ap-
plicable. For the moment, suppose that yγ (t ) is stable [the
case where yγ (t ) is unstable is considered momentarily]. At
all locations in the basin of attraction of the entrained pe-
riodic orbit, the asymptotic phase can be represented using
the notion of isochrons [39,40] which are defined as follows:
in the absence of noise and control, for any initial condi-
tion y(0) ∈ yγ (t ) the isochron associated with y(0) is given

FIG. 2. The panels above show relevent terms from the reduction
Eq. (6). The Noble model from Appendix A is considered with a
pacing rate of 290 ms. As described in the text, two action potentials
are used to define the periodic orbit so that the resulting Floquet
multipliers are positive. Panel (A) shows the voltage trace on the
periodic orbit, with panels (B) and (C) giving the corresponding
values of I (θ ) and C(θ ), respectively.

by the set of all w(0) for which limt→∞ ||y(t ) − w(t )|| = 0.
Recall that in Eq. (2) it is assumed that the periodic orbit
is entrained to the periodic input Iext (a) so that the timelike
variable, a, alone determines the asymptotic phase; using the
aforementioned definition of isochrons, one can show that θ =
mod(θ0 + 2πa/T, 2π ) (cf. Ref. [18]) where θ0 is a constant
that can be defined arbitrarily. For simplicity of exposition,
we will define the phase so that θ0 = 0. We take a = 0 when
t = 0 so that

θ = mod(2πt/T, 2π ). (5)

Consequently, the phase dynamics in Eq. (3) can be eliminated
yielding a single equation to describe the evolution of the
isostable coordinates

ψ̇ = κψ + [I (ωt ) + ψC(ωt )][αu(t ) + εη(t )]. (6)

In general, phase reduction alone [i.e., using only Eq. (3)]
is not sufficient to study the behavior of entrained systems
such as Eq. (1). Indeed, the direct relationship Eq. (5)
makes the study of the phase dynamics trivial. However,
the incorporation of isostable coordinates allows for
the stability of entrained solutions to be analyzed with
Eq. (6). Figure 2 shows the terms of Eq. (6) for the
Noble model from Appendix A with a pacing period of
Tpace = 290 ms. The Floquet multiplier associated with
a single action potential at this pacing rate over a single
cycle is −0.85 which would yield an imaginary Floquet
exponent making subsequent analysis difficult. To yield
a positive Floquet multiplier, two action potentials are
used to define the periodic orbit with an overall period of
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T = 2Tpace yielding a Floquet multiplier of 0.723 and an
associated Floquet exponent κ = log(0.723)/T =
5.6 × 10−4. Figure 2(a) shows the transmembrane voltage
with the associated values of I (θ ) and C(θ ) in Figs. 2(b)
and 2(c), respectively. These terms are computed numerically
using strategies suggested in Ref. [18]. As shown in Appendix
B, I (θ ) = −I (θ + π ).

Finally, the simplification Eq. (5) that ultimately yields
Eq. (6) is obtained assuming that the entrained periodic orbit is
stable so that the notion of isochrons can be used. In Appendix
C, we illustrate that even for an unstable orbit, Eqs. (5) and (6)
can still be used to characterize the phase and isostable dy-
namics when both noise and applied transmembrane current
are small.

III. A DATA-DRIVEN MODEL IDENTIFICATION
STRATEGY AND OPTIMAL DESIGN OF PERIODIC

INPUTS TO ELIMINATE ALTERNANS

The analysis in this section is motivated by the design of
inputs u(t ) that can be used to modify the stability of an
entrained solution of Eq. (2). In the absence of input and noise,
the associated equation for the reduced isostable dynamics
from Eq. (6) has a fixed point at ψ = 0. The stability of this
solution is governed by the sign of Re(κ ), with Re(κ ) < 0 [re-
spectively, Re(κ ) > 0] corresponding to stable (respectively,
unstable solutions). When the period-doubling bifurcation
that results in alternans occurs, the period-1, alternans-free
solution loses stability (i.e., its associated Floquet exponent
crosses zero) and a stable period-2 solution associated with
alternans emerges. From a dynamical perspective the problem
of eliminating alternans can be framed as a problem of finding
a periodic input that yields a periodic orbit with with κ < 0. In
Ref. [28] it was shown that when applying a T -periodic input
αu(t ) to Eq. (6) the Floquet exponent of the shifted periodic
orbit is modified according to

�κ = α

T

∫ T

0
C(ωt )u(t )dt . (7)

Equation (7) provides a guide from which to design non-
feedback stimuli to modify the stability of a periodic orbit.
This strategy, however, requires explicit knowledge of C(θ ).
In situations where the dynamical equations from Eq. (2) are
known, it is relatively straightforward to compute the terms
in the reduction Eqs. (3) and (4) numerically using meth-
ods described in Ref. [18]. However, in many experimental
applications, the dynamical equations are usually not known
accurately enough to be used for control purposes. Previ-
ous authors have developed strategies for measuring phase
response curves for experimental systems using a “direct
method” [2,41] and related strategies have been proposed for
computing I (θ ) and B(θ ) [42]. However, no experimentally
feasible strategies currently exist that can be used to infer the
term C(θ ) which is necessary for implementation of Equation
(7). The analysis to follow provides a strategy whereby the
shape of C(θ ) from Eq. (6) can be inferred by understanding
how statistical properties of the isostable coordinates change
in response to periodic forcing in a noisy environment.

A. Optimal elimination of alternans using periodic stimulation
to stabilize the underlying period-1 orbit

In previous work [28], a strategy was developed for iden-
tifying an energy-optimal strategy to stabilize an unstable
periodic orbit using a periodic control input. A modified strat-
egy based on this approach is presented here for stabilizing
an unstable period-1 alternans-free solution of Eq. (2). The
optimal control derivations presented below take η(t ) = 0 in
Eq. (6), assuming that noise intensity in the full system is too
small to significantly influence the Floquet exponents of the
periodic solution. To begin, suppose that the unstable periodic
orbit has only one unstable Floquet multiplier, with the re-
maining nonunity Floquet multipliers being small enough in
magnitude so that their associated dynamics can be effectively
ignored. Such a system can be represented according to the
isostable coordinate reduction Eq. (6),

ψ̇ = κψ + [I (ωt ) + ψC(ωt )]u(t ), (8)

where κ is the unstable Floquet exponent, I (θ ) is the
isostable response curve, C(θ ) is a first-order correction for
the isostable dynamics, and ω = 2π/T where T is the pe-
riod. In the above isostable reduced equation, α has been
absorbed into u(t ) for simplicity of exposition. As discussed
in Sec. II B, because the dynamics are entrained to an external
pacemaker, the phase θ = ωt and cannot be influenced by
u(t ).

Recall that we take the total period of oscillation to be
T = 2Tpace. Letting u(t ) be a T -periodic input, notice that
Eq. (8) is T -periodic. Additionally, because u(t ) and ψ are
both assumed to be small, Eq. (8) is of the general form
ẋ = εF (x, t ) and formal averaging [43,44] can be applied to
represent Eq. (8) as

�̇ = (κ + ζ )� + ν, (9)

where ζ = 1
T

∫ T
0 C(ωs)u(s)ds, ν = 1

T

∫ T
0 I (ωs)u(s)ds, and �

provides a close approximation for ψ when using the averag-
ing framework. Fixed points of Eq. (9) correspond to periodic
orbits of the unaveraged Eq. (8) with the same stability so that
ζ gives the effective change in the Floquet multiplier resulting
from the application of u(t ).

Toward the formulation and solution of an optimal con-
trol problem to stabilize an unstable solution of Eq. (8) [and
consequently stabilize the period-1 alternans-free solution of
Eq. (2)], we seek to find a stimulus that minimizes

∫ T
0 u2(t )dt

subject to the constraint κ + ζ = κ targ, where κ targ is a tar-
get Floquet exponent for the stabilized solution. As noted in
Ref. [28], this constraint is satisfied provided the differential
equation

Ṙ = C(ωt )u(t ) + κ, (10)

with boundary conditions R(0) = 0 and R(T ) = T κ targ, is sat-
isfied. Consequently, the goal of finding an energy-optimal,
periodic stimulus to stabilize the unstable periodic can be
posed as a calculus of variations problem [45] which seeks
to minimize the cost functional

M[R, Ṙ, u(t )] =
∫ T

0
{u2(t ) + L1[Ṙ − C(ωt )u(t ) − κ]}dt,

(11)
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where L1 is a Lagrange multiplier that forces the dynamics to
satisfy Eq. (10). Associated Euler-Lagrange equations are

∂M

∂u
= d

dt

(
∂M

∂ u̇

)
, (12)

∂M

∂R
= d

dt

(
∂M

∂Ṙ

)
, (13)

where M is the integrand of the cost functional Eq. (11). All
extremal solutions of Eq. (11) must satisfy the Euler-Lagrange
Eqs. (12) and (13). The optimization problem can be further
simplified, as done in Ref. [28], by noting that direct evalua-
tion of Eq. (13) shows that L̇1 = 0 along extremal solutions so
that L1 is a constant. Evaluation of Eq. (12) shows that

u(t ) = L1C(ωt )

2
. (14)

Additionally, upon substituting Eq. (14) into Eq. (10) and
manipulating, one finds that when the Lagrange multiplier

L1 = 2(κtarg − κ )
1
T

∫ T
0 C2(ωt )dt

(15)

is chosen, the required boundary conditions of Eq. (10) are
satisfied. Noticing that κtarg − κ < 0 in Eq. (15), one finds
L1 < 0 so that the energy-optimal stimulus from Eq. (14) is
proportional to C(ωt ) and scaled by a negative constant.

As a final note, Eq. (14) states that the optimal control in-
puts to stabilize the unstable alternans-free solutions of Eq. (1)
are simply proportional to C(θ ). The data-driven estimation
strategy for C(θ ) detailed in Sec. III E is able to estimate
C(θ )μ where μ > 0 is an unknown constant. The inability to
compute the magnitude of C(θ ) means that it is not possible
to determine the magnitude of the optimal stabilizing input
a priori. From a practical perspective, however, stabilization
can still be achieved by applying an input ξC(θ ) where ξ is
a negative constant and increasing the magnitude of ξ until
stabilization is achieved. The resulting input will be energy-
optimal in the sense that it shifts the Floquet exponent toward
more negative values as efficiently as possible, i.e., the effec-
tive Floquet exponent κ + ζ when the periodic input is applied
will be achieved using the minimum possible energy.

B. Exploiting noise to estimate C(θ) from the phase-isostable
reduced equations

The section to follow details a strategy by which the shape
of C(θ ) from the reduced order Eq. (6) can be inferred by con-
sidering the variance of the isostable coordinates in response
to noise. For the moment, we will take u(t ) = 0 and it will be
assumed that ψ remains an O(ε) term in response to the O(ε)
noise. For the moment, we will assume that κ < 0 (we will
consider situations where κ > 0 in Sec. III D). Under these
assumptions, to leading order, Eq. (6) becomes

ψ̇ = κψ + εI (ωt )η(t ) + O(ε2). (16)

Introducing r(t ) ≡ ψ (t )e−κt one can write

ψ̇ = ṙeκt + κreκt = κreκt + εI (ωt )η(t ). (17)

Rearranging and simplifying yields

ṙ = εe−κt I (ωt )η(t ). (18)

Directly integrating Eq. (18) yields

r(t ) = r(t0) + ε

∫ t

t0

e−κsI (ωs)η(s)ds, (19)

and finally,

ψ (t ) = ψ (t0)eκ (t−t0 ) + ε

∫ t

t0

eκ (t−s)I (ωs)η(s)ds. (20)

We will consider Eq. (20) in a situation where t is sufficiently
larger than t0 so that ψ (t0) can be assumed to be zero. Letting
E [X ] denote the expected value of the random variable X ,
E [ψ (t )] = 0 because the noise has zero mean. The variance
is then

var(ψ (t )) = E ({ψ (t ) − E [ψ (t )]}2),

= ε2
∫ t

t0

e2κ (t−s)I2(ωs)ds, (21)

where the second line follows from the property that
[
∫ t2

t1
f (x)dx]2 = ∫ t2

t1

∫ t2
t1

f (x) f (y)dxdy along with the property
of white noise that E [η(s)η(s′)] = δ(s − s′).

Next, consider the reduced order system under the applica-
tion of a small sinusoidal input u(t ) = α sin(2πnt/T ), where
n ∈ N and 0 < ε � |α| � 1. In other words, α is assumed to
be small, but still significantly greater than the noise intensity.
Suppose that the resulting input yields a periodic orbit of
Eq. (2) that is still entrained to the external periodic input
Iext (a). The resulting orbit yγ ∗(t ) will be a version of yγ (t )
that has been shifted by a small amount due to the incor-
poration of u(t ). This yields isostable dynamics similar to
Eq. (6):

ψ̇∗ = (κ + �κ )ψ∗ + ε{I (ωt ) + �I (ωt )

+ψ∗[C(ωt ) + �C(ωt )]}η(t ). (22)

Here ψ∗ corresponds to isostable coordinate for the orbit
yγ ∗(t ). In Eq. (22), the periodic orbit is shifted slightly by
the new application of u(t ) and the terms �κ , �I (ωt ), and
�C(ωt ) are included to account for resulting shifts in the
reduced order equations. Note here that yγ ∗(t ) is defined to
be the entrained solution that results when u(t ) is applied;
consequently, u(t ) does not appear explicitly in Eq. (22). Once
again, because the noise intensity is O(ε), the magnitude of
ψ∗ is assumed to be an O(ε) term.

Rewriting Eq. (22) to focus solely on the order ε terms
from Eq. (22) yields

ψ̇∗ = (κ + �κ )ψ∗ + ε[I (ωt ) + �I (ωt )]η(t ) + O(ε2).
(23)

Noting the similarity between Eqs. (16) and (23), we find that
E [ψ∗] = 0 and

var(ψ∗(t )) = E ({ψ∗(t ) − E [ψ∗(t )]}2)

= ε2
∫ t

t0

e2(κ+�κ )(t−s)[I (ωs) + �I (ωs)]2ds. (24)

Recalling that u(t ) is an O(α) term, �κ and �I (ωs) are also
O(α) terms. With this in mind, expansion of Eq. (24) and
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subsequent comparison to var(ψ ) yields

var(ψ∗) − var(ψ )

= �k ε2
∫ t

t0

[2e2κ (t−s)I2(ωs)(t − s)]ds

︸ ︷︷ ︸
β

+ 2ε2
∫ t

t0

[
e2κ (t−s)I (ωs)I ′(ωs)�I (ωs)

]
ds

︸ ︷︷ ︸
ρ

+O(α2)

= �κβ + ρ, (25)

where ′ ≡ d/dθ . Equation (25) can be simplified further
by noting, as shown in Appendix B, that for the models
considered in this work, i.e., those that yield negative Flo-
quet multipliers when the overall period is comprised of a
single action potential, I (θ ) = −I (θ + π ). Hence, �I (θ ) =
−�I (θ + π ) and I ′(θ ) = −I ′(θ + π ) as well. With this in
mind, considering the structure of ρ and β, in situations where
κ is small so that the decay of e2κ (t−s) is slow, the integrand
governing ρ will take positive and negative values that tend to
balance out and ρ will be small relative to β. This is indeed
the case for our numerical model—using the reduced order
model associated with the Tpace = 290 ms pacing rate, �κβ is
more than 1000 times larger in magnitude than ρ. Therefore,
we assume that ρ is negligible in Eq. (25) allowing Eq. (7) can
be substituted into Eq. (25) to yield

var(ψ∗) − var(ψ ) = β

T

∫ T

0
C(ωt )u(t )dt

= αβ

T

∫ T

0
C(ωt ) sin(2πnt/T )dt

= αβ

2
bn, (26)

where bn is the nth term of the Fourier series expansion
of C(ωt ). An identical argument (using cosine wave inputs
instead of sine waves) can be followed to provide relations for
the other terms of the Fourier series expansion

C(ωt ) = a0/2 +
∑

n

[bn sin(2πnt/T ) + an cos(2πnt/T )].

(27)
Figure 3(a) provides a numerical confirmation of the rela-

tions Eq. (25) using the Noble model with a pacing rate of
290 ms. Noise with intensity 2 × 10−4 is used to simulate the
associated reduced order model Eq. (16) and the value of ψ

is stored after every 10T units of time. Next, in the absence
of noise, u(t ) = α sin(8πt/T ) (i.e., a sinusoid with a period
that corresponds to half the pacing period) is applied and the
resulting reduced order terms are computed. Once these terms
are identified, simulations of Eq. (23) are performed using
noise with the same intensity and the variance of the measure-
ments of the isostable coordinates are compared. Black dots in
Fig. 3(a) show the difference in variance between simulations
as a function of α with open circles computed according to
Eq. (25). Figures 3(c) and 3(d) show distributions of ψ and
ψ∗, taken from simulations of Eqs. (16) and (23), respectively.
In Fig. 3(b), the actual change in the Floquet exponent is
compared to the value predicted by the relationship Eq. (7).

FIG. 3. Numerical confirmation of the derived relationships be-
tween changing Floquet multipliers and the variance of the resulting
isostable coordinates for simulations of Eqs. (16) and (23). Black
dots in panel (A) show how the variance of the isostable coordinates
changes when input u(t ) = α sin(8πt/T ) is applied. Predictions
computed according to Eq. (25) are shown as open circles. His-
tograms of the measurements of the isostable coordinates obtained
from simulations of Eqs. (16) and (23) are shown in Panels (C)
and (D) providing a visual representation of the change in variance
that results when sinusoidal input is applied. Note that overlapping
regions of the histograms in panels (C) and (D) appear brown.

C. Relating the variance of the isostable coordinates
to measurable data

Equation (26) illustrates how sinusoidal inputs influence
the variance of the isostable coordinates in relation to the
terms of the Fourier expansion of C(ωt ). However, the
isostable coordinate itself is not directly measurable from
data. Instead, the variance of the isostable coordinates will be
related to measured APDs, i.e., the time that the cell remains
depolarized during a given action potential. The APD is a
commonly used measurement to characterize the behavior of
experimental cardiomyocytes. As in Fig. 4, let tm

1 (respec-
tively, tm

2 ) denote the time that the transmembrane voltage
crosses some threshold � with positive (respectively, nega-
tive) slope during the mth action potential. The mth action
potential duration is then defined as

T m
APD = tm

2 − tm
1 . (28)

For simplicity of the exposition, we will consider an aug-
mented action potential duration (AAPD) by defining tm

0 to
be the moment that mod(t, Tpace ) = 0 on the mth cycle and
letting

T m
AAPD = tm

2 − tm
0 . (29)

As illustrated in Fig. 4, T m
AAPD is slightly longer than T m

APD.
To proceed, we will use the operational phase reduced co-
ordinate framework [46] to relate the time of crossing of a
particular isochron to the time at which a trajectory crosses
a specified Poincaré section. For the moment, consider the
entrained periodic orbit of Eq. (2) that emerges when taking
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FIG. 4. While the APD, defined in Eq. (28) is a more natural
experimental definition, both tm

1 and tm
2 are random variables, which

would complicate the analysis below. By contrast, the AAPD de-
fined in Eq. (29) consists of only one random variable (since tm

0 is
deterministic). In practice, since var(tm

1 − tm
0 ) is small, the difference

between the variance of the APDs and AAPDs is negligable. The
voltage threshold, �, defines a Poincaré section that is used to calcu-
late APDs.

u(t ) = 0. We will define t̃ m
2 to be the time that � is crossed

on the APD downstroke when ψ = 0 (i.e., the time that the
APD would end if the system state is exactly on the limit
cycle). We also recall that θ = mod(2πt/T, 2π ) and define
θ̃2 ≡ mod(2π t̃ m

2 /T, 2π ) to be the corresponding phase when
this crossing occurs. Note that θ̃2 is the same from cycle-
to-cycle. With this information, according to Eq. (15) from
Ref. [46], for O(ε) values of ψ ,

tm
2 = t̃ m

2 − ψ
(
t̃ m
2

)
gV (θ̃2)

V̇ (θ̃2)
+ O(ε2), (30)

where, as described in Ref. [46], gV (θ ) is the transmembrane
voltage component of the Floquet eigenfunction associated
with ψ , and V̇ (θ ) is the time derivative of the transmembrane
voltage evaluated on the unperturbed periodic orbit. Substitut-
ing Eq. (30) into Eq. (29) and taking the variance to leading
order yields

var
(
T m

AAPD

) = var

(
t̃ m
2 − ψ

(
t̃ m
2

)
gV (θ̃2)

V̇ (θ̃2)
− tm

0

)

= var

(
−ψ

(
t̃ m
2

)
gV (θ̃2)

V̇ (θ̃2)

)

= (gV (θ̃2)/V̇ (θ̃2))2var[ψ (t̃ m
2 )], (31)

where the second and third lines follow from the fact that
(t̃ m

2 − tm
0 ) and gV (θ̃2)/V̇ (θ̃2) are both constants. The time at

which the variance of the isostable coordinates are evaluated
in Eq. (26) is arbitrary as long as it is consistent on a cycle-
by-cycle basis. Therefore, taking t = t̃ m

2 in Eq. (26), starting
with Eq. (31) one can write

var(T ∗
AAPD) − var(TAAPD) = αβ

2

(
gV (θ̃2)

V̇ (θ̃2)

)2

bn + O(α2)

= αμbn + O(α2), (32)

where T ∗
AAPD (respectively, TAAPD) represent the augmented

action potentials measured with (respectively, without) input

from u(t ) and μ = β[gV (θ̃2)/V̇ (θ̃2)]2/2. Here, it is assumed
that gV (θ ) and V̇ (θ ) only change by order α when the O(α)
input u(t ) is applied yielding the additional O(α) terms in
Eq. (32). Note that the integrand that determines β is strictly
positive so that μ > 0.

Finally, one can rewrite the terms of each AAPD as

T m
AAPD = tm

2 − tm
0

= tm
2 − tm

1 + tm
1 − tm

0

= T m
APD + tm

1 − tm
0 . (33)

On each cycle tm
1 − tm

0 is primarily a function of the pacing
used to elicit action potentials, which does not change on a
cycle-to-cycle basis. Consequently, the variance in the mea-
surements of tm

1 − tm
0 will generally be negligible compared

to the variance of the APDs. For example, for simulations of
Eq. (1) using the Noble model [21] var(t1 − t0) is more than
10,000 times smaller than the variance of the resulting APDs.
Thus, it is generally possible to use the standard definition of
the APD in Eq. (32) instead of the AAPDs, that is,

var(T ∗
APD) − var(TAPD) = αμbn + O(α2). (34)

D. Inference of necessary terms for weakly unstable
periodic orbits

For the integrals from Eq. (25) to converge, the underlying
periodic orbit must be stable so that κ is negative. However,
for the application considered in this work of stabilizing an
unstable period-1 orbit, it is necessary to identify C(θ ) when
κ > 0. As shown here, supposing κ > 0 and small enough in
magnitude so that it can be stabilized with a periodic input,
the relationships derived in Sec. III B can still be applied to
estimate C(θ ).

To begin, consider an unstable T -periodic orbit yγ (t ) of
Eq. (2) that exists when u(t ) = 0. Taking n1 ∈ N, suppose that
under the application of an input u1(t ) = α1 sin(2πn1t/T )
that the resulting entrained orbit can be stabilized. Suppose
also that under the application of a different input u2(t ) =
α1 sin(2πn1t/T ) + α2 sin(2πn2t/T ) where n2 ∈ N that the
resulting entrained orbit is still stabilized. Once again, it will
be assumed that noise εη(t ) present in simulations of the re-
duced order equations. Letting var(ψ∗

i ) be the variance of the
noisy isostable coordinate measurements and �κi and �Ii(θ )
be the terms of the shifted orbit under the application of the
inputs ui(t ) for i = 1, 2, from Eq. (24) we have

var(ψ∗
2 ) − var(ψ∗

1 )

= ε2
∫ t

t0

e2(κ+�κ2 )(t−s)[I (ωs) + �I2(ωs)]2ds

− ε2
∫ t

t0

e2(κ+�κ1 )(t−s)[I (ωs) + �I1(ωs)]2ds. (35)

Above, because the shifted orbits are now stable, both κ +
�κ1 and κ + �κ2 are less than zero so that the integrals
Eq. (35) converge as t approaches infinity.
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Following the derivation from Sec. III B, assuming that α1

and α2 are small, to leading order, one can write Eq. (35) as

var(ψ∗
2 ) − var(ψ∗

1 )

= (�κ2 − �κ1)β + 2ε2
∫ t

t0

[
e2κ (t−s)I (ωs)I ′(ωs)

× (�I2(ωs) − �I1(ωs)
]
ds. (36)

As explained in Sec. III B, the remaining integral in Eq. (36) is
negligibly small relative to (κ1 − κ2)β and can be ignored. Fi-
nally, substituting Eq. (7) into the remaining terms of Eq. (36)
and simplifying yields

var(ψ∗
2 ) − var(ψ∗

1 ) = α2β

T

∫ T

0
C(ωt ) sin(2πn2t/T )dt

= α2β

2
bn, (37)

where bn is the nth term of the Fourier series expansion of
C(ωt ). Once again, an identical argument can be used to
obtain cosine terms of the Fourier series expansion. Note the
similarity between Eqs. (37) and (26). Provided that both
u1(t ) and u2(t ) stabilize the weakly unstable periodic orbit,
the differences in the variance of the resulting isostable co-
ordinates can be used to infer the terms of the Fourier series
expansion of C(θ ). Similar to Eq. (34) it is possible to use
direct measurements of the APDs instead of measurements
of the isostable coordinates so that to leading order, Eq. (37)
becomes

var(T ∗
APD2

) − var(T ∗
APD1

) = α2μbn, (38)

where var(T ∗
APD1

) and var(T ∗
APD2

) correspond to the resulting
variances measured when u1(t ) and u2(t ) are applied, respec-
tively.

E. Procedure to infer the terms of the Fourier series expansion
of C(θ) for cardiomyocytes

Combining the results III B-III D, consider a T -periodic,
entrained orbit describing excitable cardiomyocytes that can
be represented according to Eq. (2). One can infer μC(θ ),
where μ > 0 is an unknown constant, for the reduced order
Eq. (6) using the procedure detailed below.

1. Implementation for a stable entrained orbit

Step 1) Simulate Eq. (2) with u = 0. Measure every mth
APD where m is chosen so that the individual measurements
are well-approximated as independent to each other. Compute
the resulting variance of the collection of measurements.

Step 2) Repeat Step 1 using u(t ) = α sin(2πt/T ).
Step 3) Comparing the resulting variance in APDs from

Step 2 to the variance obtained from Step 1, it is possible to
infer the scaled Fourier coefficients μb1 from Eq. (34) where
μ is an unknown positive constant.

Step 4) Repeat Steps 2 and 3 taking u(t ) =
α sin(4πt/T ), α sin(6πt/T ) . . . and u(t ) =
α, α cos(2πt/T ), α cos(4πt/T ) . . . to obtain the scaled
Fourier coefficients μbn and μan using the relations of the
form Eq. (34).

2. Implementation for a weakly unstable entrained orbit

Step 1) Simulate Eq. (2) with u1(t ) = α1 sin(2πn1t/T ).
The magnitude and frequency of u1(t ) must be chosen so that
it stabilizes the unstable periodic orbit. After initial transient
behavior decays, measure every mth APD where m is chosen
so that the individual measurements are well-approximated as
independent to each other. Compute the resulting variance of
the collection of measurements.

Step 2) Repeat Step 1 using u2(t ) = α2 sin(2πt/T ) +
u1(t ).

Step 3) Comparing the resulting variance in APDs from
Step 2 to the variance obtained from Step 1, it is possible to
infer the scaled Fourier coefficients μb1 from Eq. (34) where
μ is an unknown positive constant.

Step 4) Repeat Steps 2 and 3 taking
u2(t ) = α2 sin(4πt/T ) + u1(t ), α2 sin(6πt/T ) +
u1(t ) . . . and u2(t ) = α2 + u1(t ), α2 cos(2πt/T ) +
u1(t ), α2 cos(4πt/T ) + u1(t ) . . . to obtain the scaled Fourier
coefficients μbn and μan using the relations of the form
Eq. (38).

From an experimental perspective, the strategy suggested
above is attractive because of its simplicity—it only requires
the ability to measure a series of APDs and information
about C(θ ) can be inferred by computing the variance of the
resulting measurements. One drawback, however, is that μ

is generally unknown so that the shape of C(θ ) but not the
magnitude can be obtained. Nevertheless, as we will see in
the examples to follow, knowledge of the shape of C(θ ) alone
is sufficient to implement the proposed optimal nonfeedback
control strategies from Sec. III A for eliminating alternans.

IV. RESULTS

As discussed in Sec. III A, an energy-optimal strategy for
eliminating alternans using periodic stimulation can be imple-
mented solely with knowledge of C(θ ) from Eq. (6), i.e., that
capture the second-order accurate terms of the isostable dy-
namics. Here we apply the strategies developed in the previous
section to infer the function C(θ ) with a data-driven strategy.
This technique is then leveraged to identify energy-optimal
periodic stimuli that can stabilize unstable period-1 solutions
thereby eliminating alternans using the optimal control frame-
work in Sec. III A.

A. Implementation of the proposed techniques for a stable
periodic orbit

We consider the Noble model equations given in Eq. (A1)
taking Tpace = 330 ms with ε = 0.14. After allowing initial
transients to decay, a representative plot of the resulting stable
Period-1 waveform is shown in Fig. 1(a). As discussed in
Appendix B, because the principle Floquet multiplier is neg-
ative, when taking T = 2Tpace, C(θ ) is periodic with period
Tpace. Consequently, all odd coefficients of the Fourier series
expansion Eq. (27) are simply zero. Following the procedure
detailed in Sec. III E 1, separate trials taking inputs of the
form u(t ) = 0.3 sin(2nπt/T ) and u(t ) = 0.3 sin(2nπt/T ) are
performed for all even n � 14. For each trial, the associated
input is applied for approximately 5000 cycles and the vari-
ance of the resulting APDs is measured. A large number of
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FIG. 5. Illustration of the proposed strategy for estimating C(θ ) of the reduced model Eq. (6) for a stable entrained orbit. The gray lines
in each panel show the exact value of C(θ ) calculated directly from the model equations using methods described in Ref. [18]. Black lines
in each panel show the data-driven approximation of C(θ )/μ = a0/2 + ∑n

k=0 [bk sin(2πkt/T ) + an cos(2πkt/T )] for the indicated value of
n. The coefficients of the Fourier series expansion are determined using the strategy detailed in Sec. III E 1. Dashed lines show the first n
Fourier modes of the exact solution. The magnitudes of the resulting plots are appropriately normalized to provide visual comparisons with
the exact solutions. While the proposed estimation strategy is unable to capture all of the details associated with the high frequency modes, the
contributions of the lower frequency modes are accurately estimated.

cycles is considered here so that the estimates of each Fourier
coefficient do not change significantly when the procedure is
repeated, however, accurate results can still be obtained using
fewer measurements as will be illustrated in the results from
Sec. IV B. These measurements are then used to infer μC(θ )
where μ > 0 is an undetermined constant as defined below
Eq. (32). In Fig. 5, plots of the resulting curves are shown
highlighting accuracy of the proposed method. The accuracy
in the estimate of C(θ ) increases as more terms are included,
however, diminishing returns are observed with n larger than
6 in this example.

While the proposed estimation strategy accurately captures
the lower frequency modes, the higher frequency modes (i.e.,
those with n > 6) are not accurately inferred. This is likely
due to the fact that the magnitudes of these high frequency
terms contributing to C(θ ) are relatively small, and as such, it
is hard to detect their influence on the APDs. As will be shown
in the examples to follow, because these higher frequency
modes have a relatively small contribution to the overall value
of C(θ ), these errors do not significantly degrade the accuracy
of the resulting reduced order models.

B. Implementation of proposed techniques for an unstable
periodic orbit

In this example, we consider the data-driven inference of
C(θ ) for an unstable period-1 orbit and the subsequent design
of a control input to eliminate alternans. Once again, we
consider the Noble model equations from Eq. (A1), this time
pacing at a rate of Tpace = 253 ms. The period-1 solution is un-
stable at this pacing rate; the Floquet multiplier corresponding
to a single action potential is −1.05. When taking T = 2Tpace

the resulting Floquet exponent is 1.98 × 10−4.
In numerical simulations of Eq. (1) we choose the ε = 0.20

to set the noise strength. Because the period-1 orbit is unsta-
ble, alternans emerge in steady state in the absence of any
external input. Figure 6(b) show histograms of the resulting
APDs collected for over 8000 representative action potentials.
In steady state, action potential durations alternate between
about 130 and 230 ms. These times correspond to peaks on
the corresponding histogram. Occasionally, after a long action
potential, the next action potential will fail to initiate. In tissue,
such failure to initiate can cause conduction block that creates

favorable conditions for the genesis of reentrant arrhythimas
associated with fibrillation [22,23]. After a failed action po-
tential, the subsequent APD is approximately 360 ms. These
occurrences account for a small but nonnegligible portion of
the observed APDs.

As discussed in Sec. III D, to infer the reduced order terms
associated with the unstable, period-1 alternans free solution,
it is necessary to find some nominal input that eliminates alter-
nans. Figures 6(c) and 6(d) show examples of such stimuli that
are proportional to sin(4πt/T ) and cos(4πt/T ), respectively.
The corresponding histograms in Figs. 6(d) and 6(f) indicate
that alternans is eliminated and either of these stimuli can be
used as the necessary stabilizing input u1(t ) to implement the
strategy for identifying C(θ ) using the procedure described in
Sec. III E 2. Figure 7 illustrates the results of implementing
this procedure. Inputs u2(t ) are shown as colored traces in
Figs. 7(a) and 7(c) and are applied in addition to the baseline
inputs u1(t ) shown in gray. Histograms of of the measured ac-
tion potentials of corresponding color are shown in Figs. 7(b)
and 7(d).

The variances of the measured APDs from Figure 7 are
used as part of the procedure from Sec. III E 2 to infer the
shape of C(θ ). To investigate the number of APDs necessary
to obtain an accurate estimate of the curve C(θ ), the fitting
procedure is repeated over multiple independent trials that
measure different numbers APDs. These results are shown
in Figure 8. While accurate estimates can be obtained when
using a small number of APDs, the variation in the inferred
curves tends to diminish when more APDs are measured.
Additionally, as more Fourier modes are estimated, the accu-
racy of the resulting approximation improves. Reduced order
curves obtained from trials taking 8000 APDs with various
choices of n are used to identify the shape of energy-optimal
stimuli for stabilizing the period-1 alternans-free solution with
the strategy described in Sec. III A. Specifically, as shown
by Eq. (14), the optimal stabilizing stimulus is proportional
to −C(θ ). In order to provide an estimate of the stabiliza-
tion efficiency for each resulting input, the resulting optimal
u(t ) is applied to the full model Eq. (1) using the pacing
rate Tpace = 253 ms. The magnitude is adjusted until alter-
nans is eliminated and the resulting variance of the action
potentials is between 65 and 67 ms. The resulting variance
in the action potentials is proportional to the effective Flo-

052203-9



TUHIN SUBHRA DAS AND DAN WILSON PHYSICAL REVIEW E 103, 052203 (2021)

FIG. 6. Various periodic inputs u(t ) (in μA/cm2) are applied [panels (A), (C), and (E)] to the Noble model from Eq. (A1) using a
pacing rate of 253 ms. When no input is applied, alternans emerges in steady state as seen in the histogram in panel (B). Occasionally,
after a particularly large action potential duration, the ensuing action potential fails, leading to an APD of approximately 350 ms immediately
afterward. The application of the sinusoidal inputs in panels (C) and (E) stabilize the unstable period-1 alternans-free orbit, thereby eliminating
alternans as can be seen in corresponding panels (D) and (F), respectively.

quet exponent [as illustrated by Eq. (25)]. Therefore, by
mandating the same variance for each stabilizing stimulus,
we can gauge the efficiency by considering

∫ Tpace

0 u2(t )dt for
each stimulus. These results are shown in Fig. 9. In gen-

eral, estimating more terms of the Fourier series expansion
of C(θ ) will yield inputs that are closer to optimal, how-
ever, diminishing returns are observed for the higher-order
coefficients.

FIG. 7. Green lines in panels (A) and (C) represent the baseline stabilizing stimulus u1(t ) (in μA/cm2) as described in the procedure from
Sec. III E 2. Green bars in panels (B) and (D) show the respective histograms of the APDs. Black, red, and blue lines in panels (A) and (C)
show stimuli u2(t ) − u1(t ), highlighting the additional inputs added to u1(t ). Histograms of corresponding color are shown in panels (B) and
(D). Differences between the resulting variances of the measured action potentials are then used to infer information about the shape of C(θ ).
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FIG. 8. Results from implementing the proposed strategy from Sec. III E 2 for estimating C(θ ) from the reduced equations of the
form Eq. (6) associated with an unstable periodic orbit. Each panel shows 100 independent estimates of C(θ ) (colored lines) using
the indicated number of APDs to estimate the required APD variances according to the Fourier series expansion C(θ )/μ = a0/2 +∑n

k=0 [bk sin(2πkt/T ) + an cos(2πkt/T )]. The magnitudes of the resulting plots are appropriately normalized to provide visual comparisons
with the exact solutions. The black lines in each panel show the exact value of C(θ ) calculated numerically from the model equations using
methods described in Ref. [18]. Taking more terms of the Fourier series expansion (i.e., with n larger than 6) only yields small differences in
the resulting values of C(θ ) and these results are not shown.

FIG. 9. Using the proposed strategy to infer the curve C(θ ) with Fourier modes up to the indicated value of n [and also using the exact
value of C(θ )], the right panel shows the resulting optimal stimulus (in μA/cm2) that stabilizes alternans and yields a variance of 66 ±1 ms in
the APDs. Corresponding bars in the left panel represent value of

∫ Tpace

0 u2(t )dt for the indicated stimuli. Resulting energy consumption using
the feedback (FB) control strategy from Eq. (39) taking γ = −0.025 is also shown, where the reported energy usage represents the average per
pacing cycle. The input using the true value of C(θ ) is optimal when using the nonfeedback strategy and the approximations that result when
using the inferred curves provide better estimates of the optimal inputs as more terms of the Fourier series expansion are included. While the
delayed feedback control uses less energy than the proposed nonfeedback strategy, practical drawbacks associated with the implementation of
feedback control in experimental situations may outweigh the benefit from the energy savings. As such, the delayed feedback control strategy
and the nonfeedback control strategy cannot be directly compared solely on the basis of overall energy usage.
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We are unaware of other nonfeedback control strategies
that could be used to stabilize alternans. Nevertheless, to make
comparisons between other previously considered alternans
elimination strategies, we consider delayed feedback control
of the form [47]

u(t ) = γ [V (t ) − V (t − τ )], (39)

where τ = Tpace and γ is a constant. The general delayed
feedback control framework has been widely studied as a
means of stabilizing unstable periodic orbits [48,49] and has
also been previously investigated in terms of its ability to
control cardiac alternans [50]. In contrast to the proposed
nonfeedback control strategy, the delayed feedback control
requires the ability to continuously and accurately measure
the transmembrane voltage while concurrently applying input.
Using γ = −0.025, we find that the delayed feedback strategy
Eq. (39) is able to eliminate alternans using approximately
76% less energy than the nonfeedback control strategy as
shown in Fig. 9. Qualitatively similar results are obtained us-
ing values of γ between −0.01 and −0.05. While the delayed
feedback strategy uses less overall energy, from a practical
standpoint it can be difficult to simultaneously apply input
and take measurements from the same probe. Additionally,
measurement noise and other uncertainties can lead to errors
that degrade the effectiveness of such feedback control meth-
ods [49,51]; these practical considerations are not investigated
here.

V. CONCLUSION

The phase-isostable reduction framework represents a
powerful model reduction strategy that can accurately repli-
cate system dynamics in situations where first-order accurate
techniques alone are unable to capture the perturbed system
behavior. While many strategies are available to numerically
compute the reduced order terms to high orders of accuracy
when the model equations are known [18,20,42], fewer op-
tions are available to infer the necessary terms of the reduction
solely from observed data, for example, when the model
equations themselves are unknown. Methods akin to the “di-
rect method” [2,41] can be used to approximate Z (θ ) and
I (θ ) from Eqs. (3) and (4) from experimental data. However,
there are currently no general techniques that can be used
to estimate B(θ ) and C(θ ), i.e., the higher-order terms that
characterize dominant system nonlinearities.

In this work, we investigate the behavior of noisy oscil-
lations that are entrained to an external input which admit
reduced order models of the form Eq. (6). By analyzing the
variance of the measured isostable coordinates on a cycle-
by-cycle basis in response to additive white noise, we are
able to develop a procedure to estimate the function C(θ ).
Furthermore, we find that this knowledge of C(θ ) ultimately
allows for the identification of energy-optimal nonfeedback
control inputs for eliminating cardiac alternans that shift Flo-
quet exponents of associated unstable period-1 orbits from
positive to negative values. As implemented in this work, this
strategy does not consider the estimation of the other terms
from the phase amplitude reduced Eqs. (3) and (4), but could
be used in conjunction with other data-driven strategies such
as those suggested in Ref. [36] or Ref. [42] to get a fuller

picture of the phase and isostable dynamics. It would be of
interest in future work to extend the proposed model inference
techniques for reduced order systems that require more than
one isostable coordinate. Additionally, incorporating higher-
order noise terms such as the Ito correction [38] may allow for
more accurate inference of the high frequency Fourier modes.

From the perspective of eliminating cardiac alternans, there
are many limitations that this work does not address. Fore-
most, the Noble model [21] used here is relatively simple and
only contains a limited description of the underlying cellu-
lar currents. While the data-driven model inference strategy
proposed here does not depend on the specific model used, it
would be interesting to investigate its utility in more compli-
cated cardiac models. Additionally, while the work presented
here focuses on the elimination of alternans in a single cell, the
true danger of alternans is in the dispersion of refractoriness it
can induce in tissue. This phenomenon is generally referred to
as discordant alternans and can emerge due to conduction ve-
locity restitution and other factors [52–54]. These effects are
not considered in this work, but it would be of interest to adapt
the methods presented here for partial differential equation
models of cardiac action potential propagation where stabi-
lization of the unstable dynamics that give rise to concordant
and discordant alternans can be investigated. Additionally, the
present study considers direct transmembrane charge injec-
tion as the control input for eliminating alternans. While this
is possible in experimental preparations, it would be more
feasible to consider other inputs such as the application of
a time-varying extracellular voltage gradient (which would
need to be considered with a bidomain model [55]). These
considerations will be addressed in future work.

Importantly, this work highlights that noise, which is gen-
erally present in most biological systems, can be exploited
to identify nonlinear terms associated with reduced order
models. Further investigation could yield other strategies for
robust identification of reduced order dynamical models in
noisy environments.
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APPENDIX A: NOBLE MODEL EQUATIONS

The Noble model equations from Ref. [21] are used in
numerical simulations in this work. The model equations are
reproduced below:

CmV̇ = iNa + iK + iAn + αu(t ) + εη(t ),

ṁ = αm(1 − m) − βmm,

ḣ = αh(1 − h) − βhh,

ṅ = αn(1 − n) − βnn. (A1)

Here, V is the transmembrane voltage and m, h, and n are
gating variables that set the value of the various ionic currents.
Cm = 12μF/cm2 is the membrane capacitance, η(t ) repre-
sents independent and identically distributed zero mean white
noise with unit intensity, ε and α are small constant parame-
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ters, and u(t ) is an external input. Relationships governing the
ionic currents are

iNa = (400m3h + 0.132)(V − 40),

iK = {1.2n4 + 1.2 exp[(−V − 90)/50] + 0.015

× exp[(V + 90)/60]}(V + 100),

iAn = gan(V + 60), (A2)

where gan is a variable leak conductance that is chosen to be
0 in this work. Additional coefficients are given by

αm = 100(−V − 48)

exp[(−V − 48)/15] − 1
,

βm = 120(V + 8)

exp[(V + 8)/5] − 1
,

αh = 170 exp[(−V − 90)/20],

βh = 1000

1 + exp[(−V − 42)/10]
,

αn = 0.1(−V − 50)

exp[(−V − 50)/10] − 1
,

βn = 2 exp[(−V − 90)/80]. (A3)

APPENDIX B: CHARACTERISTICS OF THE
PHASE-ISOSTABLE REDUCTION FOR SYSTEMS WITH

NEGATIVE FLOQUET MULTIPLIERS

The problem of eliminating alternans in cardiac models of
the form Eq. (2) can be viewed from a dynamical systems per-
spective as stabilizing an alternans-free periodic-1 orbit that
loses stability as a result of a period-doubling bifurcation. As
explained in the main text, this orbit (with period Tpace) loses
stability as its principle Floquet multiplier λ, crosses from
λ > −1 to λ < −1. Because this Floquet multipler is nega-
tive, we let two action potentials comprise the full periodic
orbit so that T = 2Tpace in the isostable reduction yielding a
positive principle Floquet multiplier. Here, we show that in
this situation, I (θ + π ) = −I (θ ) and that C(θ + π ) = C(θ )
for the reduced order Eq. (6).

To begin, consider a general dynamical system of the form

ẋ = F (x), (B1)

where x ∈ RN and F gives the system dynamics. Suppose that
Eq. (B1) admits a Tpace-periodic orbit xγ (t ). Letting �x = x −
xγ (t ) be a small perturbation from the periodic orbit, one can
linearize with respect to the periodic orbit to find

�ẋ = J[xγ (t )]�x, (B2)

where J[xγ (t )] is the Jacobian evaluated at xγ (t ). Let �(t, t0)
be the state transition matrix associated with Eq. (B2) with
the property that x(Tpace) = �(Tpace, 0)x(0). As stated in the
main text, we assume that |λ| close to 1 so that it decays
slowly and that all other nonunity Floquet multipliers [i.e., the
eigenvalues of �(Tpace, 0)] are close to 0 so that they can be ig-

nored. When considering a period of T = 2Tpace, κ = log(λ2 )
2Tpace

.
Letting T be the overall period used in in the phase-isostable
reduction framework, from Ref. [20], we know that I (t ) is the

T -periodic solution to

dI

dt
= κId − JT [xγ (t )]I (t ), (B3)

where Id is an appropriately sized identity matrix. The adjoint
system of Eq. (B2) is

ẏ = −JT [xγ (t )]y, (B4)

and the solution to this differential equation is given
by y(Tpace) = �T (0, Tpace )y(0) = [�T (Tpace, 0)]−1y(0) so that
1/λ is an eigenvalue of �T (0, Tpace ). Let ỹ(t ) be the solution
to Eq. (B4) for which ỹ(Tpace) = (1/λ)ỹ(0). Through direct
substitution, one can verify that I (t ) = ỹ(t ) exp(κt ) is the T -
periodic solution to Eq. (B3). With this in mind, one finds

I (Tpace + t ) = ỹ(Tpace + t ) exp[κ (Tpace + t )]

= �T (0, t )�T (0, Tpace )ỹ(0) exp(κt ) exp(κTpace)

= −�T (0, t )ỹ(0) exp(κt )

= −I (t ). (B5)

To determine C(θ ), it will be necessary to compute the Flo-
quet eigenfunction, g(θ ), corresponding to κ . As discussed in
Ref. [20], g[θ (t )] is the T -periodic solution to

dg

dt
= {J[xγ (t )] − κId}g(t ). (B6)

Letting �x̃(t ) be the solution to Eq. (B2) for which
�x̃(Tpace) = λ�x̃(0), one can verify that g(t ) =
�x̃(t ) exp(−κt ) is the T -periodic solution to Eq. (B6)
through direct substitution. Once again, with this in mind, one
finds

g(Tpace + t ) = �x̃(Tpace + t ) exp[−κ (Tpace + t )]

= �(t, 0)�(Tpace, 0)�x̃(0)

× exp(−κt ) exp(−κTpace)

= −�(0, t )�x̃(0) exp(−κt )

= −g(t ). (B7)

From Ref. [20], C(t ) can be obtained by computing the T -
periodic solution to the linear time-varying system

dC(t )

dt
= −

N∑
i=1

[I i(t )Hi,xγ (t )g(t )] − JT [xγ (t )]C(t )

= −JT [xγ (t )]C(t ) + D(t ), (B8)

where I i(t ) ≡ eT
i I (t ) with ei being the ith component of the

standard basis, Hi,xγ (t ) is the Hessian matrix of the ith com-
ponent of F . The term D(t ) = −∑N

i=1 [I i(t )Hi,xγ (t )g(t )] is a
simplification that isolates the terms that comprise an effective
time-varying input. Note that D(t ) is Tpace-periodic as can be
seen after direct substitution of the relations Eqs. (B5) and
(B7). Recalling that the state transition matrix from time t0
to t for the equation ẏ = −JT [xγ (t )]y is given by �T (t0, t ),
the unique solution to Eq. (B8) is given by the variation of
constants formula [56]

C(t ) = �T (0, t )C(0) +
∫ t

0
�T (τ, t )D(τ )dτ. (B9)
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Noting that C(t ) must be T -periodic, C(0) must be an
eigenvector associated with the unity Floquet multiplier of
�T (0, Tpace) so that the term �T (0, t )C(0) is Tpace-periodic.
Also note that the integrand of Eq. (B9) is Tpace-periodic
so that the entire solution C(t ) must also be Tpace-periodic.
Finally, along the periodic orbit, θ = ωt = 2πt/T = πt/Tpace

and thus we find that I (θ + π ) = −I (θ ) and that C(θ + π ) =
C(θ ) as desired.

APPENDIX C: CHARACTERISTICS OF
PHASE-ISOSTABLE REDUCED EQUATIONS FOR

UNSTABLE ENTRAINED ORBITS

Consider an unstable entrained periodic orbit described
by Eq. (2) that emerges due to periodic forcing Iext (t ). For
convenience of notation, we let y ≡ [x a]T ∈ RN+1 and let

G(y) ≡
[

F (x) + Iext (a)
1

]
∈ RN+1 (C1)

represent the noiseless, unperturbed dynamics. Here, F and
Iext are defined as part of Eq. (2). Let yγ (t ) denote the unstable
periodic orbit. As done in the main text, we assume that the ne-
glected isostable coordinates have Floquet exponents that are
negative and large in magnitude. We let κ > 0 be the unstable,
nonneglected Floquet exponent. As explained in Ref. [28], a
reduced order set of phase and isostable coordinates associ-
ated with this unstable orbit can be obtained with dynamics
of the form Eqs. (3) and (4) that are valid to leading order
|�x|2, where |�x| ≡ x(t ) − xγ (t ). The phase response curve

Z (θ ) can be obtained by identifying the periodic solution to
the adjoint equation [57]

dZ

dt
= −JT [yγ (t )]Z, (C2)

where J is the Jacobian of G evaluated at yγ (t ) and Z (t ) is
normalized so that GT [y(t )]Z (t ) = ω. Considering the struc-
ture of Eq. (2), the N + 1th column of JT [yγ (t )] contains only
zeros. Therefore,

Z (t ) = [0 0 . . . 0 ω]T (C3)

is the appropriately normalized periodic solution to Eq. (C2).
Furthermore, as detailed in Ref. [18], B(t ) is the periodic
solution to

dB(t )

dt
= −

N+1∑
i=1

[Zi(t )Hi,xγ (t )g(t )] − {JT [xγ (t )] + κId}B(t ),

(C4)

where Zi(t ) ≡ eT
i Z (t ) with ei being the ith component of the

standard basis, Hi,xγ (t ) is the Hessian matrix of the ith compo-
nent of G, and g(t ) is defined above Eq. (B6). From Eq. (C3),
Zi is 0 for i = 1, . . . , N . Furthermore, HN+1,xγ (t ) = 0 as can
be seen from Eq. (C1). The only periodic solution to Eq. (C3)
is then B(t ) = [0 0 . . . 0 0]T . Assuming that direct
perturbations to a are not possible since it is a timelike vari-
able, to leading order accuracy Eq. (3) becomes θ̇ = ω so that
the phase dynamics can be eliminated and the reduced order
dynamics take the form Eq. (5).
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[34] A. Mauroy, I. Mezić, and J. Moehlis, Isostables, isochrons,
and Koopman spectrum for the action–angle representation of
stable fixed point dynamics, Physica D: Nonlin. Phenom. 261,
19 (2013).

[35] B. Monga, D. Wilson, T. Matchen, and J. Moehlis, Phase reduc-
tion and phase-based optimal control for biological systems: A
tutorial, Biol. Cybern. 113, 11 (2019).

[36] D. Wilson, A data-driven phase and isostable reduced model-
ing framework for oscillatory dynamical systems, Chaos 30,
013121 (2020).

[37] D. Wilson and B. Ermentrout, Phase Models Beyond Weak
Coupling, Phys. Rev. Lett. 123, 164101 (2019).

[38] C. W. Gardiner, Handbook of Stochastic Methods: For Physics,
Chemistry and the Natural Sciences (Springer, Berlin, 2004).

[39] J. Guckenheimer, Isochrons and phaseless sets, J. Math. Biol.
1, 259 (1975).

[40] A. Winfree, The Geometry of Biological Time, 2nd ed. (Springer
Verlag, New York, 2001).

[41] R. F. Galán, G. B. Ermentrout, and N. N. Urban, Efficient
Estimation of Phase-Resetting Curves in Real Neurons and Its
Significance for Neural-Network Modeling, Phys. Rev. Lett. 94,
158101 (2005).

[42] D. Wilson and B. Ermentrout, Augmented phase reduction of
(not so) weakly perturbed coupled oscillators, SIAM Rev. 61,
277 (2019).

[43] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields, Vol. 42
(Springer Verlag, New York, 1983).

[44] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods
in Nonlinear Dynamical Systems, 2nd ed. (Springer-Verlag,
New York, 2007).

[45] D. Kirk, Optimal Control Theory (Dover Publications, New
York, 1998).

[46] D. Wilson and B. Ermentrout, An operational definition of
phase characterizes the transient response of perturbed limit
cycle oscillators, SIAM J. Appl. Dynam. Syst. 17, 2516
(2018).

[47] K. Pyragas, Continuous control of chaos by self-controlling
feedback, Phys. Lett. A 170, 421 (1992).

[48] A. L. Fradkov and R. J. Evans, Control of chaos: Methods
and applications in engineering, Annu. Rev. Control 29, 33
(2005).

[49] E. Schöll and H. G. Schuster, Handbook of Chaos Control,
Vol. 2 (Wiley, New York, NY, 2008).

[50] W. J. Rappel, F. Fenton, and A. Karma, Spatiotemporal Control
of Wave Instabilities in Cardiac Tissue, Phys. Rev. Lett. 83, 456
(1999).

[51] S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, and D. Maza,
The control of chaos: Theory and applications, Phys. Rep. 329,
103 (2000).

[52] T. Krogh-Madsen and D. J. Christini, Action potential duration
dispersion and alternans in simulated heterogeneous cardiac
tissue with a structural barrier, Biophys. J. 92, 1138 (2007).

[53] Z. Qu, A. Garfinkel, P. Chen, and J. N. Weiss, Mechanisms
of discordant alternans and induction of reentry in simulated
cardiac tissue, Circulation 102, 1664 (2000).

[54] M. A. Watanabe, F. H. Fenton, S. J. Evans, H. M. Hastings, and
A. Karma, Mechanisms for discordant alternans, J. Cardiovasc.
Electrophysiol. 12, 196 (2001).

[55] E. J. Vigmond, F. Aguel, and N. A. Trayanova, Computational
techniques for solving the bidomain equations in three dimen-
sions, IEEE Trans. Biomed. Eng. 49, 1260 (2002).

[56] J. P. Hespanha, Linear Systems Theory (Princeton University
Press, Princeton, NJ, 2018).

[57] E. Brown, J. Moehlis, and P. Holmes, On the phase reduction
and response dynamics of neural oscillator populations, Neural
Comput. 16, 673 (2004).

052203-15

https://doi.org/10.1007/s00285-017-1141-6
https://doi.org/10.1103/PhysRevE.101.022220
https://doi.org/10.1113/jphysiol.1962.sp006849
https://doi.org/10.1016/j.hrthm.2008.10.007
https://doi.org/10.1016/j.jacc.2005.08.066
https://doi.org/10.1161/01.RES.0000224540.97431.f0
https://doi.org/10.1103/PhysRevLett.96.104101
https://doi.org/10.1103/PhysRevE.84.041927
https://doi.org/10.1016/j.physd.2016.11.001
https://doi.org/10.1137/18M1229146
https://doi.org/10.1161/CIRCULATIONAHA.107.738013
https://doi.org/10.1152/jappl.1968.25.2.191
https://doi.org/10.1161/01.RES.0000125629.72053.95
https://doi.org/10.1016/j.bpj.2014.03.048
https://doi.org/10.1016/j.physd.2013.06.004
https://doi.org/10.1007/s00422-018-0780-z
https://doi.org/10.1063/1.5126122
https://doi.org/10.1103/PhysRevLett.123.164101
https://doi.org/10.1007/BF01273747
https://doi.org/10.1103/PhysRevLett.94.158101
https://doi.org/10.1137/18M1170558
https://doi.org/10.1137/17M1153261
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/j.arcontrol.2005.01.001
https://doi.org/10.1103/PhysRevLett.83.456
https://doi.org/10.1016/S0370-1573(99)00096-4
https://doi.org/10.1529/biophysj.106.090845
https://doi.org/10.1161/01.CIR.102.14.1664
https://doi.org/10.1046/j.1540-8167.2001.00196.x
https://doi.org/10.1109/TBME.2002.804597
https://doi.org/10.1162/089976604322860668

