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 A B S T R A C T

Phase-based reduction techniques are effective for the representation and analysis of limit cycle oscillators. 
In data-driven scenarios, the direct method is a well-established strategy that can be used to infer the phase 
dynamics of uncoupled oscillators. However, this strategy falls short when considering coupled oscillators. 
In this work, we investigate an extension of the direct method for inference of phase-based reduced order 
models that can explicitly accommodate coupling between limit cycle oscillators. Leveraging formal averaging 
theory, we determine approximate temporal dynamics for both phase and amplitude coordinates. We provide 
a step-by-step algorithm that details the derivation of terms for this reduced order model and demonstrate the 
utility of the proposed approach in a variety of examples that consider large populations of coupled neural 
oscillators.
1. Introduction

Phase-based reduction strategies are frequently used to model oscil-
latory dynamical systems of the general form 
𝑥̇ = 𝐹 (𝑥, 𝑢), (1)

where 𝑥 ∈ R𝑛 defines the state and 𝑢 is an applied input restricted to 
be 𝑂(𝜖) in magnitude, where 0 < 𝜖 ≪ 1 [1–8]. Provided a 𝑇 -periodic 
limit cycle 𝑥𝛾 exists, the 𝑛-dimensional system described in Eq.  (1) can 
be represented in a reduced order framework using isochrons to define 
a reduced order coordinate system within the basin of attraction of the 
limit cycle [9–11]. For any two initial conditions, 𝑎(0) and 𝑏(0), in the 
basin of attraction, lim𝑡→∞ ‖𝑎(𝑡) − 𝑏(𝑡)‖ = 0 if they are on the same 
isochron [2,11,12].

Simple phase reduction is often sufficient when the input 𝑢(𝑡) is 
small enough in magnitude that deviations from 𝑥𝛾 are small. Phase–
amplitude reduction is an extension of phase reduction that utilizes 
Floquet theory to derive the dynamics of additional amplitude co-
ordinates that account for perturbations transverse to the periodic 
orbit [12]. The resulting phase–amplitude reduced order model can be 
used to overcome some of the shortcomings of standard phase-based 
reduction strategies [13,14].

The necessary terms of the phase–amplitude reduction are com-
puted straightforwardly when the underlying dynamical equations are 
known. When model equations are unavailable, they can be inferred 
from data using the direct method [11,15,16]. To implement the direct 
method, small pulse inputs are applied to estimate the phase sensitivity. 
It is essential that other unmodeled inputs such as coupling and noise 
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do not significantly alter the phase. When considering a coupled system 
of oscillators, it is not possible to apply the direct method to infer the 
phase–amplitude reduced equation for the individual oscillators.

Previous research on data-driven model identification strategies for 
nonlinear dynamical systems utilize a variety of other techniques. For 
instance, dynamic mode decomposition (DMD) yields linear modes 
that represent snapshots of time-series data that can be analyzed with 
respect to associated eigenvalues and eigenvectors [17–21]. Since DMD 
yields a linear operator, however, it is often difficult to apply to systems 
with stable oscillations. Common machine learning approaches include 
the sparse identification of nonlinear dynamics (SINDy) algorithm, 
which implements sparse regression to find candidate functions that 
best reflect a given system’s temporal dynamics [22,23]. However since 
the SINDy algorithm considers best candidate functions, these functions 
may not always reflect the true dynamics or structure of a system 
and its coupling. Additionally, with machine learning, overfitting is a 
concern. Deep learning and neural networks can be applied to infer the 
dynamics of nonlinear dynamical systems from data [24–27]. However, 
similar to traditional machine learning, overfitting can again be an 
issue, and the black box nature of deep learning models implies that 
any derived coupling structure within the system may not be accurate 
or fully understood. Data-driven approaches to phase-based model 
reduction have also been considered in previous works. In [28], proper 
orthogonal decomposition was applied to observable data to infer the 
parameters for a phase–amplitude reduced order model. In [29], the 
authors derive a phase–amplitude model using the aforementioned 
direct method by strategically applying external inputs to a system 
and measuring the system’s sensitivity to perturbations at different 
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states along its limit cycle. In [30], the authors implement deep learn-
ing and artificial neural networks to determine relevant terms for a 
phase–amplitude reduced order model.

In this work, we extend the direct method to explicitly consider a 
population of coupled limit cycle oscillators. Using observables from 
these systems, we propose a strategy to infer relevant parameters for 
their corresponding phase-based reduced order models. While the ap-
proach presented here can be practically applied to a variety of coupled 
oscillator systems, we are motivated by its possible use as an aid in 
the understanding of coupled neural rhythms. Functional connections 
of the brain have been studied for decades [31,32]. Many of these 
studies are motivated by the potential to understand the efficacy of 
treatments for certain neurological or psychiatric conditions where 
the only true observables are the manifestation or disappearance of 
related symptoms [33]. Findings indicate that brain rhythms play an 
important role in cognitive function, and abnormal brain rhythms are 
related to the onset of certain neurological disorders [34]. Excessive 
synchronization of neurons, for instance, is observed in patients with 
Parkinson’s disease and the disruption of this synchronization through 
deep brain stimulation (DBS) alleviates the associated tremors [34–38]. 
Motivated by the potential applications of data-driven reduced order 
modeling in coupled oscillator networks such as those often studied 
in computational neuroscience, we present here a data-driven method 
that extends the direct method to produce a phase-based reduced 
order model that accounts for complex coupling structures between 
oscillators.

The remainder of this paper is organized as follows. In Section 2, 
we describe the phase–amplitude reduced order model, its limitations, 
and its underlying assumptions and derive an analytical model that 
will form the basis of the data-driven algorithm. In Section 3, we 
provide a detailed algorithm for inferring the necessary terms of the 
reduced order model from data. Section 4 provides results for a simple 
coupled two oscillator system. Section 5 gives an overview of the 
study of population-level oscillations for neural models. Sections 6 and
7 give results for the proposed model identification strategy applied 
to population-level oscillations of a two subnetwork (Section 6) and 
four subnetwork (Section 7) system of neural oscillators. Section 8 
explores limitations of this model identification strategy that arise due 
to coupling structure and oscillator observability. Concluding remarks 
are provided in Section 9.

2. The phase-amplitude reduced order model

2.1. Background

Consider a general nonlinear dynamical system of the form (1), 
where 𝑥 is the state as determined by the system’s internal dynamics 
and 𝑢 is an external input. Provided a 𝑇 -periodic limit cycle 𝑥𝛾 exists, 
the timing of the oscillations in (1) can be considered using phase 
reduction. Transforming to phase coordinates, the dynamics are:

𝜃̇ = 𝜕𝜃
𝜕𝑥

⋅ 𝑥̇, (2)

= 𝜕𝜃
𝜕𝑥

⋅ 𝐹 (𝑥, 𝑢),

= 𝜕𝜃
𝜕𝑥

⋅
(

𝐹 (𝑥, 0) + 𝜕𝐹
𝜕𝑢
𝑢 + 𝑂(|𝑢|2)

)

, .

Simplifying Eq.  (2) further and dropping higher order terms yields a 
standard phase reduced model: 
𝜃̇ = 𝜔 + 𝜖𝑍(𝜃)𝑢(𝑡), (3)

where 𝜔 = 2𝜋∕𝑇  is the natural frequency of the limit cycle oscillator 
and 𝑍(𝜃) = 𝜕𝜃

𝜕𝑥
𝑇 𝜕𝐹
𝜕𝑢  is the infinitesimal phase response curve evaluated 

along the limit cycle at phase 𝜃.
The addition of amplitude coordinates in a reduced order model 

can account for perturbations from the limit cycle which decay slowly 
back towards the periodic orbit [12]. Amplitude coordinates can be 
2 
included by considering level sets of the slowest decaying eigenmodes 
of the Koopman operator [39,40]. One such approach uses the isostable 
coordinate system, leveraging Floquet theory to capture transient dy-
namics in directions transverse to the limit cycle. We define 𝜆 = exp(𝜅𝑇 )
to be the smallest nonunity eigenvalue of the fundamental matrix, 𝛷, 
associated with the dynamical system in Eq.  (1), where 𝑥(𝑇 ) = 𝛷𝑥(0) for 
an initial solution x(0) [13]. The slowest decaying isostable coordinate 
is defined within the basin of attraction of a limit cycle according to 

𝜓(𝑥) = lim
𝑘→∞

(

𝑤𝑇
(

𝜈(𝑡𝑘𝛤 , 𝑥) − 𝑥0
)

exp(−𝜅𝑡𝑘𝛤 )
)

, (4)

where 𝑤𝑇  is the left eigenvector of the fundamental matrix 𝛷 associated 
with the slowest decaying Floquet exponent 𝜅, 𝑡𝑘𝛤  indicates the time 
of the 𝑘th crossing of the 𝜃 = 0 isochron 𝛤0, 𝜈(𝑡𝑘𝛤 , 𝑥) is the flow of 
the dynamical system defined in Eq.  (1), and 𝑥0 denotes the location 
where 𝛤0 intersects the periodic orbit. As 𝑘 approaches infinity, Eq. (4) 
converges to the isostable coordinate. The dynamics of the isostable 
coordinate for a single oscillator are:

𝜓̇ =
𝜕𝜓
𝜕𝑥

⋅ 𝑥̇, (5)

=
𝜕𝜓
𝜕𝑥

⋅ 𝐹 (𝑥, 𝑢),

=
𝜕𝜓
𝜕𝑥

⋅
(

𝐹 (𝑥, 0) + 𝜕𝐹
𝜕𝑢
𝑢 + 𝑂(|𝑢|2)

)

.

Simplifying Eq.  (5) and dropping the higher order terms yields 
𝜓̇ = 𝜅𝜓 + 𝜖𝐼(𝜃)𝑢(𝑡), (6)

where 𝜅 is the slowest decaying Floquet exponent and 𝐼(𝜃) = 𝜕𝜓
𝜕𝑥

𝑇 𝜕𝐹
𝜕𝑢

is the isostable response curve evaluated along the limit cycle at each 
phase 𝜃. For additional information on isostable reduction, and a com-
plete derivation and explanation of terms, please refer to [12,13]. To 
linear orders of accuracy, isostable coordinates are the same as Floquet 
coordinates. In a close neighborhood of the limit cycle, i.e., when 𝜓
is small, the state of (1) can be represented using phase–amplitude 
reduction and can be written as a function of 𝜃 and 𝜓 : 
𝑥(𝑡) = 𝑥

(

𝜃(𝑡), 𝜓(𝑡)
)

= 𝑥𝛾
(

𝜃(𝑡)
)

+ 𝜓(𝑡)𝑔
(

𝜃(𝑡)
)

, (7)

where 𝑥𝛾(𝜃(𝑡)) is the stable limit cycle of (1) and 𝑔(𝜃) is 2𝜋-periodic
[13].

Fig.  1 considers an illustration of (7) with a toy example. Here, let 
𝑥1 be the first component of 𝑥 and 𝑥𝛾1

(

𝜃
)

= sin
(

𝜃
) and 𝑔1

(

𝜃
)

= cos
(

𝜃
)

be the first components of 𝑥𝛾 and 𝑔, respectively. In the absence of 
input, 𝜓(𝑡) = 𝜓0 exp(𝜅𝑡) and 𝜃(𝑡) = 𝜔𝑡 + 𝜃0 where 𝜃0 and 𝜓0 are 
initial conditions. Here, we take 𝜅 = −0.2 and 𝜔 = 1. First consider 
two different trajectories starting at identical phases but with different 
𝜓0 values in Panel A of Fig.  1. These trajectories converge to each 
other, with the distance to the periodic orbit depending on 𝜓 . Notably, 
these trajectories converge to the same phase along the limit cycle 
but at different rates. Next consider two different trajectories starting 
at different initial phases but with identical 𝜓0 values (Panel B). The 
distance from the periodic orbit is roughly the same as a function 
of time, but the oscillation timing is different between oscillators. 
Therefore, these trajectories converge to the limit cycle at the same 
rate but approach different phases. In this plot, two variations of 𝑥𝛾
are shown corresponding to the two initial phases of the red and 
blue trajectories. Panel C shows trajectories starting at different initial 
phases with different 𝜓0. These trajectories approach the limit cycle at 
different rates and converge to different phases. Again, two variations 
of 𝑥𝛾 are shown with different initial phases.

2.2. Phase and amplitude dynamics for a coupled population of oscillators

Consider a population of 𝑁 coupled limit cycle oscillators with 
dynamics that can be written in the form
𝜃̇𝑖 = 𝜔𝑖 + 𝜖

∑

𝑍𝑖(𝜃𝑖)𝑔𝑘→𝑖(𝜃𝑖, 𝜃𝑘), (8)

𝑘≠𝑖
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Fig. 1. An illustration of (7) for a toy system. Panel A: initial conditions with 
different isostable coordinates but the same phase. Panel B: same isostable 
coordinate, different phase. Panel C: different initial phase and isostable 
coordinates.

𝜓̇𝑖 = 𝜅𝑖𝜓𝑖 + 𝜖
∑

𝑘≠𝑖
𝐼𝑖(𝜃𝑖)𝑔𝑘→𝑖(𝜃𝑖, 𝜃𝑘),

for 𝑖 = 1,… , 𝑁 where 𝑔 sets the coupling. Here, 0 < 𝜖 ≪ 1 so that the 
influence of coupling is small relative to the natural frequency of the 
oscillators. The oscillators are coupled in an all-to-all fashion with no 
self coupling. It is assumed that each 𝜅𝑖 is an order 𝜖 term, i.e., so that 
the amplitude coordinates decay slowly. Defining 𝜙𝑖,𝑗 = 𝜃𝑖 − 𝜃𝑗 , Eq. (8) 
can be rewritten as
𝜃̇𝑖 = 𝜔𝑖 + 𝜖

∑

𝑘≠𝑖
𝑍𝑖(𝜃𝑖)𝑔𝑘→𝑖(𝜃𝑖, 𝜃𝑖 − 𝜙𝑖,𝑘), (9)

𝜓̇𝑖 = 𝜅𝑖𝜓𝑖 + 𝜖
∑

𝑘≠𝑖
𝐼𝑖(𝜃𝑖)𝑔𝑘→𝑖(𝜃𝑖, 𝜃𝑖 − 𝜙𝑖,𝑘),

𝑖 = 1,… , 𝑁.

We seek to transform (9) to a function of the form 𝑥̇ = 𝜖𝑓 (𝑥, 𝑡) in 
order to employ dynamical averaging [41,42], but since 𝜔𝑖 in (9) is 
not an order 𝜖 term, we cannot perform dynamical averaging without 
an intermediate step. We define the phase difference between any two 
oscillators, 𝑖 and 𝑗, to have associated dynamics defined to be 𝜙̇𝑖,𝑗 =
𝜃̇𝑖 − 𝜃̇𝑗 so that 

𝜙̇𝑖,𝑗 = 𝜔𝑖−𝜔𝑗 +𝜖
∑

𝑘≠𝑖
𝑍𝑖(𝜃𝑖)𝑔𝑘→𝑖(𝜃𝑖, 𝜃𝑖−𝜙𝑖,𝑘)−𝜖

∑

𝑘≠𝑗
𝑍𝑗 (𝜃𝑗 )𝑔𝑘→𝑗 (𝜃𝑗 , 𝜃𝑗 −𝜙𝑗,𝑘).

(10)

Provided 𝜔𝑖 − 𝜔𝑗 = 𝑂(𝜖), the right hand side of (10) is an order 𝜖
term and we can apply formal dynamical averaging techniques [41,42]. 
We will work in a rotating reference frame by defining a new phase 
variable, 
𝜁𝑖 = 𝜃𝑖 − 𝜔0𝑡, (11)

where 𝜔0 = 1
𝑁

∑𝑁
𝑖=1 𝜔𝑖 is the average natural frequency of the popula-

tion of 𝑁 oscillators. Note that 𝜙𝑖,𝑗 = 𝜃𝑖 − 𝜃𝑗 = 𝜁𝑖 − 𝜁𝑗 . Rewriting Eq.  (9) 
in this rotating reference frame yields
𝜁̇𝑖 = 𝜔𝑖 − 𝜔0 + 𝜖

∑

𝑘≠𝑖
𝑍𝑖(𝜁𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁𝑖 + 𝜔0𝑡, 𝜁𝑘 + 𝜔0𝑡), (12)

𝜓̇𝑖 = 𝜅𝑖𝜓𝑖 + 𝜖
∑

𝑘≠𝑖
𝐼𝑖(𝜁𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁𝑖 + 𝜔0𝑡, 𝜁𝑘 + 𝜔0𝑡),

𝑖 = 1,… , 𝑁.
3 
Averaging the dynamics defined in Eq.  (12) over the period 𝑇0 = 2𝜋∕𝜔0
and defining 𝛥𝜔𝑖 = 𝜔𝑖 − 𝜔0 yields

𝜁̇∗𝑖 = 1
𝑇0 ∫

𝑇0

0

[

𝛥𝜔𝑖 + 𝜖
∑

𝑘≠𝑖
𝑍𝑖(𝜁∗𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁∗𝑖 + 𝜔0𝑡, 𝜁

∗
𝑘 + 𝜔0𝑡)

]

𝑑𝑡, (13)

𝜓̇∗
𝑖 = 1

𝑇0 ∫

𝑇0

0

[

𝜅𝑖𝜓
∗
𝑖 + 𝜖

∑

𝑘≠𝑖
𝐼𝑖(𝜁∗𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁∗𝑖 + 𝜔0𝑡, 𝜁

∗
𝑘 + 𝜔0𝑡)

]

𝑑𝑡,

𝑖 = 1,… , 𝑁,

where 𝜁∗𝑖 ≈ 𝜁𝑖 since solutions of (12) are well approximated by solutions 
of the averaged Eq. (13). Factoring out the constant terms from the 
integrands in Eq.  (13) and exchanging the summation and integration 
order yields

𝜁̇∗𝑖 = 𝛥𝜔𝑖 + 𝜖
∑

𝑘≠𝑖

1
𝑇0 ∫

𝑇0

0

[

𝑍𝑖(𝜁∗𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁∗𝑖 + 𝜔0𝑡, 𝜁
∗
𝑘 + 𝜔0𝑡)

]

𝑑𝑡, (14)

𝜓̇∗
𝑖 = 𝜅𝑖𝜓

∗
𝑖 + 𝜖

∑

𝑘≠𝑖

1
𝑇0 ∫

𝑇0

0

[

𝐼𝑖(𝜁∗𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁∗𝑖 + 𝜔0𝑡, 𝜁
∗
𝑘 + 𝜔0𝑡)

]

𝑑𝑡,

𝑖 = 1,… , 𝑁.

Considering Eq.  (14), we define coupling functions between any two 
oscillators, 𝑖 and 𝑘:

𝛤𝜁,𝑘→𝑖(𝜙𝑖,𝑘) =
𝜖
𝑇0 ∫

𝑇0

0

[

𝑍𝑖(𝜁𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁𝑖 + 𝜔0𝑡, 𝜁𝑘 + 𝜔0𝑡)

]

𝑑𝑡, (15)

𝛤𝜓,𝑘→𝑖(𝜙𝑖,𝑘) =
𝜖
𝑇0 ∫

𝑇0

0

[

𝐼𝑖(𝜁𝑖 + 𝜔0𝑡)𝑔𝑘→𝑖(𝜁𝑖 + 𝜔0𝑡, 𝜁𝑘 + 𝜔0𝑡)

]

𝑑𝑡.

Note that because of the integration over an entire period, 𝛤𝜁,𝑘→𝑖
and 𝛤𝜓,𝑘→𝑖 are functions of only 𝜙𝑖,𝑘. Substituting (15) into (14), and 
considering that 𝜁𝑖 ≈ 𝜁∗𝑖  and 𝜓𝑖 ≈ 𝜓∗

𝑖 , one finds

𝜁̇𝑖 = 𝛥𝜔𝑖 +
∑

𝑘≠𝑖
𝛤𝜁,𝑘→𝑖(𝜙𝑖,𝑘),

𝜓̇𝑖 = 𝜅𝑖𝜓𝑖 +
∑

𝑘≠𝑖
𝛤𝜓,𝑘→𝑖(𝜙𝑖,𝑘), (16)

for 𝑖 = 1,… , 𝑁 oscillators.

3. Data-driven model identification for the phase dynamics of the 
coupled oscillator model

3.1. Defining the data-driven basis function

The coupling functions, 𝛤𝜁,𝑘→𝑖(𝜙𝑖,𝑘) and 𝛤𝜓,𝑘→𝑖(𝜙𝑖,𝑘), are periodic 
over the range 𝜙 = [0, 2𝜋) and can therefore be approximated using 
the 𝑀 th order Fourier series expansion

𝛤𝜁,𝑘→𝑖(𝜙𝑖,𝑘) ≈
𝑎0,𝑘→𝑖
2

+
𝑀
∑

𝑛=1
𝑎𝑛,𝑘→𝑖 sin(𝑛𝜙𝑖,𝑘) + 𝑏𝑛,𝑘→𝑖 cos(𝑛𝜙𝑖,𝑘), (17)

𝛤𝜓,𝑘→𝑖(𝜙𝑖,𝑘) ≈
𝑐0,𝑘→𝑖
2

+
𝑀
∑

𝑛=1
𝑐𝑛,𝑘→𝑖 sin(𝑛𝜙𝑖,𝑘) + 𝑑𝑛,𝑘→𝑖 cos(𝑛𝜙𝑖,𝑘).

If the 𝜙𝑖,𝑘 values that are obtained from data are not measured over the 
entire range of possible phase differences (𝜙 ∈ [0, 2𝜋)

)

, Eq. (17) cannot 
yield an accurate approximation of the coupling dynamics. In these 
cases, it is likely that the oscillators themselves possess either a strong 
antiphase tendency (measurements of 𝜙𝑖,𝑘 are clustered around 𝜋) or 
a strong synchronizing tendency (measurements of 𝜙𝑖,𝑘 are clustered 
around 0 and 2𝜋). In the case of population-level dynamics (which 
will be discussed later), it is also possible that these population-level 
dynamics are close to the threshold of complete desynchronization. In 
these situations, the actual coupling functions are still periodic over the 
range 𝜙 ∈ [0, 2𝜋), but the observables would not provide a complete 
picture of the true coupling functions.
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We write the dynamics in Eq.  (16) using a Fourier series expansion 
by including two additional terms, 𝛥𝜔𝑖 and 𝜅𝑖𝜓𝑖. Substituting the 
Fourier series representation in (17) into (16) yields

𝜁̇𝑖 ≈ 𝛥𝜔𝑖 + 𝑎̂0,𝑖 +
∑

𝑘≠𝑖

𝑀
∑

𝑛=1
𝑎𝑛,𝑘→𝑖 sin(𝑛𝜙𝑖,𝑘) + 𝑏𝑛,𝑘→𝑖 cos(𝑛𝜙𝑖,𝑘), (18)

𝜓̇𝑖 ≈ 𝜅𝑖𝜓𝑖 + 𝑐0,𝑖 +
∑

𝑘≠𝑖

𝑀
∑

𝑛=1
𝑐𝑛,𝑘→𝑖 sin(𝑛𝜙𝑖,𝑘) + 𝑑𝑛,𝑘→𝑖 cos(𝑛𝜙𝑖,𝑘),

𝑖 = 1,… , 𝑁,

where 𝑎̂0,𝑖 = 1
2
∑

𝑘≠𝑖 𝑎0,𝑘→𝑖 and 𝑐0,𝑖 = 1
2
∑

𝑘≠𝑖 𝑐0,𝑘→𝑖. Recall again that 
using the weak coupling assumption, 𝜙̇𝑖,𝑘 = 𝑂(𝜖) while 𝜃̇𝑖 = 𝑂(1) so 
that each 𝜙𝑖,𝑘 changes slowly on the timescale of a single oscillator’s 
period and can be approximated by a constant. The averaged values 
can therefore be used to approximate the unaveraged values of 𝜁̇𝑖 and 
𝜓̇𝑖 [41,42]. Finally, we convert back to 𝜃𝑖 by substituting 𝜃𝑖 = 𝜁𝑖 + 𝜔0𝑡. 
We also determine some measurable value 𝜈 that varies each cycle 
between 𝜃 = 0 isochron crossings to model the dynamics of each oscil-
lator’s isostable coordinate. This amplitude coordinate and the actual 
isostable coordinate have a linear relationship so that 𝜈𝑖 = 𝑝𝑖𝜓𝑖, where 
𝑝𝑖 is a constant. This value can, for instance, be the difference between 
the local maximum and the local minimum over a given cycle, as is 
represented in Fig.  2 for a two oscillator model. The linear relationship 
𝜈𝑖 = 𝑝𝑖𝜓𝑖 is valid provided perturbations to the system are small in 
magnitude. We assume that the decay rate is small enough so that 
the isostable coordinate can be well approximated by a constant over 
a single cycle. With these assumptions, it follows that 𝜈 is dependent 
only on time and not on phase. Using the coordinate change 𝜈𝑖 = 𝑝𝑖𝜓𝑖, 
these substitutions yield a phase-based model that we will obtain using 
a data-driven approach:

𝜃̇𝑖 = 𝜔𝑖 + 𝑎̂0,𝑖 +
∑

𝑘≠𝑖

𝑀
∑

𝑛=1
𝑎𝑛,𝑘→𝑖 sin(𝑛𝜙𝑖,𝑘) + 𝑏𝑛,𝑘→𝑖 cos(𝑛𝜙𝑖,𝑘), (19)

𝜈̇𝑖 = 𝜅𝑖𝜈𝑖 +
𝑐0,𝑖
𝑝𝑖

+
∑

𝑘≠𝑖

𝑀
∑

𝑛=1

𝑐𝑛,𝑘→𝑖
𝑝𝑖

sin(𝑛𝜙𝑖,𝑘) +
𝑑𝑛,𝑘→𝑖
𝑝𝑖

cos(𝑛𝜙𝑖,𝑘),

𝑖 = 1,… , 𝑁.

The original state in the full order model can be inferred from the 
reduced order dynamics since 𝑥 = 𝑓 (𝜃, 𝜈) where 𝑓 (𝜃, 𝜈) can be inferred 
using (7). Note that while 𝑝𝑖 is usually unknown, it is only necessary to 
determine the ratios 𝑐0,𝑖𝑝𝑖 , 

𝑐𝑛,𝑘→𝑖
𝑝𝑖

, 𝑑𝑛,𝑘→𝑖𝑝𝑖
 in the inference of (19).

3.2. The data driven model: An algorithm

The unknown coefficients from (19) can be approximated with the 
linear matrix equations
𝐵1 = 𝐴1𝐹1, (20)
𝐵2 = 𝐴2𝐹2.

Using a first order Fourier series approximation, for 𝑚 discrete time 
steps and 𝑖 coupled to 𝑘 = 1,… , 𝑞 oscillators, 𝐵1 ∈ 𝑅𝑚×1, 𝐴1 ∈ 𝑅𝑚×(2𝑞+1), 
and 𝐹1 ∈ 𝑅(2𝑞+1)×1 are defined below
𝐵1 =

[

𝜃̇𝑖(𝑡1) ⋯ 𝜃̇𝑖(𝑡𝑚)
]𝑇 , (21)

𝐴1 =
⎡

⎢

⎢

⎣

1 sin
(

𝜙𝑖,1(𝑡1)
)

cos
(

𝜙𝑖,1(𝑡1)
)

⋯ sin
(

𝜙𝑖,𝑞(𝑡1)
)

cos
(

𝜙𝑖,𝑞(𝑡1)
)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 sin

(

𝜙𝑖,1(𝑡𝑚)
)

cos
(

𝜙𝑖,1(𝑡𝑚)
)

⋯ sin
(

𝜙𝑖,𝑞(𝑡𝑚)
)

cos
(

𝜙𝑖,𝑞(𝑡𝑚)
)

⎤

⎥

⎥

⎦

,

𝐹1 =
[

(𝜔𝑖 + 𝑎̂0,𝑖) 𝑎1,1→𝑖 𝑏1,1→𝑖 ⋯ 𝑎1,𝑞→𝑖 𝑏1,𝑞→𝑖
]𝑇 ,

and 𝐵2 ∈ 𝑅𝑚×1, 𝐴2 ∈ 𝑅𝑚×(2𝑞+2), and 𝐹2 ∈ 𝑅(2𝑞+2)×1 are defined as
𝐵2 =

[

𝜈̇𝑖(𝑡1) ⋯ 𝜈̇𝑖(𝑡𝑚)
]𝑇 , (22)

𝐴2 =
⎡

⎢

⎢

𝜈𝑖(𝑡1) 1 sin
(

𝜙𝑖,1(𝑡1)
)

cos
(

𝜙𝑖,1(𝑡1)
)

⋯ sin
(

𝜙𝑖,𝑞(𝑡1)
)

cos
(

𝜙𝑖,𝑞(𝑡1)
)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
( ) ( ) ( ) ( )

⎤

⎥

⎥

,

⎣𝜈𝑖(𝑡𝑚) 1 sin 𝜙𝑖,1(𝑡𝑚) cos 𝜙𝑖,1(𝑡𝑚) ⋯ sin 𝜙𝑖,𝑞(𝑡𝑚) cos 𝜙𝑖,𝑞(𝑡𝑚) ⎦

4 
Fig. 2. This figure demonstrates the calculation of 𝜈𝑘 = max(𝑋) − min(𝑋)
over a single cycle for example data. Here, 𝜈𝑘 is an amplitude coordinate that 
is proportional to the system’s slowest decaying isostable coordinate. In this 
figure, we only plot two crossings of the 𝜃 = 0 isochron for each oscillator 
(𝑡1𝑘 and 𝑡2𝑘) and obtain an amplitude coordinate for the corresponding cycle 
between those crossings.

𝐹2 =
[

𝜅𝑖
𝑐0,𝑖
𝑝𝑖

𝑐1,1→𝑖
𝑝𝑖

𝑑1,1→𝑖
𝑝𝑖

⋯
𝑐1,𝑞→𝑖
𝑝𝑖

𝑑1,𝑞→𝑖
𝑝𝑖

]𝑇
.

In 𝐵1 and 𝐵2, the discrete approximations of 𝜃̇(𝑡) and 𝜈̇(𝑡) are deter-
mined by fluctuations in the time and state between crossings of some 
reference isochron. The discrete approximations of 𝜈𝑖 and 𝜙𝑖,𝑘 can also 
be made by analyzing the time and state between crossings of some 
reference isochron. Therefore in a data-driven setting, 𝐹1 and 𝐹2 are 
the only unknowns while the elements of 𝐵1, 𝐵2, 𝐴1, and 𝐴2 can be 
determined from data. In (21) and (22), only the first modes of the 
Fourier series expansions are computed for each coupling function. 
Additional modes can be obtained with appropriate modifications to 
𝐴1, 𝐴2, 𝐹1, and 𝐹2.

A step-by-step explanation of how to estimate the elements of 𝐴1, 
𝐴2, 𝐵1, and 𝐵2 and develop a phase–amplitude model in the form 
of Eq.  (19) using a least-squares approximation of the Fourier series 
coefficients is provided in the algorithm below.

1. Simulate the full order model (Eq. (1)) for an extended period 
of time (approximately 50–100 oscillations). Determine a set 
of observables from which to obtain measurement data. Each 
oscillator must have a stable limit cycle.

2. Define some value of each observable to represent the 𝜃 = 0
isochron in the phase space for each oscillator. The 𝜃 = 0
isochron can correspond, for instance, to the occurrence of a 
local minimum or maximum or to the crossing of a Poincaré 
section as in Figs.  2 and 3.

3. Extract each cycle of the chosen observables between crossings 
of the 𝜃 = 0 isochron. These cycles are stored as vectors that 
contain the states of the system from one crossing of the 𝜃 = 0
isochron to the next subsequent crossing of the 𝜃 = 0 isochron. In 
a stable, unperturbed, periodic system, each cycle would simply 
be the periodic orbit.

4. For each limit cycle oscillator, define the time of crossings of the 
𝜃 = 0 isochron by the chosen observable to be 𝑡1, 𝑡2,… , 𝑡𝑁𝑐𝑟𝑜𝑠𝑠
and the time between crossings to be 𝑇1 = (𝑡2 − 𝑡1), 𝑇2 = (𝑡3 −
𝑡2),… , 𝑇𝑁𝑐𝑟𝑜𝑠𝑠−1 = (𝑡𝑁𝑐𝑟𝑜𝑠𝑠 − 𝑡𝑁𝑐𝑟𝑜𝑠𝑠−1 ) where 𝑁𝑐𝑟𝑜𝑠𝑠 is the total 
number of isochron crossings. Fig.  3 illustrates these terms for 
a single example cycle.

5. For each limit cycle oscillator, define a chosen amplitude co-
ordinate and calculate the amplitude for each cycle between 
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Fig. 3. This figure demonstrates the determination of 𝑡𝑘, 𝑇𝑘, and 𝜙𝑖,𝑗 (𝑡𝑘) for 
example data. In this figure, we only plot two crossings of the 𝜃 = 0 isochron 
for each oscillator (𝑡1𝑘 and 𝑡2𝑘).

crossings of the 𝜃 = 0 isochron. Define the amplitudes to be 
𝜈1,… , 𝜈𝑁𝑐𝑟𝑜𝑠𝑠−1. Fig.  2 illustrates this calculation for a single 
example cycle.

6. Use the time between crossings from Step 4 to approximate 
instantaneous measurements of 𝜃̇𝑖 for each oscillator 𝑖. Store 
these measurements in the vector 𝐵1, 

𝐵1 =

[

2𝜋
𝑇1
, 2𝜋
𝑇2
,… , 2𝜋

𝑇𝑁𝑐𝑟𝑜𝑠𝑠−1

]𝑇

. (23)

7. Use the time between crossings from Step 4 and the amplitudes 
from Step 5 to define discrete measurements of 𝜈̇𝑖 for each 
oscillator 𝑖. Store these measurements in the vector 𝐵2, 

𝐵2 =

[

𝜈2 − 𝜈1
𝑇1

,
𝜈3 − 𝜈2
𝑇2

,… ,
𝜈𝑁𝑐𝑟𝑜𝑠𝑠−1 − 𝜈𝑁𝑐𝑟𝑜𝑠𝑠−2

𝑇𝑁𝑐𝑟𝑜𝑠𝑠−1

]𝑇

. (24)

8. Define the phase difference between any two oscillators, 𝑖 and 𝑗, 
at each isochron crossing 𝑘 to be 𝜙𝑖,𝑗 (𝑡𝑘) = [2𝜋min(𝑡𝑖𝑘 − 𝑡𝑗 )]∕𝑇 𝑖𝑘, 
where 𝑡𝑖𝑘 is the 𝑘th crossing by oscillator 𝑖 of the 𝜃 = 0 isochron, 
𝑡𝑗 are all crossings of the 𝜃 = 0 isochron by oscillator 𝑗 that occur 
before 𝑡𝑖𝑘, and 𝑇 𝑖𝑘 = 𝑡𝑖𝑘 − 𝑡

𝑖
𝑘−1. Thus, we are solving for the closest 

crossing of the 𝜃 = 0 isochron to 𝑡𝑖𝑘 by oscillator 𝑗 that occurs 
up to the time 𝑡𝑖𝑘. An example of this calculation for a single 
cycle of the 𝜃 = 0 isochron can be found in Fig.  3. It is necessary 
to have measurements of 𝜙𝑖,𝑗 over the entire range of possible 
phase differences [0, 2𝜋).

9. For each oscillator 𝑖: using the phase differences found in Step 
8, set up matrix 𝐴1 from Eq.  (21) using 𝑚 = 𝑁𝑐𝑟𝑜𝑠𝑠 − 1 rows of 
Fourier series terms up to the desired order.

10. For each oscillator 𝑖: using the phase differences found in Step 
8 and the amplitude values found in Step 5, set up matrix 𝐴2
from Eq.  (22) using 𝑚 = 𝑁𝑐𝑟𝑜𝑠𝑠 − 1 rows of Fourier series terms 
up to the desired order.

11. To determine the Fourier series coefficients for the phase dynam-
ics, use Eq.  (20) with the 𝐵1 vector from Step 6 and the 𝐴1 matrix 
from Step 9 to solve for 𝐹1: 
𝐹1 = 𝐴†

1𝐵1. (25)

Here † indicates a pseudoinverse.
5 
Fig. 4. This figure demonstrates the relationship between the observable of 
the full order model, 𝜃, and 𝜈. The observable is a sinusoidal wave with an 
associated amplitude shown over the range 𝜃 ∈ [0, 2𝜋). To infer the observable 
from the reduced order model, one would interpolate using the available cycles 
with the closest 𝜈 values and the phase.

12. To determine the Fourier series coefficients for the amplitude 
dynamics, use Eq.  (20) with the 𝐵2 vector from Step 7 and the 
𝐴2 matrix from Step 10 to solve for 𝐹2: 
𝐹2 = 𝐴†

2𝐵2. (26)

Here † again indicates a pseudoinverse.
13. Run the phase–amplitude reduced order model defined in

Eq.  (19) using the Fourier series coefficients stored in 𝐹1 and 𝐹2. 
Within the reduced order model, calculate the phase difference 
instantaneously.

14. To verify the efficacy of the reduced order model, map back to 
equivalent states in the full order model using the amplitude and 
phase coordinates to infer corresponding states in the full order 
model. This is possible analytically since the state can be inferred 
from the phase and isostable coordinate, as is represented in 
(7). For a practical representation of how to infer the state 
from the reduced order model numerically, refer to Fig.  4. The 
combination of the amplitude coordinate and the phase can 
be used to infer the state of the observable in the full order
model. 

4. Example with a simple model: the nonradial isochron clock

To illustrate the efficacy of our technique, we consider a simple 
model of two coupled oscillators of the form:
𝑋̇𝑖 = 𝐶𝑖𝜎𝑋𝑖

(

𝜇 − (𝑋2
𝑖 + 𝑌

2
𝑖 )
)

− 𝑌𝑖
(

𝐶𝑖
(

1 + 𝜌(𝑋2
𝑖 + 𝑌

2
𝑖 − 𝜇)

)

)

−
𝛽

𝑁 − 1

𝑁
∑

𝑗≠𝑖
(𝑋𝑖 −𝑋𝑗 ), (27)

𝑌̇𝑖 = 𝐶𝑖𝜎𝑌𝑖
(

𝜇 − (𝑋2
𝑖 + 𝑌

2
𝑖 )
)

+𝑋𝑖

(

𝐶𝑖
(

1 + 𝜌(𝑋2
𝑖 + 𝑌

2
𝑖 − 𝜇)

)

)

,

𝑖 = 1, 2.

This equation is a modified version of Winfree’s radial isochron clock
[11] with added diffusive coupling. Here, 𝐶1 = 1.1 and 𝐶2 = 1.0 are 
constants that explicitly define the stable natural frequencies of the 
uncoupled oscillators: 𝜔1 = 𝐶1 = 2𝜋∕𝑇1 and 𝜔2 = 𝐶2 = 2𝜋∕𝑇2 where 
𝑇1 and 𝑇2 are the associated stable periods of the uncoupled system. 
The parameters of the system are defined to be 𝜎 = 0.08, 𝜌 = 0.12, 
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Fig. 5. Cycles of the observables for the coupled two oscillator dynamics of 
the nonradial isochron clock. Panel A plots these cycles for the first oscillator 
and panel B plots these cycles for the second oscillator.

and 𝜇 = 1. The coupling strength between the oscillators is 𝛽 = 0.03. 
Following the steps listed in Section 3.2, we will infer a data-driven 
phase–amplitude model that accurately captures the dynamics of (27).

4.1. Fitting the model to data

To begin, we simulate (27) for 600 time units. Defining the 𝜃 = 0
isochron to be when both 𝑋 = 0 and 𝑋̇ > 0 for a given oscillator, 
we extracted the individual cycles between isochron crossings. These 
cycles are plotted in Fig.  5 for oscillator 1 in panel A and oscillator 2 
in panel B.

Using this data, we found discrete approximations of 𝜃̇𝑖, 𝜈̇𝑖, 𝜈𝑖 and 
𝜙𝑖,𝑗 and defined 𝐴1, 𝐵1, 𝐴2, and 𝐵2 for each oscillator 𝑖 following 
Steps 4–10 of Section 3.2. In this application, we defined the amplitude 
coordinate of the 𝑖th oscillator to be 𝜈𝑖𝑘 = max(𝑋𝑖

𝑘) − min(𝑋𝑖
𝑘) − 𝜈0,𝑖 for 

each 𝑘th cycle between crossings of the 𝜃 = 0 isochron. In this equation, 
𝜈0,𝑖 = 1

𝑁𝑐𝑟𝑜𝑠𝑠−1
∑𝑁𝑐𝑟𝑜𝑠𝑠−1
𝑘=1

(

max(𝑋𝑖
𝑘) − min(𝑋𝑖

𝑘)
)

. With the 𝐵1 vector and 
𝐴1 matrix, we evaluated Eq.  (25) and determined the Fourier series 
coefficients that govern the phase dynamics. With the 𝐵2 vector and 
𝐴2 matrix, we then evaluated Eq.  (26) and determined the Fourier 
series coefficients that govern the amplitude dynamics. The 𝐹1 and 
𝐹2 vectors contain the Fourier series coefficients that are used in the 
phase–amplitude model defined in Eq.  (19). In this example, we used 
a first-order Fourier series approximation.

Fig.  6 presents a direct comparison between the measured observ-
ables 𝐵1 ≈ 𝜃̇𝑖(𝑡𝑘) as defined in Eq.  (23) and the evaluation of 𝐴1𝐹1
from Eq.  (25). Similarly, Fig.  7 presents a comparison between the 
measured observables 𝐵2 ≈ 𝜈̇𝑖(𝑡𝑘) from Eq.  (24) and the evaluation 
of 𝐴2𝐹2 from Eq.  (26). These are plotted over the range of phase 
differences used in the terms of the 𝐴1 and 𝐴2 matrices in Eqs. (21) and 
(22). In both figures, the observable data 𝜃̇𝑖 and 𝜈̇𝑖 is shown in blue and 
the approximations using 𝐴1𝐹1 and 𝐴2𝐹2 are in black. In both figures, 
panel A presents the information for the first oscillator and panel B 
presents it for the second oscillator.

4.2. Comparisons between ground truth and inferred model simulations

To test the model, we simulated Eq.  (19) using the derived Fourier 
series coefficients found using Eqs. (25) and (26). The phase and 
amplitude coordinates for this simulation are shown in Fig.  8 for a 
snapshot of 200 time units.
6 
Fig. 6. This figure validates the least-squares approximation of the Fourier 
series coefficients for the phase dynamics derived in Section 3.2. It directly 
compares the measured data defined in Eq.  (23) with the evaluation of 𝐴1𝐹1, 
where 𝐴1 and 𝐹1 are calculated using the steps in Section 3.2. These are plotted 
as a function of the phase difference 𝜙𝑖,𝑘 calculated in Step 8 of Section 3.2 
and found in the terms of the 𝐴1 matrix. The measured data from Eq.  (23) is 
shown in blue and the data obtained from the evaluation of 𝐴1𝐹1 is shown in 
black. Panel A presents these results for the first oscillator and panel B presents 
these results for the second oscillator.

Fig. 7. This figure validates the least-squares approximation of the Fourier 
series coefficients for the amplitude dynamics derived in Section 3.2. It directly 
compares the measured data defined in Eq.  (24) with the evaluation of 𝐴2𝐹2, 
where 𝐴2 and 𝐹2 are calculated using the steps in Section 3.2. These are plotted 
as a function of the phase difference 𝜙𝑖,𝑘 calculated in Step 8 of Section 3.2 
and found in the terms of the 𝐴2 matrix. The measured data from Eq.  (24) is 
shown in blue and the data obtained from the evaluation of 𝐴2𝐹2 is shown in 
black. Panel A presents these results for the first oscillator and panel B presents 
these results for the second oscillator.

We compare the ground truth model with the phase-based model 
by approximating identical initial conditions of the full order model in 
the phase space and evolving the phase-based model defined in Eq.  (19) 
forward in time. We present a comparison of the two simulations in Fig. 
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Fig. 8. The phase and amplitude dynamics of the phase–amplitude model. 
Panel A presents the phase dynamics of the first oscillator in blue and the 
second oscillator in red. Panel B presents the amplitude dynamics of the first 
oscillator in blue and the second oscillator in red.

Fig. 9. This figure compares the full order model with dynamics defined in Eq. 
(27) to the inferred state from the phase–amplitude model with dynamics 
defined in Eq.  (19). Panel A compares the dynamics of the 𝑋1 variable in the 
full order model and phase–amplitude model. Panel B compares the dynamics 
of the 𝑋2 variable in the full order model and phase–amplitude model. In both 
panels, the state in the full order model is plotted in blue and the comparable 
state derived from the phase-based model is shown in red. In each panel, the 
curves are nearly indistinguishable.

9. In this comparison, we have mapped the phase-based model back 
to its comparable state in the full order model using the relationship 
𝑋
(

𝜃(𝑡), 𝜈(𝑡)
)

= 𝑋𝛾(𝜃(𝑡)
)

+ 𝜈(𝑡)𝑔
(

𝜃(𝑡)
)

. Recall that this is of the form 
defined in (7).

For further validation of the data-driven phase–amplitude model, 
we also compare the data-driven phase coupling function found us-
ing Eq.  (17) to the actual phase coupling function computed analyt-
ically from the equations governing the system’s dynamics. For our 
analytical calculation, we computed the phase response curves for 
7 
Fig. 10. This figure compares the numerically computed coupling functions 
defined in Eq.  (28) to the data-driven coupling functions defined in Eq.  (17) 
for a pair of coupled oscillators. Panel A presents this comparison for the first 
oscillator and panel B presents the comparison for the second oscillator.

each oscillator numerically using methods described in [8], and then 
calculated the coupling function according to 

𝛤𝜁,𝑘→𝑖(𝜙𝑖,𝑘) = −𝛽 1
𝑇0 ∫

𝑇0

0
𝑍𝑖(𝜁𝑖+𝜔0𝑡)

(

𝑋𝑖(𝜁𝑖+𝜔0𝑡)−𝑋𝑗 (𝜁𝑖+𝜔0𝑡−𝜙𝑖,𝑗 )
)

𝑑𝑡.

(28)

Here, 𝜔0 = 2𝜋∕𝑇0 and 𝑇0 is the average period of the two oscillators. 
For this comparison, we reduced the heterogeneity so that the natural 
frequencies of the coupled oscillators were 𝐶1 = 𝜔1 = 0.99 and 𝐶2 =
𝜔2 = 1.01. We also decreased the coupling strength to 𝛽 = 0.008. 
This ensured that the timescales of the terms in the averaged equations 
were close. Low heterogeneity is not necessary for the application of 
our algorithm, but was used here to compute the analytical coupling 
functions between oscillators with varying timescales for direct compar-
ison to the numerical coupling functions computed using our algorithm. 
These results are presented in Fig.  10 where the coupling functions 
are plotted over the phase difference 𝜙. The coupling functions for the 
first oscillator are shown in panel A, and the coupling functions for the 
second oscillator are shown in panel B.

5. Neural population-level oscillations

One motivation for this work is the possible application of this 
data-driven technique to coupled neural subnetworks. The existence of 
population-level neural dynamics has been studied since the electroen-
cephalogram (EEG) first recorded electrical activity in the brain [43,
44]. Since then, numerous researchers have investigated these
population-level dynamics to uncover their reasons and functions [45–
49]. Recent research has also considered population-level oscillations 
in computational neural models [50].

The conductance-based neural model used in this work has voltage 
dynamics

𝑉̇𝑖
𝐶

= 𝐼𝑏𝑖 − 𝐼𝐿(𝑉𝑖) − 𝐼𝑁𝑎(𝑉𝑖, ℎ𝑖) − 𝐼𝐾 (𝑉𝑖, ℎ𝑖) − 𝐼𝑇 (𝑉𝑖, 𝑟𝑖) + 𝐼𝑐𝑖 +
√

2𝐷𝜂𝑖(𝑡),

(29)
𝑖 = 1,… , 𝑁,

where 𝑉𝑖 is the transmembrane voltage of neuron 𝑖, 𝐼𝑏𝑖  is a baseline 
stimulus, 𝐼 , 𝐼 , 𝐼  and 𝐼  are ionic currents, 𝐼  is the current due 
𝐿 𝑁𝑎 𝐾 𝑇 𝑐𝑖
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Fig. 11. A network containing four neuronal subnetworks. Neurons within each subnetwork are interconnected with electrotonic coupling. Neurons in different 
subnetworks are coupled with inhibitory or excitatory synaptic coupling.
to coupling, ℎ𝑖, and 𝑟𝑖 are gating variables, and 
√

2𝐷𝜂𝑖 is a white 
noise process that is independent for each neuron. A full explanation 
of additional variables and parameters can be found in Appendix. In 
a data-driven setting the underlying dynamics and coupling structure 
of the individual oscillators are unknown. Instead, we assume that the 
only measured observable we can obtain from the system is the average 
voltage of each subnetwork 

𝑉𝑚 = 1
𝑁𝑚

𝑁𝑚
∑

𝑖=1
𝑉𝑖, (30)

where 𝑁𝑚 is the number of neurons in the 𝑚th subnetwork.
In the examples that follow, we consider a prototype model of 

coupled neurons organized into various subnetworks. This specific 
prototype possesses features of neuronal networks, but is not modeled 
on a specific brain circuit. An illustration of this prototype model is pre-
sented in Fig.  11 for a network of four subnetworks. Each subnetwork 
contains a population of neurons whose coupling structure reflects the 
coupling defined in Eq.  (A.4). The neurons within each subnetwork 
are coupled with electrotonic coupling. Coupling between neurons in 
different subnetworks is inhibitory or excitatory synaptic coupling. The 
electrotonic coupling between neurons within the same subnetwork 
exerts a stronger force than the synaptic coupling between neurons in 
different subnetworks.

We assume that each subnetwork has a population-level limit cycle. 
The following two sections will discuss the application of our data-
driven technique on neuronal networks of two and four subnetworks.

6. A neuronal network of two subnetworks

First we considered a two subnetwork system of 𝑁 = 1000 neurons 
with dynamics defined in Eq.  (A.1) and related equations in Appendix. 
A complete description of the parameters in this model can also be 
found in Section A.1 of Appendix. Below, we present our methodology 
and results following the steps given in Section 3.2.

6.1. Fitting the model to data

To begin, we evaluated this system for 2000 ms and obtained volt-
age dynamics for all 𝑁 = 1000 neural oscillators. We then calculated 
the average voltage of the oscillators in each subnetwork 𝑉𝑚 using Eq. 
(30). The voltages for the neurons in each subnetwork are presented 
in Fig.  12 for a 200 ms snapshot, with panel A plotting the voltages in 
the first subnetwork and panel B plotting the voltages in the second. 
8 
Fig. 12. Voltage dynamics of all neurons in a two subnetwork system. Panel 
A presents the voltages for the first subnetwork, and panel B presents the 
voltages for the second subnetwork. The black trace on each panel represents 
the average voltage of the given subnetwork which is taken as the observable 
for this system.

The average voltage of each subnetwork as defined in Eq.  (30) is 
overlayed in black on the respective panel, demonstrating the existence 
of population-level oscillations.

Our proposed strategy is implemented using the average voltage 
of each subnetwork as the observable. We define the 𝜃 = 0 isochron 
to be when 𝑉1 = −51.3 mV with ̇̄𝑉1 > 0 for the first subnetwork 
and 𝑉2 = −50.7 mV with ̇̄𝑉2 > 0 for the second subnetwork. These 
values are equivalent to the mean values of 𝑉  for each subnetwork. 
We then extracted the average voltage dynamics between subsequent 
crossings of the 𝜃 = 0 isochron for each subnetwork. We have plotted 
these cycles in Fig.  13, with panel A showing the information for the 
first subnetwork, and panel B showing the information for the second 
subnetwork. Note that these cycles are plotted over time so that we 
can visually see the variation in both the amplitude of the oscillations 
as well as the time between isochron crossings.

From the data in Fig.  13, we found discrete approximations of 𝜃̇𝑖, 
𝜈̇ , 𝜈  and 𝜙  and defined 𝐴 , 𝐵 , 𝐴 , and 𝐵  following Steps 4–10 
𝑖 𝑖 𝑖,𝑗 1 1 2 2
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Fig. 13. Voltage dynamics between 𝜃 = 0 isochron crossings for each subnet-
work. Panel A presents the dynamics for the first subnetwork, and panel B 
presents the dynamics for the second subnetwork.

of Section 3.2. In this application, we chose the amplitude coordinate 
of the 𝑖th oscillator to be 𝜈𝑖𝑘 = max(𝑉 𝑖

𝑘 ) − min(𝑉 𝑖
𝑘 ) − 𝜈0,𝑖, where 𝜈0,𝑖 =

1
𝑁𝑐𝑟𝑜𝑠𝑠−1

∑𝑁𝑐𝑟𝑜𝑠𝑠−1
𝑘=1

(

max(𝑉 𝑖
𝑘 ) − min(𝑉 𝑖

𝑘 )
) for each 𝑘th crossing of the 𝜃 = 0

isochron. With the 𝐵1 vector and 𝐴1 matrix, we evaluated Eq.  (25) and 
determined the Fourier series coefficients that govern the phase dynam-
ics. With the 𝐵2 vector and 𝐴2 matrix, we then evaluated Eq.  (26) and 
determined the Fourier series coefficients that govern the amplitude 
dynamics. The 𝐹1 and 𝐹2 vectors contain the Fourier series coefficients 
that are used in the reduced order model defined in Eq.  (19). In this 
example, we used a second-order Fourier series approximation.

In Fig.  14, we present a direct comparison between measured ob-
servables 𝐵1 ≈ 𝜃̇𝑖(𝑡𝑘) as defined in Eq.  (23) and the evaluation of 𝐴1𝐹1
from Eq.  (25). Similarly, Fig.  15 presents a comparison between the 
measured observables 𝐵2 ≈ 𝜈̇𝑖(𝑡𝑘) from Eq.  (24) and the evaluation 
of 𝐴2𝐹2 from Eq.  (26). These are plotted over the range of phase 
differences used in the terms of the 𝐴1 and 𝐴2 matrices in Eqs. (21) 
and (22), In both figures, the observable data 𝜃̇𝑖 and 𝜈̇𝑖 is shown in 
blue and the approximations using 𝐴1𝐹1 and 𝐴2𝐹2 are in black. In both 
figures, panel A presents this information for the first subnetwork and 
panel B presents this information for the second subnetwork.

6.2. Comparisons between ground truth and inferred model simulations

Finally, to test the model, we simulated the reduced-order model 
defined in Eq.  (19) using the Fourier series coefficients found with 
Eqs. (25) and (26). The phase and amplitude coordinates from this 
simulation are shown in Fig.  16 for a 200 ms snapshot.

We compare the ground truth model with the reduced order model 
by approximating identical initial conditions of the full order model 
in the phase space and evolving the reduced order model forward 
in time. We present a comparison of the two simulations in Fig.  17. 
For this comparison, we have mapped the reduced order model back 
to its comparable state in the full order model using the relationship 
𝑉
(

𝜃(𝑡), 𝜈(𝑡)
)

= 𝑉 𝛾(𝜃(𝑡)
)

+ 𝜈(𝑡)𝑔
(

𝜃(𝑡)
) as defined in (7).

For additional validation of the data-driven reduced order model, 
we also present Fig.  18 which plots the normalized count of voltage 
values for each subnetwork in both the full and reduced order models. 
Along with this, we also computed the mean 𝜇𝐼𝑆𝐼  and the variance 
𝑣𝑎𝑟𝐼𝑆𝐼  of the interspike intervals for each subnetwork in both the full 
and reduced order models. In the first subnetwork, 𝜇 = 8.88 ms
𝐼𝑆𝐼

9 
Fig. 14. This figure validates the least-squares approximation of the Fourier 
series coefficients for the phase dynamics derived in Section 3.2 for this 
network of two subnetworks. It directly compares the measured data defined 
in Eq.  (23) with the evaluation of 𝐴1𝐹1, where 𝐴1 and 𝐹1 are calculated using 
the steps in Section 3.2. These are plotted as a function of the phase difference 
𝜙 calculated in Step 8 of Section 3.2 and found in the terms of the 𝐴1 matrix. 
The measured data from Eq.  (23) is shown in blue and the data from the 
evaluation of 𝐴1𝐹1 is shown in black. Panel A presents the results for the first 
subnetwork and panel B presents the results for the second subnetwork.

Fig. 15. This figure validates the least-squares approximation for the ampli-
tude dynamics derived in Section 3.2 for this network of two subnetworks. It 
directly compares the measured data defined in Eq.  (24) with the evaluation 
of 𝐴2𝐹2, where 𝐴2 and 𝐹2 are calculated following the steps in Section 3.2. 
These are plotted as a function of the phase difference 𝜙 calculated in Step 8 
of Section 3.2 and found in the terms of the 𝐴2 matrix. The measured data 
from Eq.  (24) is shown in blue and the data from the evaluation of 𝐴2𝐹2 is 
shown in black. Panel A presents the results for the first subnetwork and panel 
B presents the results for the second subnetwork.

and 𝑣𝑎𝑟𝐼𝑆𝐼 = 3.6e−2 for the full order model while 𝜇𝐼𝑆𝐼 = 8.88 ms
and 𝑣𝑎𝑟𝐼𝑆𝐼 = 3.0e−2 for the reduced order model. In the second 
subnetwork, 𝜇𝐼𝑆𝐼 = 7.93 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 6.9e−3 for the full order 
model while 𝜇𝐼𝑆𝐼 = 7.93 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 6.4e−3 for the reduced order 
model. Fig.  18 along with the additional statistics support the visual 
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Fig. 16. The phase and amplitude dynamics of the reduced order model. 
Panel A presents the phase dynamics of the first subnetwork in blue and the 
second subnetwork in red. Panel B presents the amplitude dynamics of the 
first subnetwork in blue and the second subnetwork in red.

Fig. 17. This figure compares the full order model with dynamics defined 
in Eqs. (A.1)–(A.5) in Appendix to the comparable states inferred from the 
reduced order model defined in Eq.  (19). Panel A (resp., B) compares the 
dynamics of 𝑉1 (resp., 𝑉2) in the full and reduced order models. In both panels, 
the state in the full order model is plotted in blue and the comparable state 
derived from the reduced order model is shown in red. In each panel, the 
curves are again almost indistinguishable.

results presented in Fig.  17, demonstrating that the data-driven reduced 
order model yields a close approximation to the full order model.

Finally, to clearly demonstrate the importance of coupling in the 
evaluation of our system’s phase response curves (PRCs), we present 
Fig.  19. In this figure, a series of phase response curves are computed 
numerically using variations of the direct method. In the direct method, 
a series of perturbations applied to the full order model are used to 
find an approximate phase response curve 𝑍(𝜃). Each plot in Fig.  19 is 
a single phase response curve obtained from a sample of 40 different 
perturbations. In blue, we compute phase response curves that account 
for coupling, while in red we do not account for coupling.
10 
Fig. 18. This figure presents the normalized count of 𝑉  values for the full 
and reduced order model. Panel A presents this data for the first subnetwork. 
Panel B presents this data for the second subnetwork.

Fig. 19. Various numerical approximations of a single subnetwork’s phase 
response curve using the direct method. The curves in blue incorporate 
coupling in the computation of the numerical PRCs while the curves in red 
do not incorporate coupling.

To begin the numerical computation of these PRCs, we first simu-
lated the full order model defined in Eq.  (A.1) and applied a series of 
perturbations to all neurons in a single subnetwork. Since the average 
voltage of the subnetwork 𝑉  is known at the time of perturbation 𝑡𝑝, 
the phase 𝜃 can be inferred.

To find pointwise approximations of 𝑍(𝜃) at each phase 𝜃, we will 
use the equation 𝑍(𝜃) ≈ 𝑑𝜃∕(𝑢𝛥𝑡𝑝). Here, 𝑢 is the applied magnitude of 
the perturbation, 𝛥𝑡𝑝 is the duration that the perturbation is applied, 
and 𝑑𝜃 is the resulting phase difference between the perturbed and 
unperturbed system. The calculation of 𝑑𝜃 is done 2–3 cycles after the 
time of perturbation at some time 𝑡𝑚. The value of 𝑑𝜃 is obtained by 
comparing the phase inferred from measured data to the phase from un-
perturbed simulations of the reduced order model. In Fig.  19, the phase 
response curves in blue are found by calculating the unperturbed phase 
with the reduced order model defined in (19). Conversely, the phase 
response curves in red ignore the Fourier series terms that account for 
coupling in Eq.  (19) in the computation of the unperturbed phase. The 



K. Toth and D. Wilson Physica D: Nonlinear Phenomena 484 (2025) 134968 
Fig. 20. Voltage dynamics for all neurons in a four subnetwork system. Panels A-D present the voltages for subnetworks 1–4, respectively. A black trace on each 
panel represents the average voltage of that subnetwork. These average voltages are the observables for this system.
resulting pointwise estimates are fit using the lowest harmonics of a 
Fourier basis to obtain the phase response curve.

Without incorporating coupling, the red PRCs appear noisy with no 
discernible average curve. However, the blue plots evaluated using Eq. 
(19) and incorporating coupling appear much more consistent and 
follow a discernible curve. Using a larger number of perturbations 
to compute the phase response curves would yield more accurate 
approximations to the actual phase response curve.

7. A neuronal network of four subnetworks

Finally we considered a four subnetwork system of 𝑁 = 1000
neurons with dynamics defined in Eq.  (A.1) and related equations in 
Appendix. A complete description of the parameters of this model can 
be found in Section A.2 of Appendix. We present our methodology and 
results in chronological order following the steps given in Section 3.2 
below.

7.1. Fitting the model to data

We evaluated this system for 2000 ms and obtained voltage dy-
namics for all 𝑁 = 1000 neural oscillators. We calculated the average 
voltage of the oscillators in each subnetwork 𝑉𝑚 using Eq.  (30). The 
voltages for the neurons in each subnetwork are presented in Fig.  20 for 
a 50 ms snapshot, with panels A-D plotting the voltages in subnetworks 
1–4, respectively. The average voltage of each subnetwork as defined 
in Eq.  (30) is overlayed in black on the respective panels, clearly 
demonstrating the existence of population-level oscillations.

Our proposed strategy is implemented using the average voltage 
of each subnetwork as the observable. We define the 𝜃 = 0 isochron 
to be when 𝑉1 = −50.0 mV and ̇̄𝑉1 > 0 for the first subnetwork, 
𝑉2 = −50.1 mV and ̇̄𝑉2 > 0 for the second subnetwork, 𝑉3 = −50.0 mV 
and ̇̄𝑉3 > 0 for the third subnetwork, and 𝑉4 = −50.1 and ̇̄𝑉4 > 0 for 
the fourth subnetwork. These values are equivalent to the mean values 
of 𝑉  for each subnetwork. We extracted the average voltage between 
subsequent crossings of the 𝜃 = 0 isochron for each subnetwork. These 
cycles are plotted in Fig.  21, with panels A-D showing the information 
11 
for subnetworks 1–4 respectively. These cycles are plotted over time 
so that we can visually identify variation in the amplitude of the 
oscillations as well as the time between isochron crossings.

Using the data in Fig.  21, we found discrete approximations of 𝜃̇𝑖, 
𝜈̇𝑖, 𝜈𝑖 and 𝜙𝑖,𝑗 and defined 𝐴1, 𝐵1, 𝐴2, and 𝐵2 following Steps 4–10 of 
Section 3.2. In this application, we defined the amplitude coordinate 
of the 𝑖th oscillator to be 𝜈𝑖𝑘 = max(𝑉 𝑖

𝑘 ) − min(𝑉 𝑖
𝑘 ) − 𝜈0,𝑖 where 𝜈0,𝑖 =

1
𝑁𝑐𝑟𝑜𝑠𝑠−1

∑𝑁𝑐𝑟𝑜𝑠𝑠−1
𝑘=1

(

max(𝑉 𝑖
𝑘 )−min(𝑉 𝑖

𝑘 )
)

. With the 𝐵1 vector and 𝐴1 matrix, 
we evaluated Eq.  (25) and determined the Fourier series coefficients 
that govern the phase dynamics. With the 𝐵2 vector and 𝐴2 matrix, 
we evaluated Eq.  (26) and determined the Fourier series coefficients 
that govern the amplitude dynamics. The 𝐹1 and 𝐹2 vectors contain 
the Fourier series coefficients that are used in the reduced order model 
defined in Eq.  (19). For this example, we used a second-order Fourier 
series approximation.

7.2. Comparisons between ground truth and inferred model simulations

Finally, to test our method, we simulated the reduced order model 
defined in Eq.  (19) with the Fourier series coefficients found using 
Eqs. (25) and (26). The amplitude coordinates obtained from this 
simulation are shown in Fig.  22 for a 200 ms snapshot.

We compare the ground truth model with the reduced order model 
by again approximating identical initial conditions of the full order 
model in the phase space and evolving the reduced order model defined 
in Eq.  (19) forward in time. We present a comparison of the two 
simulations in Fig.  23. For this comparison, we have mapped the 
reduced order model back to its comparable state in the full order 
model using the relationship 𝑉 (

𝜃(𝑡), 𝜈(𝑡)
)

= 𝑉 𝛾(𝜃(𝑡)
)

+ 𝜈(𝑡)𝑔
(

𝜃(𝑡)
) as 

defined in Eq.  (7).
For additional validation of the data-driven reduced order model 

in this application, we present Fig.  24, which plots the normalized 
count of voltage values for each subnetwork in both the full and 
reduced order models. Along with this, we also computed the mean 
and variance of the interspike intervals for each subnetwork in the full 
and reduced order models. For the first subnetwork, 𝜇𝐼𝑆𝐼 = 6.89 ms
and 𝑣𝑎𝑟 = 1.3e−3 in the full order model, while 𝜇 = 6.89 ms and 
𝐼𝑆𝐼 𝐼𝑆𝐼
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Fig. 21. Voltage dynamics between 𝜃 = 0 isochron crossings for each subnetwork. Panels A-D present the dynamics for subnetworks 1–4, respectively.
Fig. 22. The amplitude dynamics of the reduced order model for each of the 
four subnetworks.

𝑣𝑎𝑟𝐼𝑆𝐼 = 7.0e−4 in the reduced order model. In the second subnetwork, 
𝜇𝐼𝑆𝐼 = 6.80 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 2.1e−3 for the full order model, while 
𝜇𝐼𝑆𝐼 = 6.80 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 1.6e−3 for the reduced order model. In 
the third subnetwork, 𝜇𝐼𝑆𝐼 = 6.85 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 4.4e−3 for the 
full order model, while 𝜇𝐼𝑆𝐼 = 6.86 ms and 𝑣𝑎𝑟𝐼𝑆𝐼 = 3.9e−3 for the 
reduced order model. Finally in the fourth subnetwork, 𝜇𝐼𝑆𝐼 = 7.42 ms
and 𝑣𝑎𝑟𝐼𝑆𝐼 = 4.5e−3 for the full order model, while 𝜇𝐼𝑆𝐼 = 6.43 ms
and 𝑣𝑎𝑟𝐼𝑆𝐼 = 3.3e−3 for the reduced order model. Fig.  24 along with 
the additional statistics regarding the interspike intervals support the 
visual results presented in Fig.  23, demonstrating again that the data-
driven reduced order model yields a close approximation to the full 
order model. Note that with more subnetworks, the variances are not 
12 
matched as close as they were in the previous example with only two 
subnetworks.

8. Limitations of this approach

In the previous two sections, the neural oscillators possess an all-to-
all coupling structure. In addition, we assume that all neurons within 
each subnetwork can be observed so that the average voltage of each 
subnetwork (𝑉 ) is the true average voltage of the subpopulation. In 
this section, we will briefly explore some of the limitations of our 
proposed technique as it relates to these two properties. First, we will 
investigate the efficacy of this technique on neural populations where 
the coupling is less than all-to-all. Then we investigate the limitations 
of this algorithm in populations where only a subset of neurons is 
observable within each subnetwork.

8.1. Limitations due to coupling

The ability to effectively implement this technique on networks of 
subnetworks is predicated on the existence of population-level oscilla-
tions in each subnetwork. Due to this fact, its success is not dependent 
on the coupling structure of the network and it will work for arbitrary 
coupling provided: (1) the population-level oscillations do not approach 
a state near complete desynchronization (defined when 𝑉 = 0), and 
(2) approximations of 𝜃̇ and 𝜈̇ can be taken over the entire range of 
𝜙 ∈ [0, 2𝜋).

To specifically demonstrate that our method works with different 
coupling, Fig.  25 illustrates the application of our algorithm on a net-
work of two subnetworks using the dynamics and parameters defined 
in Section 6 and Appendix  A.1, but with reduced coupling. Instead of 
all-to-all coupling, 80% of the coupling connections are removed ran-
domly. In panel A, we note that despite significantly reduced coupling, 
a single subnetwork still possesses strong population-level oscillations. 
This can be further viewed in panel B, which shows the cycles between 
isochron crossings for this subnetwork. In panel C, note that we still 
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Fig. 23. This figure compares the full order model with dynamics defined in Eqs. (A.1)–(A.5) in Appendix to the comparable states inferred from the reduced 
order model defined in Eq.  (19). Panels A-D compare the dynamics of 𝑉1 − 𝑉4 in the full order model and reduced order model. In all panels, the state in the 
full order model is plotted in blue and the comparable state derived from the reduced order model is shown in red. The curves match closely and are nearly 
indistinguishable in all panels.

Fig. 24. This figure presents the normalized count of 𝑉  for the full and reduced order model. Panels A-D present the data for subnetworks 1–4, respectively.
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Fig. 25. This figure demonstrates the effective application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in 
Section 6 and Appendix but with 80% of coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork with 
the black trace associated with the average voltage overlaid on top. The black trace clearly demonstrates the existence of population-level oscillations. Panel 
B presents each cycle of the average voltage between 𝜃 = 0 isochron crossings, again demonstrating the existence of population level dynamics and showing 
variation in both the amplitudes and the times between successive 𝜃 = 0 isochron crossings. In panel C, we compare the measured data defined in Eq.  (23) with 
the evaluation of 𝐴1𝐹1, where 𝐴1 and 𝐹1 are calculated using the steps in Section 3.2. Panel D presents a comparison between the average voltage from the full 
order model (in blue) with the comparable state inferred from the reduced order model defined in Eq.  (19).
obtain approximations of 𝜃̇ across the range 𝜙 ∈ [0, 2𝜋), and that our 
Fourier series representation yields a close approximation to the data. 
Finally, in panel D, we note that the inferred state from our reduced 
model closely matches the actual average voltage.

Our approach begins to break down after decreasing the coupling 
further by removing a total of 97% of coupling connections. The 
results from this trial can be seen in Fig.  26. There is significantly 
less agreement between the plots in panel D, which compares the 
actual voltage average and the inferred state from our reduced order 
simulation. Panels B and C demonstrate why this technique is losing its 
efficacy: in panel B, we see that some of the cycles between isochron 
crossings are approaching a desynchronized state, and in panel C, we 
notice that the datapoints for 𝜃̇ vary more significantly at each phase 
difference 𝜙 so that the error in our least squares approximation is 
larger than in previous simulations.

Decreasing coupling further by removing a total of 99% of coupling 
connections, our population-level oscillations nearly disappear as we 
are close to the threshold of complete desynchronization of the neural 
population. The results from the application of our technique to this 
simulation can be found in Fig.  27. Panels A, B, and D demonstrate 
that we are close to desynchronization. In Panel C, we also notice that 
we do not have 𝜃̇ data points over the entire range of possible phase 
differences (yet another complication). These reasons help explain why 
our method is insufficient at capturing the dynamics of this system in 
panel D.

The exact limits of this technique in regards to the coupling struc-
ture will vary on a per system basis and will depend on the coupling 
strength, the noise intensity, the heterogeneity of the network, and the 
incorporation of any additional subnetworks.

8.2. Limitations due to observable data

To investigate the effect of limited observability among our individ-
ual oscillators, we ran a series of simulations where the average voltage 
14 
of each subnetwork was computed using only a subset of each popu-
lation of neurons. This data was used to infer a reduced order model, 
and the results were directly compared to the true average voltage. For 
this example, we will utilize the two subnetwork, 1000 neuron network 
described in Section 6 and related equations in Appendix.

Moving forward, we will be using 𝑉  to denote the true average 
voltage of a single subnetwork in the full order model and 𝑉 𝑥 to repre-
sent the average voltage inferred from a reduced order model, where 𝑥
indicates the number of observed neurons in a given subnetwork. In 
the example below, the value of 𝑥 as a percentage of the 500 total 
neurons in a single subnetwork is defined in the legend of panel A 
in Fig.  28. Panel A shows the root mean squared error (RMSE) as 
defined in Eq.  (31) over 𝑁𝑠𝑡𝑒𝑝𝑠 total time steps. Note that the RMSE 
increases substantially when less than 10% of the neurons (50 neurons) 
are observed. Panel B of Fig.  28 shows 𝑉 𝑥 over time for the values of 
𝑥 indicated in the legend of panel A. Panel C plots 𝑉 − 𝑉 𝑥 over the 
same time span and for the same values of 𝑥 shown in panel B. This 
figure demonstrates that our method does indeed accommodate limited 
observability in large populations of oscillators. 

RMSE =
∑𝑁𝑠𝑡𝑒𝑝𝑠
𝑘=1 (𝑉𝑘 − 𝑉 𝑥

𝑘 )
2

𝑁𝑠𝑡𝑒𝑝𝑠
(31)

9. Discussion and conclusion

Phase-based model order reduction methods are frequently used to 
analyze high-dimensional, nonlinear dynamical systems that possess a 
stable limit cycle. Existing phase-based, data-driven model identifica-
tion strategies assume the existence of a single, uncoupled limit cycle 
oscillator and cannot be straightforwardly implemented in applications 
where there are multiple coupled oscillators. In this work, we derive 
a data-driven phase–amplitude reduced order modeling technique for 
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Fig. 26. This figure demonstrates the attempted application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in 
Section 6 and Appendix but with 97% of the coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork 
with the black trace associated with the average voltage overlaid on top. The black trace still demonstrates the existence of population-level oscillations. Panel B 
presents each cycle of the average voltage between 𝜃 = 0 isochron crossings, again demonstrating the existence of population level dynamics but clearly showing 
that our average voltage is at times much closer to the threshold of complete desynchronization. In panel C, we compare the measured data defined in Eq.  (23) 
with the evaluation of 𝐴1𝐹1, where 𝐴1 and 𝐹1 are calculated using the steps in Section 3.2. Panel D presents a comparison between the average voltage from the 
full order model (in blue) with the comparable state inferred from the reduced order model defined in Eq.  (19). Here we see much less agreement between the 
full and reduced order model.

Fig. 27. This figure demonstrates the failed application of our algorithm on a two subnetwork system with the same dynamics and parameters defined in Section 6 
and Appendix but with 99% of coupling connections removed randomly. Panel A plots all of the voltage traces contained in a single subnetwork with the black 
trace associated with the average voltage overlaid on top. There is no longer steady and discernible population-level oscillations. Panel B presents each cycle 
of the average voltage between 𝜃 = 0 isochron crossings. In panel C, we compare the measured data defined in Eq.  (23) with the evaluation of 𝐴1𝐹1, where 
𝐴1 and 𝐹1 are calculated using the steps in Section 3.2. In this situation, we do not have any measured data in the range 𝜙 ∈ [2, 4], so we cannot obtain an 
accurate Fourier series representation of the dynamics. Panel D presents a comparison between the average voltage from the full order model (in blue) with the 
comparable state inferred from the reduced order model defined in Eq.  (19). Here we see no agreement between the full and reduced order model.
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Fig. 28. This figure demonstrates that our proposed approach accommodates limitations in the observability of individual oscillators within a subpopulation. For 
these results, we simulated a 1000 neuron network comprised of two 500 neuron subnetworks with parameters and dynamics defined in Section 6 and Appendix 
A.1. Panel A plots the RMSE value for various 𝑉 𝑥 as calculated in Eq.  (31). Panel B plots the voltage traces of 𝑉 𝑥. Panel C plots the difference between 𝑉 𝑥 and 
𝑉 .
a system of coupled limit cycle oscillators. We apply this technique in 
three examples: (1) a two oscillator model of the nonradial isochron 
clock with coupling; (2) a two subnetwork, 1000 neuron system with 
electrotonic and synaptic coupling; and (3) a four subnetwork, 1000 
neuron system with electrotonic and synaptic coupling. Our results 
demonstrate that the reduced order model is a close match to the full 
order model for all three examples. We also demonstrate the similarity 
between the analytical coupling functions for our systems, and their nu-
merical least-squares approximations and investigate limitations with 
respect to coupling structure and observability of the networks.

The data-driven reduced order modeling technique implemented 
here incorporates the temporal dynamics intrinsic to the evaluated 
dynamical systems — specifically, the existence of stable limit cycles. 
Coupled limit cycle oscillators can be modeled with the modeling tech-
niques described in this work if: (1) the underlying dynamical systems 
possess stable limit cycles; (2) the effects due to coupling, noise, and 
heterogeneity are relatively minimal with respect to the stable limit 
cycle; and (3) measurements of the phase and amplitude coordinates 
can be taken over the entire range of possible phase differences.

Some of the specific limitations we encountered relate to the cou-
pling strength between limit cycle oscillators. Specifically, if the cou-
pling strength was too strong, the oscillators possessed either strong 
synchronizing or antiphase tendencies. This made it impossible to 
derive a reduced-order model using this technique since 𝜙 did not 
generally extend over the entire range [0, 2𝜋] (related to point 3 in 
the previous paragraph). In the analysis of population-level oscillations, 
if the coupling strength within a subpopulation was too weak to pro-
duce discernible and steady population-level oscillations, our technique 
failed to yield an accurate reduced order model. Additionally, as we 
added more oscillators (or subnetworks), our accuracy degraded due 
to the high quantity of Fourier series terms that needed to be fit to the 
phase dynamics.

The model reduction strategies described in this paper are an adap-
tation of existing reduced order modeling techniques that consider a 
16 
realistic scenario: a dynamical system whose structure and dynamics 
are mathematically unknown. In the future, we will consider extend-
ing these results by deriving the phase response curves and isostable 
response curves of more complicated networks of subnetworks (i.e., a 
4 subnetwork system). Additionally, we will investigate the potential 
application of this technique to a system whose physical connections 
are unknown — that is, a system where we do not already know which 
neurons exist in the same subnetwork. We will consider extending our 
results to model control inputs using the reduced-order model.
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Appendix. Neural model equations

A single conductance-based thalamic neuron in the network model 
considered in this work has dynamics from [51]. 
𝑉̇𝑖
𝐶

= 𝐼𝑏𝑖 − 𝐼𝐿(𝑉𝑖) − 𝐼𝑁𝑎(𝑉𝑖, ℎ𝑖) − 𝐼𝐾 (𝑉𝑖, ℎ𝑖) − 𝐼𝑇 (𝑉𝑖, 𝑟𝑖) + 𝐼𝑐𝑖 +
√

2𝐷𝜂𝑖(𝑡),

(A.1)
ℎ̇𝑖 =

(

ℎ∞(𝑉𝑖) − ℎ𝑖
)

∕𝜏ℎ,

𝑟̇𝑖 =
(

𝑟∞(𝑉𝑖) − 𝑟𝑖
)

∕𝜏𝑟,

𝑖 = 1,… , 𝑁,

where 𝑉𝑖 is the transmembrane voltage of neuron 𝑖, 𝐶 = 1 𝜇F/cm2

is the constant membrane capacitance; 𝑁 = 1000 is the total number 
of neurons in the network of subnetworks; 𝐼𝑏𝑖  is an external baseline 
stimulus; 𝐼𝑐𝑖  is the current due to coupling; 𝐼𝐿, 𝐼𝑁𝑎, 𝐼𝐾 , and 𝐼𝑇  are the 
leak, sodium, potassium, and low-threshold calcium ionic currents; 𝜂𝑖(𝑡)
is a zero-mean white noise process with intensity 𝐷; and ℎ𝑖 and 𝑟𝑖 are 
gating variables. Additional equations that define this model are:

𝐼𝐿(𝑉𝑖) = 𝑔𝐿(𝑉𝑖 − 𝐸𝐿), (A.2)
𝐼𝑁𝑎(𝑉𝑖, ℎ𝑖) = 𝑔𝑁𝑎

(

𝑚3
∞(𝑉𝑖)

)

ℎ𝑖(𝑉𝑖 − 𝐸𝑁𝑎),

𝐼𝐾 (𝑉𝑖, ℎ𝑖) = 𝑔𝐾
(

0.75(1 − ℎ𝑖)4
)

(𝑉𝑖 − 𝐸𝐾 ),

𝐼𝑇 (𝑉𝑖, 𝑟𝑖) = 𝑔𝑇
(

𝑝2∞(𝑉𝑖)
)

𝑟𝑖(𝑉𝑖 − 𝐸𝑇 ).

ℎ∞(𝑉𝑖) = 1∕(1 + exp((𝑉𝑖 + 41)∕4)), (A.3)
𝑟∞(𝑉𝑖) = 1∕(1 + exp((𝑉𝑖 + 84)∕4)),

𝛼ℎ(𝑉𝑖) = 0.128 exp(−(𝑉𝑖 + 46)∕18),

𝛽ℎ(𝑉𝑖) = 4∕(1 + exp(−(𝑉𝑖 + 23)∕5)),

𝜏ℎ(𝑉𝑖) = 1∕(𝛼ℎ + 𝛽ℎ),

𝜏𝑟(𝑉𝑖) = 28 + exp(−(𝑉𝑖 + 25)∕10.5),

𝑚∞(𝑉𝑖) = 1∕(1 + exp(−(𝑉𝑖 + 37)∕7)),

𝑝∞(𝑉𝑖) = 1∕(1 + exp(−(𝑉𝑖 + 60)∕6.2)).

In Eq.  (A.2), 𝑔𝐿 = 0.05 mS/cm2, 𝐸𝐿 = −70 mV, 𝑔𝑁𝑎 = 3 mS/cm2, 
𝐸𝑁𝑎 = 50 mV, 𝑔𝐾 = 5 mS/cm2, 𝐸𝐾 = −90 mV, 𝑔𝑇 = 5 mS/cm2, 
and 𝐸𝑇 = 0 mV. Neuron 𝑖 is coupled with electrotonic coupling to 
all neurons within the same subnetwork as neuron 𝑖 and with synaptic 
coupling to all other neurons not in the same subnetwork as neuron 𝑖. 
The current due to coupling 𝐼𝑐𝑖  is 

𝐼𝑐𝑖 =
1

𝑁 − 1

[

∑

𝑗≠𝑖
𝐾𝑗→𝑖(𝑉𝑗 − 𝑉𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Electrotonic Current, Same Subnetwork

−
∑

𝑗≠𝑖
𝑔𝑗→𝑖𝑠𝑗

(

𝑉𝑖 − 𝐸𝑠𝑦𝑛(𝑗, 𝑖)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Synaptic Current, Other Subnetworks

]

,

(A.4)

where 𝑔𝑗→𝑖 is the synaptic coupling strength between neurons 𝑖 and 
𝑗, 𝐾𝑗→𝑖 is the electrotonic coupling strength between neurons 𝑖 and 𝑗, 
𝐸𝑠𝑦𝑛(𝑗, 𝑖) (in mV) is the synaptic reversal potential associated with the 
relevant synaptic current, and 𝑠𝑗 is the synaptic variable with associated 
temporal dynamics 

𝑠̇𝑖 =
𝑐1(1 − 𝑠𝑖)

1 + exp(−(𝑉𝑖 − 𝑉𝑇 )∕𝜎𝑇 )
− 𝑐2𝑠𝑖. (A.5)

The synaptic variable has parameters 𝑐1 = 3 (unitless), 𝑐2 = 1 (unitless), 
𝑉𝑇 = −20 mV, and 𝜎𝑇 = 0.8 mV. The synaptic coupling strength 𝑔𝑗→𝑖, 
the synaptic reversal potential 𝐸𝑠𝑦𝑛(𝑗, 𝑖), and the electrotonic coupling 
strength 𝐾𝑗→𝑖 are dependent on the subnetworks containing neurons 𝑖
and 𝑗. For specific details regarding the parameters used in Sections 6
and 7 of this work, see the subsections below.

A.1. Parameters for the neuronal network of two subnetworks

For the two subnetwork system in Section 6, 𝑁 = 1000 neurons with 
500 neurons in each subnetwork. Both subnetworks are heterogeneous, 
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Table A.1
Table of synaptic coupling strengths between the two 500 
neuron subnetworks analyzed in Section 6.
 1 ≤ 𝑖 ≤ 500 500 < 𝑖 ≤ 1000 
 1 ≤ 𝑗 ≤ 500 0 0.0501  
 500 < 𝑗 ≤ 1000 0.0501 0  

Table A.2
Table of electrotonic coupling strengths, 𝐾𝑗→𝑖, between any 
two neurons 𝑖 and 𝑗 within the same subnetwork for the two 
500 neuron subnetworks analyzed in Section 6.
 1 ≤ 𝑖 ≤ 500 500 < 𝑖 ≤ 1000 
 1 ≤ 𝑗 ≤ 500 0.1501 0  
 500 < 𝑗 ≤ 1000 0 0.1782  

with baseline stimuli 𝐼𝑏𝑖 ∈ [4.5, 4.7] μA/cm2 for the first subnetwork and 
𝐼𝑏𝑖 ∈ [5.5, 5.7] μA/cm2 for the second subnetwork, both drawn from a 
uniform distribution. The noise intensity is 𝐷 = 0.0015. The synaptic 
reversal potential 𝐸𝑠𝑦𝑛 = −100 mV for all synaptic connections in this 
example. 

The synaptic coupling strength between any two neurons, 𝑖 and 
𝑗 will depend on the subnetworks containing the neurons 𝑖 and 𝑗. 
Table  A.1 lists the synaptic coupling strength between neurons in the 
two subnetworks analyzed in Section 6. This value was chosen from a 
uniform distribution that spanned the range [0.05, 0.1]. 

The electrotonic coupling strength between any two neurons 𝑖 and 
𝑗 is the same for all neurons within that subnetwork. Table  A.2 lists 
the electrotonic coupling strengths for the two subnetwork system in 
Section 6. These values were chosen from a uniform distribution that 
spanned the range [0.15, 0.2]. 

A.2. Parameters for the neuronal network of four subnetworks

For the four subnetwork system in Section 7, N=1000 neurons 
with 250 neurons in each subnetwork. The subnetworks are hetero-
geneous, with baseline stimuli 𝐼𝑏𝑖 ∈ [4.0, 4.8] μA/cm2 for the first 
subnetwork, 𝐼𝑏𝑖 ∈ [4.8, 5.6] μA/cm2 for the second subnetwork, 𝐼𝑏𝑖 ∈
[5.6, 6.4] μA/cm2 for the third subnetwork, and 𝐼𝑏𝑖 ∈ [6.4, 7.2] μA/cm2

for the fourth subnetwork, each drawn from a uniform distribution. 
Here, the noise intensity is taken to be 𝐷 = 0.0016. The synaptic 
reversal potential of the synapse connecting presynaptic neuron 𝑗 and 
postsynaptic neuron 𝑖 depends on the subnetworks containing neurons 
𝑖 and 𝑗 and can be found by referencing Table  A.3. Note that neurons 
in the same subnetwork are not synaptically coupled.

The synaptic coupling strength between any two neurons 𝑖 and 𝑗
again depends on the subnetworks containing neurons 𝑖 and 𝑗. Table 
A.4 lists the synaptic coupling strengths between neurons in the four 
subnetworks of Section 7. These values were chosen from a uniform 
distribution that spanned the range [0.01, 0.08].

The electrotonic coupling strength between any two neurons 𝑖 and 
𝑗 is the same for all neurons within that subnetwork. Table  A.5 lists 
the electrotonic coupling strengths for the four subnetwork system in 
Section 7. These values were chosen from a uniform distribution that 
spanned the range [0.15, 0.18]. 

Data availability

Data will be made available on request.
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Table A.3
Table of synaptic reversal potentials (in mV) between the four 250 neuron subnetworks analyzed 
in Section 7. 𝐸𝑠𝑦𝑛(𝑗, 𝑖) = 0 mV yields an excitatory connection and 𝐸𝑠𝑦𝑛(𝑗, 𝑖) = −100 mV yields an 
inhibitory connection.
 1 ≤ 𝑖 ≤ 250 250 < 𝑖 ≤ 500 500 < 𝑖 ≤ 750 750 < 𝑖 ≤ 1000 
 1 ≤ 𝑗 ≤ 250 – −100 0 −100  
 250 < 𝑗 ≤ 500 −100 – 0 0  
 500 < 𝑗 ≤ 750 0 0 – −100  
 750 < 𝑗 ≤ 1000 −100 0 −100 –  
Table A.4
Table of synaptic coupling strengths between the four 250 neuron subnetworks analyzed in 
Section 7.
 1 ≤ 𝑖 ≤ 250 250 < 𝑖 ≤ 500 500 < 𝑖 ≤ 750 750 < 𝑖 ≤ 1000 
 1 ≤ 𝑗 ≤ 250 0 0.0101 0.0495 0.0235  
 250 < 𝑗 ≤ 500 0.0101 0 0.0667 0.0509  
 500 < 𝑗 ≤ 750 0.0495 0.0667 0 0.0436  
 750 < 𝑗 ≤ 1000 0.0235 0.0509 0.0436 0  
Table A.5
Table of electrotonic coupling strengths 𝐾𝑗→𝑖 between any two neurons 𝑖 and 𝑗 for the four 250 
neuron subnetworks analyzed in Section 7.
 1 ≤ 𝑖 ≤ 250 250 < 𝑖 ≤ 500 500 < 𝑖 ≤ 750 750 < 𝑖 ≤ 1000 
 1 ≤ 𝑗 ≤ 250 0.1500 0 0 0  
 250 < 𝑗 ≤ 500 0 0.1669 0 0  
 500 < 𝑗 ≤ 750 0 0 0.1558 0  
 750 < 𝑗 ≤ 1000 0 0 0 0.1743  
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