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oscillators.

Phase-based reduction techniques are effective for the representation and analysis of limit cycle oscillators.
In data-driven scenarios, the direct method is a well-established strategy that can be used to infer the phase
dynamics of uncoupled oscillators. However, this strategy falls short when considering coupled oscillators.
In this work, we investigate an extension of the direct method for inference of phase-based reduced order
models that can explicitly accommodate coupling between limit cycle oscillators. Leveraging formal averaging
theory, we determine approximate temporal dynamics for both phase and amplitude coordinates. We provide
a step-by-step algorithm that details the derivation of terms for this reduced order model and demonstrate the
utility of the proposed approach in a variety of examples that consider large populations of coupled neural

1. Introduction

Phase-based reduction strategies are frequently used to model oscil-
latory dynamical systems of the general form

x = F(x,u), (€8]

where x € R” defines the state and u is an applied input restricted to
be O(e) in magnitude, where 0 < ¢ < 1 [1-8]. Provided a T-periodic
limit cycle x” exists, the n-dimensional system described in Eq. (1) can
be represented in a reduced order framework using isochrons to define
a reduced order coordinate system within the basin of attraction of the
limit cycle [9-11]. For any two initial conditions, a(0) and b(0), in the
basin of attraction, lim,_  ||la(t) — b(#)|| = 0 if they are on the same
isochron [2,11,12].

Simple phase reduction is often sufficient when the input u(r) is
small enough in magnitude that deviations from x” are small. Phase—
amplitude reduction is an extension of phase reduction that utilizes
Floquet theory to derive the dynamics of additional amplitude co-
ordinates that account for perturbations transverse to the periodic
orbit [12]. The resulting phase—amplitude reduced order model can be
used to overcome some of the shortcomings of standard phase-based
reduction strategies [13,14].

The necessary terms of the phase-amplitude reduction are com-
puted straightforwardly when the underlying dynamical equations are
known. When model equations are unavailable, they can be inferred
from data using the direct method [11,15,16]. To implement the direct
method, small pulse inputs are applied to estimate the phase sensitivity.
It is essential that other unmodeled inputs such as coupling and noise
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do not significantly alter the phase. When considering a coupled system
of oscillators, it is not possible to apply the direct method to infer the
phase—amplitude reduced equation for the individual oscillators.
Previous research on data-driven model identification strategies for
nonlinear dynamical systems utilize a variety of other techniques. For
instance, dynamic mode decomposition (DMD) yields linear modes
that represent snapshots of time-series data that can be analyzed with
respect to associated eigenvalues and eigenvectors [17-21]. Since DMD
yields a linear operator, however, it is often difficult to apply to systems
with stable oscillations. Common machine learning approaches include
the sparse identification of nonlinear dynamics (SINDy) algorithm,
which implements sparse regression to find candidate functions that
best reflect a given system’s temporal dynamics [22,23]. However since
the SINDy algorithm considers best candidate functions, these functions
may not always reflect the true dynamics or structure of a system
and its coupling. Additionally, with machine learning, overfitting is a
concern. Deep learning and neural networks can be applied to infer the
dynamics of nonlinear dynamical systems from data [24-27]. However,
similar to traditional machine learning, overfitting can again be an
issue, and the black box nature of deep learning models implies that
any derived coupling structure within the system may not be accurate
or fully understood. Data-driven approaches to phase-based model
reduction have also been considered in previous works. In [28], proper
orthogonal decomposition was applied to observable data to infer the
parameters for a phase-amplitude reduced order model. In [29], the
authors derive a phase-amplitude model using the aforementioned
direct method by strategically applying external inputs to a system
and measuring the system’s sensitivity to perturbations at different
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states along its limit cycle. In [30], the authors implement deep learn-
ing and artificial neural networks to determine relevant terms for a
phase-amplitude reduced order model.

In this work, we extend the direct method to explicitly consider a
population of coupled limit cycle oscillators. Using observables from
these systems, we propose a strategy to infer relevant parameters for
their corresponding phase-based reduced order models. While the ap-
proach presented here can be practically applied to a variety of coupled
oscillator systems, we are motivated by its possible use as an aid in
the understanding of coupled neural rhythms. Functional connections
of the brain have been studied for decades [31,32]. Many of these
studies are motivated by the potential to understand the efficacy of
treatments for certain neurological or psychiatric conditions where
the only true observables are the manifestation or disappearance of
related symptoms [33]. Findings indicate that brain rhythms play an
important role in cognitive function, and abnormal brain rhythms are
related to the onset of certain neurological disorders [34]. Excessive
synchronization of neurons, for instance, is observed in patients with
Parkinson’s disease and the disruption of this synchronization through
deep brain stimulation (DBS) alleviates the associated tremors [34-38].
Motivated by the potential applications of data-driven reduced order
modeling in coupled oscillator networks such as those often studied
in computational neuroscience, we present here a data-driven method
that extends the direct method to produce a phase-based reduced
order model that accounts for complex coupling structures between
oscillators.

The remainder of this paper is organized as follows. In Section 2,
we describe the phase-amplitude reduced order model, its limitations,
and its underlying assumptions and derive an analytical model that
will form the basis of the data-driven algorithm. In Section 3, we
provide a detailed algorithm for inferring the necessary terms of the
reduced order model from data. Section 4 provides results for a simple
coupled two oscillator system. Section 5 gives an overview of the
study of population-level oscillations for neural models. Sections 6 and
7 give results for the proposed model identification strategy applied
to population-level oscillations of a two subnetwork (Section 6) and
four subnetwork (Section 7) system of neural oscillators. Section 8
explores limitations of this model identification strategy that arise due
to coupling structure and oscillator observability. Concluding remarks
are provided in Section 9.

2. The phase-amplitude reduced order model
2.1. Background

Consider a general nonlinear dynamical system of the form (1),
where x is the state as determined by the system’s internal dynamics
and u is an external input. Provided a T-periodic limit cycle x” exists,
the timing of the oscillations in (1) can be considered using phase
reduction. Transforming to phase coordinates, the dynamics are:

20
ox
=2 Few,
a0 oF 2
= — . (F(x,0 —_— (0] .
o (F(x, 00+ 5+ Ol ))s

Simplifying Eq. (2) further and dropping higher order terms yields a
standard phase reduced model:

- X, @

0=w+eZOu®), 3

where w = 2z /T is the natural frequency of the limit cycle oscillator
and Z(0) = %Tﬁ is the infinitesimal phase response curve evaluated
along the limit cycle at phase 6.

The addition of amplitude coordinates in a reduced order model
can account for perturbations from the limit cycle which decay slowly
back towards the periodic orbit [12]. Amplitude coordinates can be
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included by considering level sets of the slowest decaying eigenmodes
of the Koopman operator [39,40]. One such approach uses the isostable
coordinate system, leveraging Floquet theory to capture transient dy-
namics in directions transverse to the limit cycle. We define A = exp(xT)
to be the smallest nonunity eigenvalue of the fundamental matrix, @,
associated with the dynamical system in Eq. (1), where x(T") = @x(0) for
an initial solution x(0) [13]. The slowest decaying isostable coordinate
is defined within the basin of attraction of a limit cycle according to

w(x) = gir?o<wT(v(t}},x) - xo) exp(—xt‘})), 4

where w is the left eigenvector of the fundamental matrix @ associated
with the slowest decaying Floquet exponent «, tkr indicates the time
of the kth crossing of the § = 0 isochron I}, v(t*,x) is the flow of
the dynamical system defined in Eq. (1), and x, denotes the location
where I, intersects the periodic orbit. As k approaches infinity, Eq. (4)
converges to the isostable coordinate. The dynamics of the isostable
coordinate for a single oscillator are:
oy
ALY 5
W=oo X ()
d
= a—"; - F(x.u),
al[/ JoF 2
=— . (Fx,00+ Zu+0 )
oy (F0)+ Zu+ 0(luf)

Simplifying Eq. (5) and dropping the higher order terms yields

¥ = ky + el (Qu(), (6)
where « is the slowest decaying Floquet exponent and 1(0) = Z—ZT%

is the isostable response curve evaluated along the limit cycle at each
phase 6. For additional information on isostable reduction, and a com-
plete derivation and explanation of terms, please refer to [12,13]. To
linear orders of accuracy, isostable coordinates are the same as Floquet
coordinates. In a close neighborhood of the limit cycle, i.e., when y
is small, the state of (1) can be represented using phase-amplitude
reduction and can be written as a function of § and

x(1) = x(0@, w(n) = x7(6)) +w(ng(6()), ™

where x7 (6(t)) is the stable limit cycle of (1) and g(#) is 2z-periodic
[13].

Fig. 1 considers an illustration of (7) with a toy example. Here, let
x; be the first component of x and x/(6) = sin(6) and g, (6) = cos ()
be the first components of x” and g, respectively. In the absence of
input, w(t) = wyexp(xt) and 6(r) ot + 6, where 6, and y, are
initial conditions. Here, we take x = —0.2 and @ = 1. First consider
two different trajectories starting at identical phases but with different
y, values in Panel A of Fig. 1. These trajectories converge to each
other, with the distance to the periodic orbit depending on y. Notably,
these trajectories converge to the same phase along the limit cycle
but at different rates. Next consider two different trajectories starting
at different initial phases but with identical y, values (Panel B). The
distance from the periodic orbit is roughly the same as a function
of time, but the oscillation timing is different between oscillators.
Therefore, these trajectories converge to the limit cycle at the same
rate but approach different phases. In this plot, two variations of x”
are shown corresponding to the two initial phases of the red and
blue trajectories. Panel C shows trajectories starting at different initial
phases with different y,. These trajectories approach the limit cycle at
different rates and converge to different phases. Again, two variations
of x” are shown with different initial phases.

2.2. Phase and amplitude dynamics for a coupled population of oscillators

Consider a population of N coupled limit cycle oscillators with
dynamics that can be written in the form

0 =w; +e Z Z(0))8k-i(6;, 00, ®
k#i
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Fig. 1. An illustration of (7) for a toy system. Panel A: initial conditions with
different isostable coordinates but the same phase. Panel B: same isostable
coordinate, different phase. Panel C: different initial phase and isostable
coordinates.

Vi =Ky te Z 1;(0))8k—.i(0;., 0,),
ki

for i = 1,..., N where g sets the coupling. Here, 0 < ¢ < 1 so that the
influence of coupling is small relative to the natural frequency of the
oscillators. The oscillators are coupled in an all-to-all fashion with no
self coupling. It is assumed that each «; is an order ¢ term, i.e., so that
the amplitude coordinates decay slowly. Defining ¢, ; = 6; — 6;, Eq. (8)
can be rewritten as

bi=w;+e Z Z(0,)8xi(0;,6; — b, 1), )
k#i
Wy =Kyt e Y 10800, — by ).
k#i
i=1,...,N.

We seek to transform (9) to a function of the form x = ef(x,?) in
order to employ dynamical averaging [41,42], but since w; in (9) is
not an order ¢ term, we cannot perform dynamical averaging without
an intermediate step. We define the phase difference between any two
oscillators, i and j, to have associated dynamics defined to be qS,-, ;=
6; - ; so that

d’;,j =w;—w;+e Z Z(0,)81-i(6;,0;— ;) —€ Z Zj(oj)gk—q'(eja 9j _¢j,k)-
k#i k)

(10)

Provided w; — w; = OC(e), the right hand side of (10) is an order e
term and we can apply formal dynamical averaging techniques [41,42].
We will work in a rotating reference frame by defining a new phase

variable,
¢ =0, — oot an

where o, = % Zfi , @; is the average natural frequency of the popula-
tion of N oscillators. Note that ¢, ; = 6, —6; = {; - {;. Rewriting Eq. (9)
in this rotating reference frame yields

b= —wg+e Y Zi(& + opt)gimi(§ + 0ot & + ogt), 12)
k#i
Wy = K+ e Y LG + oo geni (& + wot, & + o),
k#i
i=1,...,N.
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Averaging the dynamics defined in Eq. (12) over the period T;, = 27/,
and defining Aw; = w; — w, yields

T

1 [T

&= [Aco,— +e Z Z(& + og)gai(CF + ot & + a)ot)] dt, (13)
0JO k#i

T,
V== Ky, +e€ E L;(&] + wot)gi (& + wpt, & + o) | dt,
To Jo ki

i=1,....,N,

where {* ~ {; since solutions of (12) are well approximated by solutions
of the averaged Eq. (13). Factoring out the constant terms from the
integrands in Eq. (13) and exchanging the summation and integration
order yields

. 1 [T . . .
=4 +e z T / [Z,-(glf + 0o1gk—i (& + wot, §; +coot)] dt, (14)
ki 10 J0

T
- ; 1 0 ‘
W =Kl ey = / [li(gi* + @o)gi i + ot & + woz)] dr,
k#i ~0 /0
i=1,...,N.
Considering Eq. (14), we define coupling functions between any two
oscillators, i and k:

To
Ty i) = Tio /0 [Z,.(g,. + wo)g_i (& + wol & + wot)] dr, 15)

Ty
Ly ai(ip) = Ti /0 [I[(g. + oD (& + 0t & + wor)] dt.
0

Note that because of the integration over an entire period, I} ;_;
and I, x—; are functions of only ¢, . Substituting (15) into (14), and
considering that ¢; ~ {* and y; ~ ', one finds

¢ = Aw; + Z L iemsi (i i)

ki

V= Kyt Z Ly il g, (16)
ki

fori=1,..., N oscillators.

3. Data-driven model identification for the phase dynamics of the
coupled oscillator model

3.1. Defining the data-driven basis function

The coupling functions, Iy ;_;(¢;x) and I, ,_;(;,), are periodic
over the range ¢ = [0,27) and can therefore be approximated using
the M'™ order Fourier series expansion

M

+ ) @y sin(ny ) + by i coS(nb ). a7
n=1
M

+ Z Chksi sin(nqb,-’k) +d, j_; cos(ng; ).

n=1

a0, k—i
2

rg,kﬂi(ﬁbi,k) ~

€0,k—i
2

Ly il =

If the ¢, , values that are obtained from data are not measured over the
entire range of possible phase differences (qﬁ € [0, 27r)), Eq. (17) cannot
yield an accurate approximation of the coupling dynamics. In these
cases, it is likely that the oscillators themselves possess either a strong
antiphase tendency (measurements of ¢, are clustered around z) or
a strong synchronizing tendency (measurements of ¢, , are clustered
around 0 and 2x). In the case of population-level dynamics (which
will be discussed later), it is also possible that these population-level
dynamics are close to the threshold of complete desynchronization. In
these situations, the actual coupling functions are still periodic over the
range ¢ € [0,27x), but the observables would not provide a complete
picture of the true coupling functions.
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We write the dynamics in Eq. (16) using a Fourier series expansion
by including two additional terms, Aw; and «x;y;. Substituting the
Fourier series representation in (17) into (16) yields

M
& mAw +ag, + D) Y @, sin(ngy ) + by i cos(n, 1), 18)
ki n=1
M
W Rk + 6+ Z Z Cpk—i SIN(MP; ) + dpy i, cOS(n; 1),
I n=1
i=1,...,N,
where 4,; = %Zk# apy—; and é&; = %Zk# Cox—i- Recall again that

using the weak coupling assumption, ¢,;, = O(e) while 6; = 0(1) so
that each ¢;, changes slowly on the timescale of a single oscillator’s
period and can be approximated by a constant. The averaged values
can therefore be used to approximate the unaveraged values of ¢; and
y; [41,42]. Finally, we convert back to §; by substituting 6, = ¢; + wgt.
We also determine some measurable value v that varies each cycle
between 6 = 0 isochron crossings to model the dynamics of each oscil-
lator’s isostable coordinate. This amplitude coordinate and the actual
isostable coordinate have a linear relationship so that v; = p,y;, where
p; is a constant. This value can, for instance, be the difference between
the local maximum and the local minimum over a given cycle, as is
represented in Fig. 2 for a two oscillator model. The linear relationship
v; = py; is valid provided perturbations to the system are small in
magnitude. We assume that the decay rate is small enough so that
the isostable coordinate can be well approximated by a constant over
a single cycle. With these assumptions, it follows that v is dependent
only on time and not on phase. Using the coordinate change v; = p,y;,
these substitutions yield a phase-based model that we will obtain using
a data-driven approach:

M

0= 0+ do; + Y Y e SN, ) by gy COSCD ). 19
ki n=1
A M
. €o,i Cnk—i . Ay ji
V=KV 4+ — + Z z 222 sin(ng; ) + ——— cos(ngb; ;).
Pi iZinm P Pi

i=1,...,N.

The original state in the full order model can be inferred from the
reduced order dynamics since x = f (6, v) where f(0,v) can be inferred
using (7). Note that while p; is usually unknown, it is only necessary to
€  Cnk—oi dnk—i

determine the ratios i in the inference of (19).

3.2. The data driven model: An algorithm

The unknown coefficients from (19) can be approximated with the
linear matrix equations
B, = AF,, (20)
B, = Ay F,.
Using a first order Fourier series approximation, for m discrete time

steps and i coupled to k = 1, ..., g oscillators, B, € R™!, A, € R"™*(24+D,
and F, € R+DX! gre defined below

B, = [6,(t)) 0.t (21
1 sin(;1(11))  cos(gy (1)) sin(¢; 4(11))  cos(gy 4(t1)

A =|: : ; : : :
1 Sin(¢i,1(tm)) Cos(d)i,l(tm)) Sin(¢i,q(tm)) COS(¢i,q(tm))

Fi=[(w;+a0) ay—; b aygi bl,q—n‘]T’

and B, € R™!, A, € R™(4*2D and F, € R?*X! are defined as

B, = [w(t) ] (22)
vi(t)) 1 sin(ep (1)) cos(b; () -+ sin(gh; (1)) cos(; ,(t)))

Ay = F : : : s

vity) 1 sin(@; 1 (2,)) cos(d; () - sin(4(1,)) cos(d; (1))
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v} = max(X,) — min(X>)
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Fig. 2. This figure demonstrates the calculation of v, = max(X) — min(X)
over a single cycle for example data. Here, v, is an amplitude coordinate that
is proportional to the system’s slowest decaying isostable coordinate. In this
figure, we only plot two crossings of the § = 0 isochron for each oscillator
(7} and 12) and obtain an amplitude coordinate for the corresponding cycle
between those crossings.

Fz:[,(‘_ Qs =i dusi o Qg dlL]T
pi pi i pi P

In B, and B,, the discrete approximations of (t) and v(t) are deter-
mined by fluctuations in the time and state between crossings of some
reference isochron. The discrete approximations of v; and ¢, ; can also
be made by analyzing the time and state between crossings of some
reference isochron. Therefore in a data-driven setting, F| and F, are
the only unknowns while the elements of B;, B,, A, and A, can be
determined from data. In (21) and (22), only the first modes of the
Fourier series expansions are computed for each coupling function.
Additional modes can be obtained with appropriate modifications to
Ay, Ay, Fy, and F,.

A step-by-step explanation of how to estimate the elements of A,,
A,, Bj, and B, and develop a phase-amplitude model in the form
of Eq. (19) using a least-squares approximation of the Fourier series
coefficients is provided in the algorithm below.

1. Simulate the full order model (Eq. (1)) for an extended period
of time (approximately 50-100 oscillations). Determine a set
of observables from which to obtain measurement data. Each
oscillator must have a stable limit cycle.

2. Define some value of each observable to represent the § = 0
isochron in the phase space for each oscillator. The 6 = 0
isochron can correspond, for instance, to the occurrence of a
local minimum or maximum or to the crossing of a Poincaré
section as in Figs. 2 and 3.

3. Extract each cycle of the chosen observables between crossings
of the & = 0 isochron. These cycles are stored as vectors that
contain the states of the system from one crossing of the 6 = 0
isochron to the next subsequent crossing of the # = 0 isochron. In
a stable, unperturbed, periodic system, each cycle would simply
be the periodic orbit.

4. For each limit cycle oscillator, define the time of crossings of the
6 = 0 isochron by the chosen observable to be t,,t),.... 15
and the time between crossings to be T}, = (t, — 1,),T, = (13 —
), Ty, 1 = (tn,,. — N, Where N, is the total
number of isochron crossings. Fig. 3 illustrates these terms for
a single example cycle.

5. For each limit cycle oscillator, define a chosen amplitude co-
ordinate and calculate the amplitude for each cycle between
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1 L L L 1

2 (th—12)
T
2r(t—t,)

b12(t3)
$2,1(t3)

T? =t5 — 13

143 144 145 146

Time

147

148 149 150

Fig. 3. This figure demonstrates the determination of 1, T, and ¢, ;(1,) for
example data. In this figure, we only plot two crossings of the § = 0 isochron
for each oscillator (1, and 2).

10.

11.

crossings of the & = 0 isochron. Define the amplitudes to be
VIs oo s VN, -1+ Fig. 2 illustrates this calculation for a single
example cycle.

. Use the time between crossings from Step 4 to approximate

instantaneous measurements of §; for each oscillator i. Store
these measurements in the vector By,

T
2r 2m 2
131 = [ 5:-, 3:-,..., i:——————-] .
1 2 NL‘VD.Y.Y 71

(23)

. Use the time between crossings from Step 4 and the amplitudes

from Step 5 to define discrete measurements of v; for each
oscillator i. Store these measurements in the vector B,,

(24)

T
oo |2V i—w ViNeross=1 ™ VNeross =2
2 = B EEERE) .
T T TN, .1

cross—

. Define the phase difference between any two oscillators, i and j,

at each isochron crossing k to be ¢, ;(t,) = [2z min(7, — #)]/T},
where tjc is the kth crossing by oscillator i of the 6 = 0 isochron,
t/ are all crossings of the # = 0 isochron by oscillator j that occur
before t;'(, and Tli = t;( - ti{_ - Thus, we are solving for the closest
crossing of the § = 0 isochron to 12 by oscillator j that occurs
up to the time #,. An example of this calculation for a single
cycle of the 6 = 0 isochron can be found in Fig. 3. It is necessary
to have measurements of ¢, ; over the entire range of possible
phase differences [0, 2x).

. For each oscillator i: using the phase differences found in Step

8, set up matrix A; from Eq. (21) using m = N,,,,, — 1 rows of
Fourier series terms up to the desired order.

For each oscillator i: using the phase differences found in Step
8 and the amplitude values found in Step 5, set up matrix 4,
from Eq. (22) using m = N, — 1 rows of Fourier series terms
up to the desired order.

To determine the Fourier series coefficients for the phase dynam-
ics, use Eq. (20) with the B, vector from Step 6 and the A, matrix
from Step 9 to solve for F:

ross

Fy =AB,. (25)

Here 1 indicates a pseudoinverse.

Observable
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1.5 T T T T

v=0.4

15 1 I I 1 1 1

Fig. 4. This figure demonstrates the relationship between the observable of
the full order model, 6, and v. The observable is a sinusoidal wave with an
associated amplitude shown over the range 6 € [0,2x). To infer the observable
from the reduced order model, one would interpolate using the available cycles
with the closest v values and the phase.

12

13.

14.

. To determine the Fourier series coefficients for the amplitude
dynamics, use Eq. (20) with the B, vector from Step 7 and the
A, matrix from Step 10 to solve for F,:

F, = A}B,. (26)

Here 1 again indicates a pseudoinverse.

Run the phase-amplitude reduced order model defined in
Eq. (19) using the Fourier series coefficients stored in F; and F,.
Within the reduced order model, calculate the phase difference
instantaneously.

To verify the efficacy of the reduced order model, map back to
equivalent states in the full order model using the amplitude and
phase coordinates to infer corresponding states in the full order
model. This is possible analytically since the state can be inferred
from the phase and isostable coordinate, as is represented in
(7). For a practical representation of how to infer the state
from the reduced order model numerically, refer to Fig. 4. The
combination of the amplitude coordinate and the phase can
be used to infer the state of the observable in the full order
model.

4. Example with a simple model: the nonradial isochron clock

To illustrate the efficacy of our technique, we consider a simple
model of two coupled oscillators of the form:

X, =

Y, =
i=

This
[11]

CooX,(n= X7 + YD) =Y, (C, (14 p(X}F + Y7 = )

5 N

v Z(X,- - X)), 27)
J#i

Coa¥, (n = X+ YD) + X,(C, (14 (X + Y7 = ) ),

1,2.

equation is a modified version of Winfree’s radial isochron clock

with added diffusive coupling. Here, C; = 1.1 and C, = 1.0 are

constants that explicitly define the stable natural frequencies of the

unco

upled oscillators: w;, = C, = 2z/T, and w, = C, = 2z /T, where

T, and T, are the associated stable periods of the uncoupled system.
The parameters of the system are defined to be ¢ = 0.08, p = 0.12,
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A,

0.5

Time

Fig. 5. Cycles of the observables for the coupled two oscillator dynamics of
the nonradial isochron clock. Panel A plots these cycles for the first oscillator
and panel B plots these cycles for the second oscillator.

and u = 1. The coupling strength between the oscillators is g = 0.03.
Following the steps listed in Section 3.2, we will infer a data-driven
phase—-amplitude model that accurately captures the dynamics of (27).

4.1. Fitting the model to data

To begin, we simulate (27) for 600 time units. Defining the 6 = 0
isochron to be when both X = 0 and X > 0 for a given oscillator,
we extracted the individual cycles between isochron crossings. These
cycles are plotted in Fig. 5 for oscillator 1 in panel A and oscillator 2
in panel B.

Using this data, we found discrete approximations of é;, v;, v; and
¢;; and defined A;, B;, A,, and B, for each oscillator i following
Steps 4-10 of Section 3.2. In this application, we defined the amplitude
coordinate of the ith oscillator to be v = max(X}) — min(X}) — v, for
each kth cycle between crossings of the 6 = 0 isochron. In this equation,
Vo = m sz"l"“_l(max(Xl"() — min(X})). With the B, vector and
A, matrix, we evaluated Eq. (25) and determined the Fourier series
coefficients that govern the phase dynamics. With the B, vector and
A, matrix, we then evaluated Eq. (26) and determined the Fourier
series coefficients that govern the amplitude dynamics. The F, and
F, vectors contain the Fourier series coefficients that are used in the
phase-amplitude model defined in Eq. (19). In this example, we used
a first-order Fourier series approximation.

Fig. 6 presents a direct comparison between the measured observ-
ables B, ~ 6,(t,) as defined in Eq. (23) and the evaluation of A, F,
from Eq. (25). Similarly, Fig. 7 presents a comparison between the
measured observables B, ~ v;(7,) from Eq. (24) and the evaluation
of A,F, from Eq. (26). These are plotted over the range of phase
differences used in the terms of the A, and A, matrices in Egs. (21) and
(22). In both figures, the observable data 6; and v, is shown in blue and
the approximations using A, F; and A, F, are in black. In both figures,
panel A presents the information for the first oscillator and panel B
presents it for the second oscillator.

4.2. Comparisons between ground truth and inferred model simulations

To test the model, we simulated Eq. (19) using the derived Fourier
series coefficients found using Egs. (25) and (26). The phase and
amplitude coordinates for this simulation are shown in Fig. 8 for a
snapshot of 200 time units.
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Fig. 6. This figure validates the least-squares approximation of the Fourier
series coefficients for the phase dynamics derived in Section 3.2. It directly
compares the measured data defined in Eq. (23) with the evaluation of A, F,,
where A, and F, are calculated using the steps in Section 3.2. These are plotted
as a function of the phase difference ¢,, calculated in Step 8 of Section 3.2
and found in the terms of the A; matrix. The measured data from Eq. (23) is
shown in blue and the data obtained from the evaluation of A, F, is shown in
black. Panel A presents these results for the first oscillator and panel B presents
these results for the second oscillator.
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Fig. 7. This figure validates the least-squares approximation of the Fourier
series coefficients for the amplitude dynamics derived in Section 3.2. It directly
compares the measured data defined in Eq. (24) with the evaluation of A, F,,
where A, and F, are calculated using the steps in Section 3.2. These are plotted
as a function of the phase difference ¢, calculated in Step 8 of Section 3.2
and found in the terms of the A, matrix. The measured data from Eq. (24) is
shown in blue and the data obtained from the evaluation of A, F, is shown in
black. Panel A presents these results for the first oscillator and panel B presents
these results for the second oscillator.

We compare the ground truth model with the phase-based model
by approximating identical initial conditions of the full order model in
the phase space and evolving the phase-based model defined in Eq. (19)
forward in time. We present a comparison of the two simulations in Fig.
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Fig. 8. The phase and amplitude dynamics of the phase-amplitude model.
Panel A presents the phase dynamics of the first oscillator in blue and the
second oscillator in red. Panel B presents the amplitude dynamics of the first
oscillator in blue and the second oscillator in red.
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Fig. 9. This figure compares the full order model with dynamics defined in Eq.
(27) to the inferred state from the phase-amplitude model with dynamics
defined in Eq. (19). Panel A compares the dynamics of the X, variable in the
full order model and phase-amplitude model. Panel B compares the dynamics
of the X, variable in the full order model and phase—amplitude model. In both
panels, the state in the full order model is plotted in blue and the comparable
state derived from the phase-based model is shown in red. In each panel, the
curves are nearly indistinguishable.

9. In this comparison, we have mapped the phase-based model back
to its comparable state in the full order model using the relationship
X(0@).v(0)) = X7(6(1) + v()g(0(t)). Recall that this is of the form
defined in (7).

For further validation of the data-driven phase-amplitude model,
we also compare the data-driven phase coupling function found us-
ing Eq. (17) to the actual phase coupling function computed analyt-
ically from the equations governing the system’s dynamics. For our
analytical calculation, we computed the phase response curves for
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Fig. 10. This figure compares the numerically computed coupling functions
defined in Eq. (28) to the data-driven coupling functions defined in Eq. (17)
for a pair of coupled oscillators. Panel A presents this comparison for the first
oscillator and panel B presents the comparison for the second oscillator.

each oscillator numerically using methods described in [8], and then
calculated the coupling function according to

To
rg,kq,.(@’k):—ﬂTlO/o Z;(g,.+woz)<x,.(§,.+woz)-X,(§i+w0r—¢i,j)>dt.
(28)

Here, wy = 27 /T, and T, is the average period of the two oscillators.
For this comparison, we reduced the heterogeneity so that the natural
frequencies of the coupled oscillators were C; = w; = 0.99 and C, =
@, = 1.01. We also decreased the coupling strength to g = 0.008.
This ensured that the timescales of the terms in the averaged equations
were close. Low heterogeneity is not necessary for the application of
our algorithm, but was used here to compute the analytical coupling
functions between oscillators with varying timescales for direct compar-
ison to the numerical coupling functions computed using our algorithm.
These results are presented in Fig. 10 where the coupling functions
are plotted over the phase difference ¢. The coupling functions for the
first oscillator are shown in panel A, and the coupling functions for the
second oscillator are shown in panel B.

5. Neural population-level oscillations

One motivation for this work is the possible application of this
data-driven technique to coupled neural subnetworks. The existence of
population-level neural dynamics has been studied since the electroen-
cephalogram (EEG) first recorded electrical activity in the brain [43,
44]. Since then, numerous researchers have investigated these
population-level dynamics to uncover their reasons and functions [45-
49]. Recent research has also considered population-level oscillations
in computational neural models [50].

The conductance-based neural model used in this work has voltage
dynamics
Vi
— =1y, —I,(V) = I,V b)) = I (Vi hy) = Ip (Vi r) + I, +

C 2Dn; @),

(29)
i=1,...,N,

where V; is the transmembrane voltage of neuron i, I, is a baseline

stimulus, I;, Iy,, Ix and I; are ionic currents, I, is the current due
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Fig. 11. A network containing four neuronal subnetworks. Neurons within each subnetwork are interconnected with electrotonic coupling. Neurons in different

subnetworks are coupled with inhibitory or excitatory synaptic coupling.

to coupling, h;, and r; are gating variables, and \/2Dy; is a white
noise process that is independent for each neuron. A full explanation
of additional variables and parameters can be found in Appendix. In
a data-driven setting the underlying dynamics and coupling structure
of the individual oscillators are unknown. Instead, we assume that the
only measured observable we can obtain from the system is the average
voltage of each subnetwork

Nm

v, = NLm >0 30)
i=1

where N, is the number of neurons in the mth subnetwork.

In the examples that follow, we consider a prototype model of
coupled neurons organized into various subnetworks. This specific
prototype possesses features of neuronal networks, but is not modeled
on a specific brain circuit. An illustration of this prototype model is pre-
sented in Fig. 11 for a network of four subnetworks. Each subnetwork
contains a population of neurons whose coupling structure reflects the
coupling defined in Eq. (A.4). The neurons within each subnetwork
are coupled with electrotonic coupling. Coupling between neurons in
different subnetworks is inhibitory or excitatory synaptic coupling. The
electrotonic coupling between neurons within the same subnetwork
exerts a stronger force than the synaptic coupling between neurons in
different subnetworks.

We assume that each subnetwork has a population-level limit cycle.
The following two sections will discuss the application of our data-
driven technique on neuronal networks of two and four subnetworks.

6. A neuronal network of two subnetworks

First we considered a two subnetwork system of N = 1000 neurons
with dynamics defined in Eq. (A.1) and related equations in Appendix.
A complete description of the parameters in this model can also be
found in Section A.1 of Appendix. Below, we present our methodology
and results following the steps given in Section 3.2.

6.1. Fitting the model to data

To begin, we evaluated this system for 2000 ms and obtained volt-
age dynamics for all N = 1000 neural oscillators. We then calculated
the average voltage of the oscillators in each subnetwork V,, using Eq.
(30). The voltages for the neurons in each subnetwork are presented
in Fig. 12 for a 200 ms snapshot, with panel A plotting the voltages in
the first subnetwork and panel B plotting the voltages in the second.

0 20 40 60 80 100 120 140 160 180 200

I
| /IR /1 ‘
/ /,/\/\/w/

/
N
80 . L . L L L L . L

0 20 40 60 80 100 120 140 160 180 200
Time (ms)

Fig. 12. Voltage dynamics of all neurons in a two subnetwork system. Panel
A presents the voltages for the first subnetwork, and panel B presents the
voltages for the second subnetwork. The black trace on each panel represents
the average voltage of the given subnetwork which is taken as the observable
for this system.

The average voltage of each subnetwork as defined in Eq. (30) is
overlayed in black on the respective panel, demonstrating the existence
of population-level oscillations.

Our proposed strategy is implemented using the average voltage
of each subnetwork as the observable. We define the § = 0 isochron
to be when ¥, = —51.3 mV with ¥, > 0 for the first subnetwork
and ¥, = —50.7 mV with ¥, > 0 for the second subnetwork. These
values are equivalent to the mean values of V for each subnetwork.
We then extracted the average voltage dynamics between subsequent
crossings of the 6 = 0 isochron for each subnetwork. We have plotted
these cycles in Fig. 13, with panel A showing the information for the
first subnetwork, and panel B showing the information for the second
subnetwork. Note that these cycles are plotted over time so that we
can visually see the variation in both the amplitude of the oscillations
as well as the time between isochron crossings.

From the data in Fig. 13, we found discrete approximations of 4;,
Vi, v; and ¢;; and defined A, B, A,, and B, following Steps 4-10
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Fig. 13. Voltage dynamics between 0 = 0 isochron crossings for each subnet-
work. Panel A presents the dynamics for the first subnetwork, and panel B
presents the dynamics for the second subnetwork.

of Section 3.2. In this application, we chose the amplitude coordinate
of the ith oscillator to be v| = max(V)) — min(V}) — v, where v,; =
N; :j‘;"“ (max(V}) — min(V))) for each kth crossing of the 6 =
133511ron With the B, vector and A, matrix, we evaluated Eq. (25) and
determined the Fourier series coefficients that govern the phase dynam-
ics. With the B, vector and A, matrix, we then evaluated Eq. (26) and
determined the Fourier series coefficients that govern the amplitude
dynamics. The F; and F, vectors contain the Fourier series coefficients
that are used in the reduced order model defined in Eq. (19). In this
example, we used a second-order Fourier series approximation.

In Fig. 14, we present a direct comparison between measured ob-
servables B, ~ 0,(1,) as defined in Eq. (23) and the evaluation of A, F,
from Eq. (25). Similarly, Fig. 15 presents a comparison between the
measured observables B, ~ v;(t,) from Eq. (24) and the evaluation
of A,F, from Eq. (26). These are plotted over the range of phase
differences used in the terms of the A, and A, matrices in Egs. (21)
and (22), In both figures, the observable data §; and v, is shown in
blue and the approximations using A, F; and A, F, are in black. In both
figures, panel A presents this information for the first subnetwork and
panel B presents this information for the second subnetwork.

6.2. Comparisons between ground truth and inferred model simulations

Finally, to test the model, we simulated the reduced-order model
defined in Eq. (19) using the Fourier series coefficients found with
Egs. (25) and (26). The phase and amplitude coordinates from this
simulation are shown in Fig. 16 for a 200 ms snapshot.

We compare the ground truth model with the reduced order model
by approximating identical initial conditions of the full order model
in the phase space and evolving the reduced order model forward
in time. We present a comparison of the two simulations in Fig. 17.
For this comparison, we have mapped the reduced order model back
to its comparable state in the full order model using the relationship
V (00, v(®) = V7 (0) + v()g(0(t)) as defined in (7).

For additional validation of the data-driven reduced order model,
we also present Fig. 18 which plots the normalized count of voltage
values for each subnetwork in both the full and reduced order models.
Along with this, we also computed the mean u;g; and the variance
var;s; of the interspike intervals for each subnetwork in both the full
and reduced order models. In the first subnetwork, u;s; = 8.88 ms
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Fig. 14. This figure validates the least-squares approximation of the Fourier
series coefficients for the phase dynamics derived in Section 3.2 for this
network of two subnetworks. It directly compares the measured data defined
in Eq. (23) with the evaluation of A, F|, where A, and F, are calculated using
the steps in Section 3.2. These are plotted as a function of the phase difference
¢ calculated in Step 8 of Section 3.2 and found in the terms of the A, matrix.
The measured data from Eq. (23) is shown in blue and the data from the
evaluation of A, F; is shown in black. Panel A presents the results for the first
subnetwork and panel B presents the results for the second subnetwork.

A

0.4

Fig. 15. This figure validates the least-squares approximation for the ampli-
tude dynamics derived in Section 3.2 for this network of two subnetworks. It
directly compares the measured data defined in Eq. (24) with the evaluation
of A,F,, where A, and F, are calculated following the steps in Section 3.2.
These are plotted as a function of the phase difference ¢ calculated in Step 8
of Section 3.2 and found in the terms of the A, matrix. The measured data
from Eq. (24) is shown in blue and the data from the evaluation of A,F, is
shown in black. Panel A presents the results for the first subnetwork and panel
B presents the results for the second subnetwork.

and var;g; = 3.6e-2 for the full order model while y;¢; = 8.88 ms
and var;g; = 3.0e-2 for the reduced order model. In the second
subnetwork, u;q; = 7.93 ms and var;g; = 6.9e-3 for the full order
model while y;g; =7.93 ms and var;g; = 6.4e-3 for the reduced order
model. Fig. 18 along with the additional statistics support the visual
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Fig. 16. The phase and amplitude dynamics of the reduced order model.
Panel A presents the phase dynamics of the first subnetwork in blue and the
second subnetwork in red. Panel B presents the amplitude dynamics of the
first subnetwork in blue and the second subnetwork in red.
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Fig. 17. This figure compares the full order model with dynamics defined
in Egs. (A.1)-(A.5) in Appendix to the comparable states inferred from the
reduced order model defined in Eq. (19). Panel A (resp., B) compares the
dynamics of V; (resp., ¥,) in the full and reduced order models. In both panels,
the state in the full order model is plotted in blue and the comparable state
derived from the reduced order model is shown in red. In each panel, the
curves are again almost indistinguishable.

results presented in Fig. 17, demonstrating that the data-driven reduced
order model yields a close approximation to the full order model.

Finally, to clearly demonstrate the importance of coupling in the
evaluation of our system’s phase response curves (PRCs), we present
Fig. 19. In this figure, a series of phase response curves are computed
numerically using variations of the direct method. In the direct method,
a series of perturbations applied to the full order model are used to
find an approximate phase response curve Z(6). Each plot in Fig. 19 is
a single phase response curve obtained from a sample of 40 different
perturbations. In blue, we compute phase response curves that account
for coupling, while in red we do not account for coupling.
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Fig. 18. This figure presents the normalized count of V values for the full
and reduced order model. Panel A presents this data for the first subnetwork.
Panel B presents this data for the second subnetwork.
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Fig. 19. Various numerical approximations of a single subnetwork’s phase
response curve using the direct method. The curves in blue incorporate
coupling in the computation of the numerical PRCs while the curves in red
do not incorporate coupling.

To begin the numerical computation of these PRCs, we first simu-
lated the full order model defined in Eq. (A.1) and applied a series of
perturbations to all neurons in a single subnetwork. Since the average
voltage of the subnetwork ¥ is known at the time of perturbation 7,
the phase 0 can be inferred.

To find pointwise approximations of Z(6) at each phase 0, we will
use the equation Z() ~ d0/(udt,). Here, u is the applied magnitude of
the perturbation, 4¢, is the duration that the perturbation is applied,
and d@ is the resulting phase difference between the perturbed and
unperturbed system. The calculation of d6 is done 2-3 cycles after the
time of perturbation at some time 7,,. The value of d6 is obtained by
comparing the phase inferred from measured data to the phase from un-
perturbed simulations of the reduced order model. In Fig. 19, the phase
response curves in blue are found by calculating the unperturbed phase
with the reduced order model defined in (19). Conversely, the phase
response curves in red ignore the Fourier series terms that account for
coupling in Eq. (19) in the computation of the unperturbed phase. The
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Fig. 20. Voltage dynamics for all neurons in a four subnetwork system. Panels A-D present the voltages for subnetworks 1-4, respectively. A black trace on each
panel represents the average voltage of that subnetwork. These average voltages are the observables for this system.

resulting pointwise estimates are fit using the lowest harmonics of a
Fourier basis to obtain the phase response curve.

Without incorporating coupling, the red PRCs appear noisy with no
discernible average curve. However, the blue plots evaluated using Eq.
(19) and incorporating coupling appear much more consistent and
follow a discernible curve. Using a larger number of perturbations
to compute the phase response curves would yield more accurate
approximations to the actual phase response curve.

7. A neuronal network of four subnetworks

Finally we considered a four subnetwork system of N = 1000
neurons with dynamics defined in Eq. (A.1) and related equations in
Appendix. A complete description of the parameters of this model can
be found in Section A.2 of Appendix. We present our methodology and
results in chronological order following the steps given in Section 3.2
below.

7.1. Fitting the model to data

We evaluated this system for 2000 ms and obtained voltage dy-
namics for all N = 1000 neural oscillators. We calculated the average
voltage of the oscillators in each subnetwork V,, using Eq. (30). The
voltages for the neurons in each subnetwork are presented in Fig. 20 for
a 50 ms snapshot, with panels A-D plotting the voltages in subnetworks
1-4, respectively. The average voltage of each subnetwork as defined
in Eq. (30) is overlayed in black on the respective panels, clearly
demonstrating the existence of population-level oscillations.

Our proposed strategy is implemented using the average voltage
of each subnetwork as the observable. We define the § = 0 isochron
to be when V| = —50.0 mV and V, > 0 for the first subnetwork,
V, = =50.1 mV and Vz > 0 for the second subnetwork, V3 = —50.0 mV
and ¥, > 0 for the third subnetwork, and ¥, = —50.1 and ¥, > 0 for
the fourth subnetwork. These values are equivalent to the mean values
of V for each subnetwork. We extracted the average voltage between
subsequent crossings of the 6 = 0 isochron for each subnetwork. These
cycles are plotted in Fig. 21, with panels A-D showing the information
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for subnetworks 1-4 respectively. These cycles are plotted over time
so that we can visually identify variation in the amplitude of the
oscillations as well as the time between isochron crossings.

Using the data in Fig. 21, we found discrete approximations of 4;,
v;, v; and ¢; ; and defined A,, B, A,, and B, following Steps 4-10 of
Section 3.2. In this application, we defined the amplitude coordinate
of the ith oscillator to be vi = max(V}) — min(V}) — v,; where v,; =
; kN”l”” (max(V))— mm(V ). With the B, vector and A; matrix,
we evaluated Eq. (25) and determined the Fourier series coefficients
that govern the phase dynamics. With the B, vector and A, matrix,
we evaluated Eq. (26) and determined the Fourier series coefficients
that govern the amplitude dynamics. The F; and F, vectors contain
the Fourier series coefficients that are used in the reduced order model
defined in Eq. (19). For this example, we used a second-order Fourier
series approximation.

7.2. Comparisons between ground truth and inferred model simulations

Finally, to test our method, we simulated the reduced order model
defined in Eq. (19) with the Fourier series coefficients found using
Egs. (25) and (26). The amplitude coordinates obtained from this
simulation are shown in Fig. 22 for a 200 ms snapshot.

We compare the ground truth model with the reduced order model
by again approximating identical initial conditions of the full order
model in the phase space and evolving the reduced order model defined
in Eq. (19) forward in time. We present a comparison of the two
simulations in Fig. 23. For this comparison, we have mapped the
reduced order model back to its comparable state in the full order
model using the relationship V (6(),v(r)) = V(1) + v(H)g(6(r)) as
defined in Eq. (7).

For additional validation of the data-driven reduced order model
in this application, we present Fig. 24, which plots the normalized
count of voltage values for each subnetwork in both the full and
reduced order models. Along with this, we also computed the mean
and variance of the interspike intervals for each subnetwork in the full
and reduced order models. For the first subnetwork, u;¢; = 6.89 ms
and var;g; = 1.3e-3 in the full order model, while y;¢; = 6.89 ms and
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Fig. 22. The amplitude dynamics of the reduced order model for each of the
four subnetworks.

var;g; = 7.0e—4 in the reduced order model. In the second subnetwork,
urs; = 6.80 ms and var;g; = 2.1e-3 for the full order model, while
ursy = 6.80 ms and var;g; = 1.6e-3 for the reduced order model. In
the third subnetwork, yu;q; = 6.85 ms and var;q; = 4.4e-3 for the
full order model, while y;¢; = 6.86 ms and var;g; = 3.9e-3 for the
reduced order model. Finally in the fourth subnetwork, y;¢; = 7.42 ms
and varyg; = 4.5e-3 for the full order model, while y;¢; = 6.43 ms
and var;g; = 3.3e-3 for the reduced order model. Fig. 24 along with
the additional statistics regarding the interspike intervals support the
visual results presented in Fig. 23, demonstrating again that the data-
driven reduced order model yields a close approximation to the full
order model. Note that with more subnetworks, the variances are not
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21. Voltage dynamics between 6 = 0 isochron crossings for each subnetwork. Panels A-D present the dynamics for subnetworks 1-4, respectively.

matched as close as they were in the previous example with only two
subnetworks.

8. Limitations of this approach

In the previous two sections, the neural oscillators possess an all-to-
all coupling structure. In addition, we assume that all neurons within
each subnetwork can be observed so that the average voltage of each
subnetwork (V) is the true average voltage of the subpopulation. In
this section, we will briefly explore some of the limitations of our
proposed technique as it relates to these two properties. First, we will
investigate the efficacy of this technique on neural populations where
the coupling is less than all-to-all. Then we investigate the limitations
of this algorithm in populations where only a subset of neurons is
observable within each subnetwork.

8.1. Limitations due to coupling

The ability to effectively implement this technique on networks of
subnetworks is predicated on the existence of population-level oscilla-
tions in each subnetwork. Due to this fact, its success is not dependent
on the coupling structure of the network and it will work for arbitrary
coupling provided: (1) the population-level oscillations do not approach
a state near complete desynchronization (defined when V = 0), and
(2) approximations of § and v can be taken over the entire range of
¢ € [0,27).

To specifically demonstrate that our method works with different
coupling, Fig. 25 illustrates the application of our algorithm on a net-
work of two subnetworks using the dynamics and parameters defined
in Section 6 and Appendix A.1, but with reduced coupling. Instead of
all-to-all coupling, 80% of the coupling connections are removed ran-
domly. In panel A, we note that despite significantly reduced coupling,
a single subnetwork still possesses strong population-level oscillations.
This can be further viewed in panel B, which shows the cycles between
isochron crossings for this subnetwork. In panel C, note that we still



K. Toth and D. Wilson

Physica D: Nonlinear Phenomena 484 (2025) 134968

-20 -20
e -30 30
g -40 > 40
SN—r a
~ -50 50
I:> |§
-60 -60
-70 -70
200 250 300 200 250 300
-20 -20
—~-30 —~ -30
> >
g -40 & -40
50 50 S 50
-60 -60
-70 -70
200 250 300 200 250 300
Time (ms) Time (ms)

Fig. 23. This figure compares the full order model with dynamics defined in Egs. (A.1)-(A.5) in Appendix to the comparable states inferred from the reduced
order model defined in Eq. (19). Panels A-D compare the dynamics of ¥, — ¥, in the full order model and reduced order model. In all panels, the state in the
full order model is plotted in blue and the comparable state derived from the reduced order model is shown in red. The curves match closely and are nearly

indistinguishable in all panels.
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Fig. 24. This figure presents the normalized count of V for the full and reduced order model. Panels A-D present the data for subnetworks 1-4, respectively.
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Fig. 25. This figure demonstrates the effective application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in
Section 6 and Appendix but with 80% of coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork with
the black trace associated with the average voltage overlaid on top. The black trace clearly demonstrates the existence of population-level oscillations. Panel
B presents each cycle of the average voltage between 6 = 0 isochron crossings, again demonstrating the existence of population level dynamics and showing
variation in both the amplitudes and the times between successive § = 0 isochron crossings. In panel C, we compare the measured data defined in Eq. (23) with
the evaluation of A, F;, where A, and F, are calculated using the steps in Section 3.2. Panel D presents a comparison between the average voltage from the full
order model (in blue) with the comparable state inferred from the reduced order model defined in Eq. (19).

obtain approximations of § across the range ¢ € [0,2x), and that our
Fourier series representation yields a close approximation to the data.
Finally, in panel D, we note that the inferred state from our reduced
model closely matches the actual average voltage.

Our approach begins to break down after decreasing the coupling
further by removing a total of 97% of coupling connections. The
results from this trial can be seen in Fig. 26. There is significantly
less agreement between the plots in panel D, which compares the
actual voltage average and the inferred state from our reduced order
simulation. Panels B and C demonstrate why this technique is losing its
efficacy: in panel B, we see that some of the cycles between isochron
crossings are approaching a desynchronized state, and in panel C, we
notice that the datapoints for § vary more significantly at each phase
difference ¢ so that the error in our least squares approximation is
larger than in previous simulations.

Decreasing coupling further by removing a total of 99% of coupling
connections, our population-level oscillations nearly disappear as we
are close to the threshold of complete desynchronization of the neural
population. The results from the application of our technique to this
simulation can be found in Fig. 27. Panels A, B, and D demonstrate
that we are close to desynchronization. In Panel C, we also notice that
we do not have 6 data points over the entire range of possible phase
differences (yet another complication). These reasons help explain why
our method is insufficient at capturing the dynamics of this system in
panel D.

The exact limits of this technique in regards to the coupling struc-
ture will vary on a per system basis and will depend on the coupling
strength, the noise intensity, the heterogeneity of the network, and the
incorporation of any additional subnetworks.

8.2. Limitations due to observable data

To investigate the effect of limited observability among our individ-
ual oscillators, we ran a series of simulations where the average voltage
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of each subnetwork was computed using only a subset of each popu-
lation of neurons. This data was used to infer a reduced order model,
and the results were directly compared to the true average voltage. For
this example, we will utilize the two subnetwork, 1000 neuron network
described in Section 6 and related equations in Appendix.

Moving forward, we will be using V to denote the true average
voltage of a single subnetwork in the full order model and V* to repre-
sent the average voltage inferred from a reduced order model, where x
indicates the number of observed neurons in a given subnetwork. In
the example below, the value of x as a percentage of the 500 total
neurons in a single subnetwork is defined in the legend of panel A
in Fig. 28. Panel A shows the root mean squared error (RMSE) as
defined in Eq. (31) over N, total time steps. Note that the RMSE
increases substantially when less than 10% of the neurons (50 neurons)
are observed. Panel B of Fig. 28 shows V* over time for the values of
x indicated in the legend of panel A. Panel C plots ¥V — V* over the
same time span and for the same values of x shown in panel B. This
figure demonstrates that our method does indeed accommodate limited
observability in large populations of oscillators.

Niteps

k=1 (Vk B ka)z

N,

steps

RMSE = (31

9. Discussion and conclusion

Phase-based model order reduction methods are frequently used to
analyze high-dimensional, nonlinear dynamical systems that possess a
stable limit cycle. Existing phase-based, data-driven model identifica-
tion strategies assume the existence of a single, uncoupled limit cycle
oscillator and cannot be straightforwardly implemented in applications
where there are multiple coupled oscillators. In this work, we derive
a data-driven phase-amplitude reduced order modeling technique for
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Fig. 26. This figure demonstrates the attempted application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in
Section 6 and Appendix but with 97% of the coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork
with the black trace associated with the average voltage overlaid on top. The black trace still demonstrates the existence of population-level oscillations. Panel B
presents each cycle of the average voltage between 6 = 0 isochron crossings, again demonstrating the existence of population level dynamics but clearly showing
that our average voltage is at times much closer to the threshold of complete desynchronization. In panel C, we compare the measured data defined in Eq. (23)
with the evaluation of A, F;, where A, and F, are calculated using the steps in Section 3.2. Panel D presents a comparison between the average voltage from the

full order model (in blue) with the comparable state inferred from the reduced order model defined in Eq. (19). Here we see much less agreement between the
full and reduced order model.

8 T I L LEPETRL - L
= ) i I
@,-40 ) IV ) W
= 60 AL A AT ATAN 4
600 620 640 660 680 7(I)O 7éO 74:50
B Time (ms)
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Fig. 27. This figure demonstrates the failed application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in Section 6
and Appendix but with 99% of coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork with the black
trace associated with the average voltage overlaid on top. There is no longer steady and discernible population-level oscillations. Panel B presents each cycle
of the average voltage between ¢ = 0 isochron crossings. In panel C, we compare the measured data defined in Eq. (23) with the evaluation of A, F,, where
A, and F, are calculated using the steps in Section 3.2. In this situation, we do not have any measured data in the range ¢ € [2,4], so we cannot obtain an
accurate Fourier series representation of the dynamics. Panel D presents a comparison between the average voltage from the full order model (in blue) with the
comparable state inferred from the reduced order model defined in Eq. (19). Here we see no agreement between the full and reduced order model.
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Fig. 28. This figure demonstrates that our proposed approach accommodates limitations in the observability of individual oscillators within a subpopulation. For
these results, we simulated a 1000 neuron network comprised of two 500 neuron subnetworks with parameters and dynamics defined in Section 6 and Appendix
A.1. Panel A plots the RMSE value for various V* as calculated in Eq. (31). Panel B plots the voltage traces of V*. Panel C plots the difference between V* and

V.

a system of coupled limit cycle oscillators. We apply this technique in
three examples: (1) a two oscillator model of the nonradial isochron
clock with coupling; (2) a two subnetwork, 1000 neuron system with
electrotonic and synaptic coupling; and (3) a four subnetwork, 1000
neuron system with electrotonic and synaptic coupling. Our results
demonstrate that the reduced order model is a close match to the full
order model for all three examples. We also demonstrate the similarity
between the analytical coupling functions for our systems, and their nu-
merical least-squares approximations and investigate limitations with
respect to coupling structure and observability of the networks.

The data-driven reduced order modeling technique implemented
here incorporates the temporal dynamics intrinsic to the evaluated
dynamical systems — specifically, the existence of stable limit cycles.
Coupled limit cycle oscillators can be modeled with the modeling tech-
niques described in this work if: (1) the underlying dynamical systems
possess stable limit cycles; (2) the effects due to coupling, noise, and
heterogeneity are relatively minimal with respect to the stable limit
cycle; and (3) measurements of the phase and amplitude coordinates
can be taken over the entire range of possible phase differences.

Some of the specific limitations we encountered relate to the cou-
pling strength between limit cycle oscillators. Specifically, if the cou-
pling strength was too strong, the oscillators possessed either strong
synchronizing or antiphase tendencies. This made it impossible to
derive a reduced-order model using this technique since ¢ did not
generally extend over the entire range [0,2x] (related to point 3 in
the previous paragraph). In the analysis of population-level oscillations,
if the coupling strength within a subpopulation was too weak to pro-
duce discernible and steady population-level oscillations, our technique
failed to yield an accurate reduced order model. Additionally, as we
added more oscillators (or subnetworks), our accuracy degraded due
to the high quantity of Fourier series terms that needed to be fit to the
phase dynamics.

The model reduction strategies described in this paper are an adap-
tation of existing reduced order modeling techniques that consider a
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realistic scenario: a dynamical system whose structure and dynamics
are mathematically unknown. In the future, we will consider extend-
ing these results by deriving the phase response curves and isostable
response curves of more complicated networks of subnetworks (i.e., a
4 subnetwork system). Additionally, we will investigate the potential
application of this technique to a system whose physical connections
are unknown — that is, a system where we do not already know which
neurons exist in the same subnetwork. We will consider extending our
results to model control inputs using the reduced-order model.
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Appendix. Neural model equations

A single conductance-based thalamic neuron in the network model
considered in this work has dynamics from [51].

V;
= =1, = I, (V) = InVi b)) = T (Vi hy) = Ip(Vir) + 1, +

C 2Dn;(1),

(A.1)
hi = (hoo(Vi)_hi)/Th»
’:i = (roo(Vi)_ri)/Tr’
i=1,...,N,

where V; is the transmembrane voltage of neuron i, C = 1 uF/cm?
is the constant membrane capacitance; N = 1000 is the total number
of neurons in the network of subnetworks; I, is an external baseline
stimulus; I, is the current due to coupling; I, I,, Ik, and Iy are the
leak, sodium, potassium, and low-threshold calcium ionic currents; #,(t)
is a zero-mean white noise process with intensity D; and h; and r; are
gating variables. Additional equations that define this model are:

I (V) =gr(Vi — Ep), (A.2)

Ina(Vishy) = 8na (M, (VD) (Vi = En),

Ix (Vo hy) = g (0751 = h)*)(V; — Ex),

Ir(Viur) = g (P, (V) ri(Vi = Ep).
heo (V) = 1/(1 + exp((V; + 41)/4)), (A.3)
ro(V2) = 1/(1 + exp((V; + 84)/4)),
a,(V;) = 0.128 exp(—(V; + 46)/18),
Br(V;) = 4/(1 + exp(—=(V; +23)/5)),
7,(V;) = 1/(ay, + Bp)»
7,.(V;) = 28 + exp(—(V; + 25)/10.5),
me, (V) = 1/(1 + exp(=(V; + 37)/ 7)),
Poo(V)) = 1/(1 + exp(=(V; + 60)/6.2)).
In Eq. (A.2), g; = 0.05 mS/cm?, E; = —70 mV, gy, = 3 mS/cm?,
Eyn, = 50 mV, g = 5 mS/cm?, Ex = —-90 mV, gr = 5 mS/cm?,

and E; = 0 mV. Neuron i is coupled with electrotonic coupling to
all neurons within the same subnetwork as neuron i and with synaptic
coupling to all other neurons not in the same subnetwork as neuron i.
The current due to coupling /, is

2KV =W
J#

- Zgjaisj(v; - Exyn(j’i)) s
J#i

Electrotonic Current, Same Subnetwork  Synaptic Current, Other Subnetworks

(A4

where g;_; is the synaptic coupling strength between neurons i and
Jjs K;_; is the electrotonic coupling strength between neurons i and j,
E,,,(j,i) (in mV) is the synaptic reversal potential associated with the
relevant synaptic current, and s; is the synaptic variable with associated

temporal dynamics
5 = c(1-3s) s
T L exp(=(V, = Vp)for)  F
The synaptic variable has parameters ¢, = 3 (unitless), ¢, = 1 (unitless),
Vr = =20 mV, and oy = 0.8 mV. The synaptic coupling strength g;_;,
the synaptic reversal potential E,,(j, i), and the electrotonic coupling
strength K;_,; are dependent on the subnetworks containing neurons i
and j. For specific details regarding the parameters used in Sections 6
and 7 of this work, see the subsections below.

(A.5)

A.1. Parameters for the neuronal network of two subnetworks

For the two subnetwork system in Section 6, N = 1000 neurons with
500 neurons in each subnetwork. Both subnetworks are heterogeneous,
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Table A.1
Table of synaptic coupling strengths between the two 500
neuron subnetworks analyzed in Section 6.

1<i <500 500 < i <1000
1<j <500 0 0.0501
500 < j <1000 0.0501 0

Table A.2

Table of electrotonic coupling strengths, K;_;, between any
two neurons i and j within the same subnetwork for the two
500 neuron subnetworks analyzed in Section 6.

1<i<500 500 < i < 1000
1<, <500 0.1501 0
500 < j < 1000 0 0.1782

with baseline stimuli 7 b € [4.5,4.7] pA/cm? for the first subnetwork and
I, €[55,5.7] pA/cm? for the second subnetwork, both drawn from a
uniform distribution. The noise intensity is D = 0.0015. The synaptic
reversal potential E,, = —100 mV for all synaptic connections in this
example.

The synaptic coupling strength between any two neurons, i and
j will depend on the subnetworks containing the neurons i and ;.
Table A.1 lists the synaptic coupling strength between neurons in the
two subnetworks analyzed in Section 6. This value was chosen from a
uniform distribution that spanned the range [0.05,0.1].

The electrotonic coupling strength between any two neurons i and
j is the same for all neurons within that subnetwork. Table A.2 lists
the electrotonic coupling strengths for the two subnetwork system in
Section 6. These values were chosen from a uniform distribution that
spanned the range [0.15,0.2].

A.2. Parameters for the neuronal network of four subnetworks

For the four subnetwork system in Section 7, N=1000 neurons
with 250 neurons in each subnetwork. The subnetworks are hetero-
geneous, with baseline stimuli I, € [4.0,438] pA/cm? for the first
subnetwork, Ib,- € [4.8,5.6] pA/cm? for the second subnetwork, I,,[ S
[5.6,6.4] pA/cm? for the third subnetwork, and I, €164,72] pA/cm?
for the fourth subnetwork, each drawn from a uniform distribution.
Here, the noise intensity is taken to be D = 0.0016. The synaptic
reversal potential of the synapse connecting presynaptic neuron j and
postsynaptic neuron i depends on the subnetworks containing neurons
i and j and can be found by referencing Table A.3. Note that neurons
in the same subnetwork are not synaptically coupled.

The synaptic coupling strength between any two neurons i and j
again depends on the subnetworks containing neurons i and j. Table
A.4 lists the synaptic coupling strengths between neurons in the four
subnetworks of Section 7. These values were chosen from a uniform
distribution that spanned the range [0.01,0.08].

The electrotonic coupling strength between any two neurons i and
j is the same for all neurons within that subnetwork. Table A.5 lists
the electrotonic coupling strengths for the four subnetwork system in
Section 7. These values were chosen from a uniform distribution that
spanned the range [0.15,0.18].

Data availability

Data will be made available on request.
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Table A.3
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Table of synaptic reversal potentials (in mV) between the four 250 neuron subnetworks analyzed
in Section 7. E;,(j,i) = 0 mV yields an excitatory connection and E,,(j,7) = —100 mV yields an

inhibitory connection.

1<i<250 250 < i < 500 500 < i <750 750 < i < 1000
1<j<250 - ~100 0 ~100

250 < j < 500 -100 - 0 0

500 < j <750 0 0 - ~100

750 < j < 1000 ~100 0 ~100 -

Table A.4
Table of synaptic coupling strengths between the four 250 neuron subnetworks analyzed in
Section 7.
1<i<250 250 < i <500 500 < i <750 750 < i <1000

1<,<250 0 0.0101 0.0495 0.0235

250 < j <500 0.0101 0 0.0667 0.0509

500 < j <750 0.0495 0.0667 0 0.0436

750 < j < 1000 0.0235 0.0509 0.0436 0

Table A.5
Table of electrotonic coupling strengths K;
neuron subnetworks analyzed in Section 7.

—i

between any two neurons i and j for the four 250

1<i<250 250 < i <500 500 < i <750 750 < i <1000
1<,<250 0.1500 0 0 0
250 < j <500 0 0.1669 0 0
500 < j <750 0 0 0.1558 0
750 < j <1000 0 0 0 0.1743
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