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A data-driven model identification strategy is developed for dynamical systems near a supercritical Hopf
bifurcation with nonautonomous inputs. This strategy draws on phase-amplitude reduction techniques,
analytically relating the phase and amplitude response curves to the terms of the controlled Hopf normal
form. Fitting can be performed by recording the system output during the relaxation to the stable limit cycle
after applying as few as two carefully timed pulse inputs. Unlike standard phase-based model identification
strategies, the resulting model is valid in the neighborhood of the Hopf bifurcation, rather than just in a close

vicinity of the unperturbed limit cycle. This strategy is illustrated in two examples with relevance to circadian
oscillations. In each example, the proposed model identification strategy allows for the formulation, solution,
and implementation of a closed loop nonlinear optimal control problem.

1. Introduction

Phase-based reduction techniques have a rich history in the analysis
and control of weakly perturbed oscillators [1-4]. This approach allows
for the transformation of a general system of equations

x = F(x,u), (€8]

where x € RV is the state, u € R is an input, and F gives the dynamics
to a phase reduced form

b=w+ZOu, 2

where § € S, w is the unperturbed natural frequency, and Z is
an appropriately sized vector that captures the response to inputs
as a function of phase. The transformation of (1) to (2) enables the
rigorous mathematical analysis of the dynamics of both coupled and
externally forced oscillations in applications that would otherwise
be intractable [2,4]. The relatively simple form of (2) allows for a
straightforward data-driven model identification strategy: by applying
a brief pulse of input and considering the resulting change in phase one
can obtain a pointwise measurement of Z(0). Repeating this procedure
multiple times by applying inputs at different phases, one can obtain
a data-driven estimate of Z(). This so-called ‘direct method’ [5,6] has
been used in a variety of experimental applications to study behaviors
such as synchronization, phase locking, and entrainment [5,7-10].
While phase reduction and phase models of the form (2) are remark-
ably useful, a fundamental limitation is that it is only valid in the limit
that inputs are infinitesimally small, i.e., its accuracy is only guaranteed
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in a weakly perturbed regime. Practically, the allowable magnitude of
the input is related to the nonunity Floquet multipliers that govern the
decay in directions transverse to the periodic orbit. Recent years have
seen a flurry of interest in the development of phase-based reduction
methods that can accommodate stronger magnitude inputs [11-17].
While such techniques provide a more accurate representation of the
dynamics in applications where strong magnitude inputs must be ap-
plied, it is typically more difficult to infer the associated reduced order
models from data. Associated model identification methods have been
developed for some of these approaches [18-20], but they typically
require much more data (and subsequently many more experiments)
than what is required for the fitting of a standard phase model of the
form (2).

In this work, a direct method approach for model identification is
developed and investigated for systems near a supercritical Hopf bifur-
cation. This strategy draws on phase-amplitude reduction techniques,
first obtaining an analytical representation for the phase and amplitude
response curves of the Hopf normal form and using this information to
uniquely fit system parameters. Unlike standard phase-based models of
the form (2), the resulting model is valid in the neighborhood of the
Hopf bifurcation, which extends far beyond the unperturbed limit cycle.
The proposed approach can be implemented by recording a general
output during the relaxation to the limit cycle after applying as few as
two carefully timed pulse perturbations. The organization of this paper
is as follows: Section 2 gives necessary background information about
phase-amplitude reduction techniques using isochrons and Floquet
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coordinates and discusses associated methods for model identification
using the direct method. Section 3 considers the normal form of the
Hopf bifurcation in relation to these phase-amplitude reduction tech-
niques. A careful consideration of the resulting reduced order equations
yields a model identification strategy that can infer all terms of the
Hopf normal form with a combination of passive observations and
a small number of pulse perturbations. Section 4 provides illustra-
tive examples on two models with relevance to circadian oscillations.
In both examples, the resulting model identification strategy enables
the application of closed-loop optimal control algorithms. Section 5
provides concluding remarks.

2. Background
2.1. Phase reduction

Consider an ordinary differential equation of the form
x = F(x,u),
y = g(x), 3)

where x € RY is the state, y € RX is the output, u € RM is an input,
F gives the dynamics, and g maps the state to the output. Suppose
that when u is held constant at u = 0, Eq. (3) has a stable T-periodic
orbit x”. Rather than considering the state of (3), it can be useful to
consider the timing of oscillations. In this case, one can define a phase
9 € [0,2z] for x € x?. By convention, 6 is typically scaled so that
= = 2;’ = w when taking u = 0. Isochrons can be used to define
phase in the basin of attraction of the limit cycle [21,22]. Subsequently
changing to phase coordinates, one can represent Eq. (3) in terms of its
phase dynamics [2]

0=w+ ZO)u, (C)]

T . . . .
where Z(9) = gz ‘Zi: with all partial derivatives evaluated at x’(6),

and 7 denotes the transpose. Eq. (4) is valid in the limit that  is small.
Numerically, Z(6) can be computed by first finding 00/dx, which has
solutions that satisfy the adjoint equation [23,24]

dve

= —JTve. (5)

Above, VO = a_ and J denotes the Jacobian of F, both evaluated on
the periodic orbit at 6(¢). In addition to satisfying (5), V6 must also be
scaled so that VT F(x") = @

2.2. Phase-amplitude reduction

Phase reduction of the form (4) only considers the timing of os-
cillations. To incorporate amplitude-based effects, one can augment
the phase equation with Floquet coordinates. Towards this end, first
consider the linear approximation of (3) near the periodic orbit

x = JAx, (6)

where 4x = x—x,’,(@) and J is the Jacobian evaluated at x”(6(¢)). Noting
that J is T-periodic and leveraging Floquet theory [25], provided the
monodromy matrix of this linear time varying system is diagonalizable,
Eq. (6) admits solutions of the following form
N-1
x=x(0)= ), w;g;(0). )
j=1
Above, g;0,p) € CV is a Floquet eigenfunction associated with the
Floquet coordinate y; € C. Above, the contribution from the Floquet
eigenfunction with associated Floquet multiplier 4y, = 1 has been
absorbed by the phase coordinate to give N — 1 total Floquet coordi-
nates. Note that each g; is unique to a constant scaling. Considering the
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underlying Eq. (3) and changing to Floquet coordinates, the dynamics
of the Floquet coordinates are [26]

Wy =K+ 1O,

j=1,..,N—1, ®)

where 1 (0,p) = a—t’Tﬁ with all partial derivatives evaluated at
x7(6), and k; € C is the Floquet exponent associated with the jth
Floquet eigenfunction. Egs. (4) and (8) together constitute a phase—
amplitude-based representation for the underlying system (3) that is
valid provided Ax remains small. In many cases, it can be useful to
truncate the most rapidly decaying y; (as gauged by the magnitude
of the associated «;) thereby arriving at a phase-amplitude reduction.
Indeed, the inclusion of amplitude coordinates allows for the formula-
tion and solution of control problems that phase reduction alone cannot
accommodate [26 28]. Numerically, each I;(0) can be computed by

first fmdlng —L Wthh has solutions that satisfy [26]
dVy;
dt

=—(JT - x;Id)Vy;, @

where Vy; = % evaluated on the periodic orbit at §(¢) and Id is an
appropriately sized identity matrix. Additionally, the solution to (9)
must be scaled so that Vy/jng(B) = 1 for all states on the periodic orbit.

Note that the phase and amplitude reduced equations from (4)
and (8) are only valid in the limit that the input magnitude is small
relative to the magnitude of the nonunity Floquet multipliers. Floquet
coordinates can be generalized to the entire basin of attraction of the
limit cycle using the concept of isostable coordinates, which are level
sets of principal Koopman eigenfunctions [29], in order to improve
the accuracy of the phase—amplitude reduction when larger magnitude
inputs are required [13]. For a broader discussion regarding the use
of isostable coordinates in control applications, the interested reader is
referred to [4].

2.3. Direct methods for inference of phase and amplitude response curves

In an experimental setting, the equations that comprise F are often
unavailable thereby precluding the use of Egs. (5) and (9) for finding
Z(®) and I 1(0), respectively. Alternatively, one can infer Z(0) and from
data by applying pulse inputs and observing the subsequent relaxation
to the limit cycle. To summarize approaches from [5,6], for simplicity
of exposition, consider M = 1 so that u € R (although this is not a
strict requirement). First, it is necessary to define a Poincaré section
I, constructed as a K — 1 dimensional hyperplane in the space of
outputs that is transversal to g(x”(9)) at # = 0. When g(x) € I,
0 is approximately zero with the mismatch depending on the local
curvature of the isochrons relative to the I, hyperplane. Next, the
frequency and associated period (@ and T, respectively) of the system
(3) must be approximated from passive observations.

Starting with estimation of Z(0), for an initial condition x = x”(6,)
one can apply a short pulse of input u(r) = m lasting ¢, time units. By
determining the resulting change in phase, for instance, as gauged by
the subsequent crossing of I, relative to the expected crossing had the
pulse input not been applied, one can obtain an estimate of the phase
response curve according to

z0) ~ 22 a0
0

This procedure can be repeated at different choices of 6, allowing
Z(#) to subsequently be fit to a Fourier series basis Z() = b, +
Yot [ax sin(®) + by cos(8)] choosing v appropriately to avoid overfit-
ting.

For the amplitude coordinate dynamics, suppose that |«;| = O(1/¢)
for j > 2 where 0 < € < 1, i.e., so that all but one Floquet coordinate
decays rapidly. In this case, it is possible to use the same pulses inputs
to obtain an estimate for the slowly decaying Floquet exponent, i,
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and the corresponding response curve, I,(0). A careful description of
this strategy is given in [20] and summarized here. Let 6(¢) at some
time 7 = 7, be equal to §,. Applying a pulse input u(f) = m starting at
t =1, and lasting #, time units, one can define 7; to be the kth crossing
of the I, Poincaré section after the application of the pulse input.
Subsequently letting 7, = t; —;_, the slope of a linear regression of &
versus log(z, — T)/T is equal to ;. For the same pulse input, as shown
in [20], the amplitude response curve can be computed according to

» 27k = 1) — w(t} = 17)

mty exp(y (1 — 1,)) — exp(k (15 = 1,))’

1,(6y) = an
for and k > 2. Above, p is a constant that depends on the underlying
system (3). As with the phase response curve, this procedure can be re-
peated for different choices of 6, allowing I, (6) to subsequently be fit to
a Fourier basis. Note that data from the same pulse input can be used to
obtain a pointwise estimate of both Z(6,) and I,(6,). Related strategies
for estimating Z(6) and I,(6) for systems with multiple non-negligible
Floquet coordinates have been developed leveraging machine learning
techniques [30]. Phase autoencoders have also been used successfully
to infer phase response curves from data [31]. Refs. [20,32], and [18]
provide a more complete description of these model identification
strategies for the interested reader. In general these approaches require
the collection of enough data to fully resolve both Z(#) and I,(9),
potentially requiring a substantial of trials.

3. Data-driven model identification for Hopf oscillators

As shown here, for oscillatory systems of the form (3) that result
from a supercritical Hopf bifurcation, the phase—amplitude coordinate
framework enables model identification by observing the relaxation
to the limit cycle following as few as two pulse perturbations. The
following analysis will assume that M = 1 so that ©« € R, but
appropriate modifications could be made straightforwardly to consider
the case where M > 1.

3.1. Normal form for a Hopf bifurcation with applied control

The autonomous form of the Hopf bifurcation has been widely
studied [33,34]. This basic structure is adapted here for use with an
additional nonautonomous forcing term. To begin suppose that F from
(3) is at least C° differentiable with an unstable fixed point x, with
F(xy,0) = 0. Suppose also that the system is close to a supercritical
Hopf bifurcation so that the linearized vector field has a complex-
conjugate pair of eigenvalues 4, , with Real(4, ) ~ 0 with the remaining
eigenvalues 4; having |Real(4;)| sufficiently bounded away from 0
for j > 3. Note that u is not explicitly assumed to be a bifurcation
parameter. Considering the normal form of the Hopf bifurcation, when
taking u = 0, it is possible to transform (3) to the following form:

%= ax - fy+ @x - b + 5,

¥ =%+ ay+ bz + anE + ), 12)
which is valid up to fifth order of accuracy. Above, ¥ € R and j € R
represent Cartesian coordinates on the center manifold associated with
the Hopf bifurcation that result from the analytic coordinate change
%= h|(x), § = hy(x) and &, f,d,b € R are coefficients associated with
the Hopf normal form. In radial coordinates, i.e., for which % = 7sin(®)
and j = 7 cos(®) the dynamics are 7 = aF+ai> +O(P), § = f+br? +OF).
Focusing on the dynamics of % and j from (12) when u # 0 one can
write

. Oh; dx
=2 ax
ox dt
oh
=2 <F(x, o+ 2Ly O(u2)>
ox ou
= a% — f7+ (ax — by)(R2 + 7) + Hyu+ 0w + O(u|x — x,)),
. 0h2 dx
y=—-——

ox dt

Physica D: Nonlinear Phenomena 476 (2025) 134635

oh
=—2.( F(x,00+ L ow?)
ox ou
= % + @y + (bX + ap) (X% + 7) + Hyu + O(u?) + O(ulx — xg|), 13)

where F(x,u) is the underlying dynamical system from (3), the ‘dot’
denotes the dot product and H; = i—’: -9 for i = 1,2 with all
partial derivatives evaluated x = x, and u = 0. Recall that both u
and |x — x,| are assumed to be small; as such the higher order terms
from (13) will be truncated to focus on the dominant contribution
from the input. A final coordinate change % = u(X cos(,) — ysin(6,)),
§ = u(xsin(@y) + ycos(8y)) will be considered. Choosing 6, so that
H,sin(6,) + Hycos(y) = 0, letting u = 1/(H, cos(8y) — H, sin(6;)),
and truncating O(u?) and O(u|x — x,|), the dynamics of the transformed
coordinates become

R=ak —pP+(ak - bPE> + ) +u,
$= PR+ ap+ (% + ap)R> + %), (14)

where a, f, a,b € R are defined appropriately. In the following analysis,
Eq. (14) will be referred to as the controlled Hopf normal form.

3.2. Phase—amplitude reduction of the controlled Hopf normal form

While normal form theory guarantees the existence of an analytic
coordinate changes that places the dynamics of (3) in the form (14)
describing the system’s behavior on the center manifold associated with
the Hopf bifurcation, the specific coefficients depend on the terms that
comprise (3). This poses a challenge when F is unknown. In this case,
the relevant terms must be inferred from data, but the mapping y = g(x)
is generally also unknown and is not guaranteed to be invertible. Here,
phase-amplitude reduction is considered to aid in model identification.
Considering the controlled Hopf normal form (14), provided a < 0
and ¢ > 0 the system has a stable periodic orbit [£7(9),"(0)] =
[r cos(8), ry sin(@)] where ry = \/—a/a. Here, § = w when u = 0 where
® = p — ab/a. Considering the adjoint equation from (5) with the
constraint that %[fc, $]VO = o when evaluated on the periodic orbit
taking u = 0, one can verify that

T
Vo = [—\/ —a/a<sin(0) + bcos(€)/a>, V-—a/a <Cos(6‘) - bsin(9)/a>] s
15)

gives the gradient of the phase along the periodic orbit. Towards
considering the Floquet coordinates, first note that with the coordinate
change % = rcos(d), § = rcos(d), the dynamics of the radial coordinate
are i+ = ar+ar’. For the fixed point at r = r, the associated linearization
is Ar = —2aAr giving the Floquet exponent

K = —2a. (16)

With this in mind, for the periodic orbit, x”, using Eq. (9) one can verify
that for the Floquet coordinate

Vi, = C[cos(8), sin(8)]7, a7

provides the gradient along the periodic orbit, where C;, € C is a
constant that reflects the fact that the Floquet eigenfunctions are unique
up to a constant scaling. Considering the definition of Z(9) and I,(9)
provided after Eqgs. (4) and (8), respectively, in conjunction with the
results from Egs. (15) and (17), one finds

Z(O) = -/ —-a/a <sin(6') + bcos(é’)/a), (18)
I1,(8) = C; cos(8), 19

gives the phase and amplitude response curves for the transformed
Hopf normal form from (14). Notice that the terms a, b, and « appear in
Z(0) from Eq. (18). Additionally, f is related to the natural frequency,
w. Ultimately, as discussed in the following sections, with knowledge of
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both Z(6) and I,(0) from Egs. (18) and (19) as well as the natural fre-
quency, o, it is possible to infer the terms of the controlled Hopf normal
form (14). As distinct from standard phase-based model identification
strategies, the region of validity of the resulting model extends beyond
a close vicinity of the unperturbed limit cycle to the neighborhood of
the Hopf bifurcation. It is important to mention that previous authors
have considered the computation of the phase and amplitude response
curve for the supercritical Hopf bifurcation [23,32,35,36].

3.3. Preservation of the terms of the phase—amplitude reduction following
transformation to the controlled Hopf normal form

Consider the linearization near the periodic orbit (6). For any x € x”
(so that w; = 0 for all j), suppose x is perturbed slightly to x + 4x
where |4x| = O(e) with 0 < ¢ <« 1. To leading order in ¢, using the
representation (7), one can write
N-1
X + Ax = X7 (0) + A0gy + Z (w; + dw;)g;(0). (20)
j=1
Above, the terms 40 and Ay; capture the change in the phase and
Floquet coordinates in the basis of Floquet eigenfunctions and gy =
% is the N Floquet eigenfunction of (3) which is associated with
translation along the periodic orbit. It is relatively straightforward to
show that shifts in the phase and Floquet coordinate are preserved
through the transformation to the controlled Hopf normal form. To
this end, let D(x) = [%, y]T be the analytic, continuously differentiable
coordinate transformation between the state variables in the given
coordinate system and the controlled Hopf normal form. In this trans-
formed coordinate system, the periodic orbit becomes [)?7(9), yy(e)]T =
D(x?(0)). To leading order accuracy, Eq. (20) becomes

T N-1
%+ A%, 9+ Afz] =D <xy(0) + Ae% + [(wj + ij)g,(e)D
j=1

N-1
= DOTO)+ DO a0+ Y [(w,- + 4D () - g,-w)],
j=1

@n
where ' = %. Looking closer at the terms of (21), one can rewrite
Eq. (21) as

T N-1

[+ 4%, 5+47] =D (0) + &y (0)40+ Y [Cj(y/j + Ay/j)g/(e)], (22)
j=1

where g; for j = 1,...,N are the Floquet eigenfunctions in the

transformed coordinate system with the constant C; € C reflecting the
fact that these eigenfunctions are unique to a constant scaling. Above,
the fact that gV (9) = % [27.9"] = D'(®)- % is used. Comparing (20) to
(22), one finds that phase shifts are preserved in the coordinate system
associated with the controlled Hopf normal form and shifts in the
Floquet coordinates are preserved up to a constant scaling. Recalling
that Ax was arbitrary, this implies that Z(0) is equivalent between
coordinate systems with each 1;(0) being preserved up to a constant
scaling (i.e., the shape of I ;(0) is the same).

3.4. The relationship between the geometry of original and transformed
coordinate systems

As shown here, the phase-amplitude reduction framework enables
the inference of the terms associated with the controlled Hopf normal
form despite the fact that the transformed coordinates % and j are
generally not directly recoverable from measurements of the observ-
able. The key here is to relate the geometry of the problem relative
to the coordinates of the controlled Hopf normal form from (14) to
the geometry in observable space. Note that here and below, the

asymptotic phase is denoted by § when viewed from the perspective
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of the controlled Hopf normal form and denoted by 6 when viewed
from the perspective of the original Egs. (3).

Fig. 1 highlights the details of the geometry in both frameworks for
the case that K =1 so that y € R. Panel A emphasizes the geometry of
the Hopf normal form, with (%, ) = (0, ry) corresponding to 6 = 0. From
this perspective, the gradient of the phase and amplitude equations
can be written analytically according to (15) and (17), respectively.
Panel B considers the output g(%,§) plotted against § evaluated on
the periodic orbit [27(6), §”(0)]. Considering the model identification
strategies described in Section 2.3, the terms of the phase-amplitude
reduction can be obtained by first defining a Poincaré section I}
transversal to g(x”(9)) at & = 0. For practical purposes, I}, is usually
chosen to be an easily identifiable feature of the model output. While
the results from Section 3.3 show that information about phase and
Floquet coordinate shifts are preserved to a constant scaling, there is
no a priori way of identifying where = 0; as such a phase offset ¢ is
necessary to relate 6 and 0.

3.5. A direct method for inference of the unknown coefficients of the
controlled Hopf normal form

The results presented above can be leveraged to develop a data-
driven model identification strategy for systems that are close to a
supercritical Hopf bifurcation. This strategy can be implemented by
applying as few as two pulse perturbations and examining the subse-
quent relaxation to the unforced periodic orbit. The proposed approach
infers the phase and amplitude response curves as an intermediate step,
but goes beyond standard phase-based model identification strategies
to infer terms of the controlled Hopf normal form (14). As such, the
resulting model is valid in the vicinity of the Hopf bifurcation which
extends beyond the unperturbed limit cycle.

As discussed in Section 3.4, the notation 6 and @ is used to distin-
guish between the asymptotic phase in the original system coordinates
and the coordinates of the controlled Hopf normal form, with the
conversion § = 0 + ¢. The steps required to implement this model
identification strategy are summarized below

(1) Choose some K — 1 dimensional hyperplane I, € RX transversal
to g(x?) to serve as a Poincaré section. The output g(x(¢)) crossing
I, signifies that 6 ~ 0.

(2) From passive observations (i.e., taking u = 0) let T be defined
as the average transversal between crossings of I7,. Note that for
noisy systems, the time between crossings of I, will generally
not be constant.

(3) After holding u = 0 long enough for transients to decay, at some
time for which g(x) € I, (so that 6 ~ 0), apply a short pulse u(r) =
m lasting 1, time units. By observing the subsequent relaxation to
the periodic orbit, the strategies described in Section 2.3 can be
used to provide an estimate of «, (by observing the time between
crossings of Iy during relaxation to the periodic orbit) as well as
Z(0) and pI,(0) (according to Egs. (10) and (11), respectively).
Recall that p is a constant that depends on system parameters
that ultimately does not need to be inferred.

(4) After the system fully relaxes to the periodic orbit, apply an iden-
tical pulse T'/4 time units after the crossing of the I, Poincaré
section (so that § = n/2. Record the subsequent relaxation to
the periodic orbit and use (10) and (11) to provide estimates of
Z(z/4) and pI,(x/4), respectively.

(5) Considering Eq. (19),

1,(8) = C, cos(8 — ¢). 23)

The two data points obtained from Steps 3 and 4 can be used
to obtain an approximation for ¢ and C,/p. Note that due to
symmetries in the cosine fitted function, the pair (¢, C,/p) and
(¢ + n,—C,/p) are equally good fits to the data; both of these
options represent candidates for the true phase offset.
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Fig. 1. Panel A highlights the geometry of the model identification problem from the perspective of the controlled Hopf normal form. Panel B gives the representation as seen
from the observable space in the context of the model identification strategies described in Section 2.3. Note that the moment where 6 = 0 is determined by the choice of the
Poincaré section I and that § = § + ¢. This offset accounts for the fact that § = 0 will generally not correspond to 8 = 0.

(6) Infer the terms «, f, a, and b for the controlled Hopf normal form
starting with
K1
—_1 2
a 5 24
which is obtained from (16). Considering Eq. (18), one can write

Z() = —\/—a/a(sin(& —¢)+bcos(0—¢)/a>. (25)

With knowledge of «, and for the two candidates for ¢ from Step
5, a minimization over a and b can be performed with the data
points obtained from Steps 3 and 4. Choose the true value of a, b,
and ¢ to be the parameter set that minimizes the residual for
the fit of Z(0). Consequently, the radius of the periodic orbit in
controlled Hopf normal form coordinates is r, = 1/—a/a. Finally,
considering the period on the unforced periodic orbit in relation
to the radial form of the Hopf bifurcation, one finds

2
p= ?” - brl. (26)

A few general notes about the implementation of the above model order
reduction strategy and its subsequent use are provided below.

Note 1) Implementing Steps 1-6 above uniquely determines the coef-
ficients associated with the controlled Hopf normal form. For
x € x?, the output g(x) crossing the I, level set corresponds to
(&, 9) = (ry cos(—¢), ry sin(—¢)). Without further information, this
is the only moment that an observation of the transformed co-
ordinates can be obtained. Under certain conditions, additional
real-time estimates of the transformed state can be obtained as
described in the section to follow.

Note 2) Only two pulse perturbations are sufficient to uniquely deter-
mine the unknown coefficients in the model fitting procedure
described above. Pulses are applied at 6 = 0 and 0 = #/2
to ensure, in the worst case scenario, that |I(0)| is within 70
percent of its peak value for at least one of the datapoints so
that the dynamics associated with the amplitude coordinates
can be clearly observed. Of course, additional data points can
be incorporated into the parameter fitting from Steps 5 and 6.
Redundant measurements can be especially helpful to overcome
measurement or system noise.

3.6. Real-time inference of state variables for the controlled Hopf normal
form

In control applications, it can be useful to obtain real-time state
information. The state of the controlled Hopf normal form (14) cannot

be directly observed from the system output y as defined in Eq. (3).
For simplicity of exposition, it will be assumed that K = 1 so that
y € R, but the following strategy could be straightforwardly applied in
higher dimensions. To proceed, noting that the series of near identity
coordinate changes that yield X = h;(x) and j = h,(y) in the Hopf
normal form (12) and the subsequent transformation to the controlled
Hopf normal form (14) are all invertible. As such, letting‘1 denote the
inverse, the function D~!(%, ) = x which gives the state on the center
manifold as a function of the coordinates in the controlled Hopf normal
form is guaranteed to exist. Assuming that both % and y are small and
that g is at least C' differentiable, to leading order one can write

y=2gx)
=g(D7'(%,9)
Ryt X+, 27)

where ¢, = g(D~1(0,0)), ¢, = %g(D‘l), and ¢, = %g(D-l), with partial
derivatives taken at £ = = 0. Taking the time derivative of (27) yields

y=ek 4o
= ¢ (ak — B+ (ak — bP)E + *) + u) + ¢, (B3 + aP + (bR + aP)R* + 7))
=1 f[1(X,9)+cru+ ey fr(X, D), (28)

where the second line is obtained by substituting (14) and f, and f,
in the third line are defined appropriately. Still assuming % and y are
small one can write
. 9f1 (TERW 9/ 92\
yz<C1§+02g X+ Cla—y"rCza—)A} y+ClM

=(cra+ )X+ (cpa —c;f)y+ cqu

=c3X + 4 +cpu, 29

where the second line is obtained by evaluating the partial derivatives
at £ = y = 0, noting that f,(0,0) = f,(0,0) = 0 and defining c; and ¢,
appropriately. Considering both (27) and (29) together, one can obtain
an estimate of % and § according to

R ] @
y 3y y—cu
Above, the coefficients ¢(,c; and ¢, can be obtained through observa-
tions of the periodic orbit y(x”()), comparing to (X(0), $(8)) = (r, cos(f —
@), ry sin(0—¢)), and inferring ¢, c;, and ¢, through least squares fitting.
Instantaneous estimates of y can be obtained from finite difference
approximations.

As mentioned previously, for x € x”, when the output g(x) crosses
the I level set, (%,9) = (rjcos(—¢), r(sin(—¢)) provided % and y are
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Fig. 2. The proposed model identification strategy is applied to the 16-dimensional circadian model described in Appendix A. In panel A, a pulse is applied at phase 6 = /2 and
the subsequent crossings of the Iy, surface are used to infer «;, I(x/2)/p, and Z(x/2). Direct estimates for 1(0)/p and Z(0) are also obtained. Black dots in panel B represent the
direct estimates of 1(9) and the black line is a curve fit of the form (23). Panel C provides the same information for Z(#) where the data is fit to a curve of the form (25). This
information uniquely determines the unknown coefficients of the controlled Hopf normal form (14).

small. The approximation (30) relies on the additional assumption that
g is smooth. In practice, it can be useful to use (14) to approximate
the state dynamics in response to the input « and supplement with a
state estimation algorithm with the information from (30). This will be
described more carefully in the example from Section 4.

4. Examples

4.1. Model identification for a detailed computational model for circadian
clock oscillations

As a preliminary example, a detailed model for mammalian cir-
cadian clock oscillations is considered. The model contains 16 state
variables that characterize the dynamical behavior of regulatory loops
that govern the Per, Cry, Bmall, and Clock genes [37]. Full model
equations are provided in Appendix A. The control parameter v, p(t) =
U?P + u(r) is taken to be the control input which acts as a surrogate
for the ambient light intensity. Here U?P = 1.2 nM/h corresponds to a
moderate light intensity with higher and lower values corresponding to
higher and lower intensity ambient light. M (the concentration of Per
mRNA) is taken to be the measured output, i.e.,

¥(t) = M,(1). 81

Other observables can be used for this example and give comparable
results. This model undergoes a supercritical Hopf bifurcation when
u = —0.134; when u = 0, the associated fixed point is unstable with
eigenvalues 4;, = 0.0254 + 0.275. This information is provided for
context but is not used in the model identification strategy described
below.

Fig. 2 provides an illustration of the proposed model identification
strategy applied to the circadian model from Appendix A. The I
Poincaré section is defined as the crossing of M, = 1.37 with a positive
slope. x” is taken to be the stable periodic orbit that results when taking
u=0,i.e., holding v,p constant at 1.2 nM/h. In panel A, a short pulse in
u is applied at § = z /2, T /4 hours after the phase crosses the I}, surface.
Subsequent crossings of the I}, surface are used to infer «;, I(x/2)/p
and Z(r/2) using the strategy described in Section 2.3. A second pulse
applied at # = 0 is used to infer 1(0)/p and Z(0). Recall that while
the data driven model identification strategy from Section 2.3 provides
an estimate of pI(f) where p is an undetermined constant. The two
directly inferred data points shown as black lines in panel B (resp., C)
are used to fit curves of the form (23) (resp., (25)). These fits are
used to determine the unknown coefficients a = —0.0106, b = —0.0034,
a = 0.0224, and p = 0.2721 in the controlled Hopf normal form (14)
as well as the phase offset ¢p = 1.005 rad. Note here that the model

dynamics are inferred by observing the output during the recovery to
the periodic orbit for only two pulse perturbations.

The resulting model is validated with the formulation and solution
of an optimal control problem of shifting the oscillation timing, with
relevance to the development light exposure scheduling for jet-lag
mitigation strategies [38-40]. Following the optimal control problem
formulation described in Appendix B and letting &(;) = [%(t)), y(t,-)]T,
the cost function considered here is

n n—1
T =k Y [1=exp(=30/|&GAD — &g (ADID)] + Y u(idn), (32)
i=0 i=0
where k is a positive constant that weights the relative importance
of the state-based and control-based costs and &,,() = g
[cos(8, + @), sin(@ + wt)] with @ = p — ab/a and r, = y/—a/a and
0y € [0,27). The target &, represents a state evolving on the periodic
orbit at the unperturbed natural frequency. During the application of
the optimal control, the state estimate is updated according to

-1
¢i+1=f<c,~,u)+v<[i‘ CQ] [.y 2 —f(C,»u>)- (33)

3 G y—au

Above, as in (B.1), {; = [%(i4f), 5(i4D)]T and f gives the evolution of
% and J under the evolution of (14) when applying a constant u. As
described in Section 3.6, the constants ¢; — ¢, can be obtained through
least-squares fitting with knowledge of y(x"(0)). The constant v € (0, 1]
sets how aggressively to update the state when comparing the expected
evolution of the coordinates in the controlled Hopf normal to estimates
obtained from direct observations of y and y. For this example, v = 0.02.

As described in Appendix B, the cost-to-go function (B.4) associated
with the cost function (32) is solved numerically taking 47 = 0.1 hours,
n = 1200, k = 1/50, and 6, = —¢ + 12w with allowable control input
u € [-0.2,0.2]. For an initial condition at § = 0 on x” (i.e., the periodic
orbit that results when taking u = 0) the resulting control defined by
(B.6) will advance the state by 12 h, or approximately = radians. Fig. 3
shows the result of the application of this optimal control strategy. The
black trace in Panel A gives the actual output for the model with the
blue trace giving the output computed according to (27) as a function of
the coordinates of the controlled Hopf normal form. Note that these two
traces are slightly different and that the correction term from the state
update Eq. (33) is small. The dashed line gives a plot of the unperturbed
reference highlighting the shift in the oscillation timing caused by the
optimal input which is shown in Panel B. After the application of the
optimal input, the true shift in oscillation timing as determined by
successive crossings of the Iy Poincaré surface is 11.3 h. The curve
in Panel C shows the evolution of X and j over time. Note that these
coordinates cannot be measured directly and are instead estimated
according to (33). For the large phase shift, the state comes close to
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Fig. 3. After model identification, the optimal control strategy from Appendix B is applied to the inferred model (14). The goal is to shift the phase 12 h in advance while limiting
the control effort. The optimal control is shown in panel B. The solid black line in panel A gives the resulting model output with the blue line obtained using the estimation of
the state of the inferred model (14). The dashed line gives the trajectory for a system for which u = 0 for reference. Panel C shows the evolution of % and j over time, estimated
according to (33), during the application of the control. The dashed circle shows the unperturbed periodic orbit with radius r, = y/—a/a for reference.

the unstable fixed point at & = = 0 before being driven back to the
periodic orbit with the correct phase.

4.2. Model identification for population-level oscillations in a coupled os-
cillator model

As a second example, a phenomenological model is considered for
coupled oscillations in the suprachiasmatic nucleus (SCN) [41], the
“master clock” responsible for circadian pacemaking:

B =v et —p =Dt p _KF + ou(t) + V2Dn,(t)
"TU'KI+ D K, + B ‘K +KF i,

C, = k3B, — vy ———,
R P

D, = ksC, D;
= kG — pg
PSR+ D,

E,=k;B,—vg—2t—, i=1,...,N. 34
i 720 8K8+Ei ! ()

In mammals, the SCN is comprised of roughly 10,000 coupled neurons
that respond to environmental cues such as light intensity in order
to entrain to a 24-hour light-dark cycle [42,43]. The above model
considers N = 3000 oscillators with the variables B;, C;, and D; rep-
resenting mRNA concentrations of clock gene, the associated protein,
and the nuclear form of the protein, respectively, for the ith oscillator.
E,; represents a neurotransmitter that contributes to the mean-field
coupling F(t) = % Zfi | E;(®) that influences the behavior of the variable
B. F(t) is taken to be the measured output for this model. Time is
measured in units of hours. The control input u can be thought of as
the intensity of ambient light; each neuron has an intrinsic sensitivity
to light 6; = max(1+0.4N (0, 1),0) where N(0, 1) is a normal distribution
with zero mean and unit variance. The term \/2D#;(7) incorporates an
independent and identically distributed zero-mean white noise process
with intensity D = 0.0001. Nominal model parameters are n = 5,v; =
0.55,0, = 0.39,0, = 035,05 = 035,05 = L,ky = 0.7,ks = 0.5,k; =
035K, =1,K-2=1,K, =1,Kg = 1,Kg = 1,h, = 035,K, = 1 and
K = 0.5. To incorporate heterogeneity, parameters v, v,, vy, Vg, k3, and
ks are drawn from a normal distribution with mean being equal to the
nominal parameter and a variance of 0.0001.

Fig. 4 provides an illustration of the proposed model identification
strategy applied to the circadian model from (34). The I, Poincaré sec-
tion is taken to correspond to the crossing of F(¢) = 0.044 with a positive
slope and is represented by the dashed line in panel A. Recording 230
cycles, the mean return time to the I, section is 24.17 h. Colored traces
in panel A show individual recordings of F over these individual cycles.
F(x”) is taken to be the average of these 230 recordings and shown
as a solid black line. Note that because of the noise, the system never

settles to the periodic orbit. Following the strategy from Section 2.3,
pointwise estimates of 1(0) and Z(6) are obtained applying a short pulse
of input at specific times and recording the relaxation back to the limit
cycle. Results of individual trials in panels B and C are shown with
blue circles and the black curves are fit to functions of the form (23)
and (25) for 1(0)/p and Z(0), respectively (recall from Section 2.3 that
1(0) can only be estimated up to a positive constant p). Here, multiple
samples are considered in order to contend with the noise inherent to
(34) but similar fits to the data can be obtained using only a subset of
these samples. The fitted curves from panels B and C are used to infer
the terms of the controlled Hopf normal form from (14); here a = —0.41,
b= —1.24, a = 0.0034, and g = 0.27 with phase offset ¢ = 1.30.

The accuracy of the inferred model resulting from the proposed
model identification procedure is first tested by applying an open loop
input u(7) = max[0.02 sin(0.241)+0.02 cos(0.157)+0.025 sin(0.4¢), 0] starting
at t = 0. Results are shown in Fig. 5. While the output and input do not
match perfectly, the timing of the oscillations in response to the input
matches well. Results are qualitatively similar when using other inputs
of similar magnitude.

The inferred model is also validated by formulating and solving an
optimal control problem with the goal of driving the system to the
unstable fixed point of the associated Hopf bifurcation (i.e., the phase-
less set [22]). Following the optimal control formulation described in

Appendix B and letting &(t,) = [%(t)). 3(t,)] T, the cost function considered
here is
U n=1
T =k Y [1—exp(=20[I&GAn]D)] + Y u(idn), (35)
i=0 i=0

where k is a positive constant that weights the relative importance of
the state-based and control-based costs. As described in Appendix B
the cost-to-go function (B.4) associated with the cost function (35) is
solved numerically taking Ar = 0.1 hours, n = 240, and k = 1 with
allowable control input u € [0,0.04]. The resulting optimal control is
applied to the full order model (34) with a 24 h prediction horizon,
i.e., by using the J; cost-to-go function at all times when computing
the optimal control according to (B.6). During the application of the
optimal control, the inferred state of the controlled Hopf normal form
is updated according to (33) where v = 0.005. Results are shown in
Fig. 6. Starting from an initial condition near the unperturbed periodic
orbit, the control is turned on at ¢+ = 100 hours and quickly drives the
system to the phaseless set. Panel A shows the controlled output (black
line) for the model along with the output computed according to (27) as
a function of the coordinates of the controlled Hopf normal form (blue
line); notice that there is relatively little discrepancy between these two
curves. The applied optimal control is shown in panel B. Panel C shows
the evolution of % and y over time calculated according to the estimator
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Fig. 4. For the population circadian model (34), colored traces in panel A show recordings of the output, F(), between crossings of the Iy Poincaré section. F(x”) is taken to
be the average of these traces. Pulse inputs are applied with resulting estimates of 1(6)/p and Z(0) shown as blue circles in panels B and C, respectively. This data is used to fit
sinusoidal curves shown in black which in turn are used to infer the terms of the controlled Hopf normal form from (14).

Inferred Model
A ——— True Model

1 1 I 1 1 1 1 L

-50 0 50 100 150 200 250 300 350 400

Fig. 5. Panel A shows the output from both the true model and inferred model in response the applied input from panel B. While not a perfect match, the 2-dimensional inferred
model provides a reasonable representation of the dynamics of the 12,000 dimensional model (34).
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Fig. 6. Optimal control applied to the population model for circadian oscillations (34). The optimal state feedback controller is computed according to the dynamic programming
strategy described in the text. The goal here is to drive the system to the phaseless set, i.e., the unstable fixed point associated with the Hopf bifurcation. At = 100 the controller
is turned on. Panel A shows the output from the full model (black line) along with an estimate obtained from (27) (blue line) which uses the estimate for the state of the controlled
Hopf normal form. Panel B shows the control applied as a function of time. Panel C shows the evolution of % versus y during the simulation. The unperturbed periodic orbit with
radius ry = \/—a/a is shown for reference as a dashed line.

(33). The initial burst of input at 7 = 100 quickly drives the system close 5. Discussion and conclusion

to the unstable fixed point of the controlled Hopf normal form. The

subsequent inputs are much smaller, counteracting the effect of noise In this work, a general strategy is developed and investigated for
to keep the system close to the target. data-driven inference of oscillatory dynamical systems close to a su-

percritical Hopf bifurcation. By first augmenting the Hopf normal form
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with a control input to yield (14), the unknown coefficients can be
determined uniquely by obtaining as few as two pointwise estimates
of the phase and amplitude response curves when considering the dy-
namics from the perspective of isochrons and Floquet coordinates. The
resulting model is valid in the vicinity of the Hopf bifurcation, which
extends far beyond the unperturbed limit cycle. Examples illustrate the
utility of this model identification strategy with the formulation and
solution of different optimal control problems.

With regard to the underlying form of the model from (3), while
the proposed model identification strategy assumes that the underlying
state dynamics that comprise F(x,u) are sufficiently smooth, there is no
explicit requirement about differentiability or continuity of the state-to-
output map g(x). In principle, sparse identification strategies [44-46]
could also be used for data-driven model identification purpose, but
such strategies may prove difficult in situations where g is not suffi-
ciently smooth. Note that the real-time state inference strategy from
Section 3.6 does require that g is at least C! differentiable, but even
without the state-inference strategy, the phase and associated coordi-
nates of the controlled Hopf normal form can always be estimated once
per cycle at the crossing of the Iy Poincaré section provided the system
is close enough to the unperturbed periodic orbit.

There are many limitations of the proposed model identification
strategy that are worth mentioning. The proposed model identification
approach cannot be straightforwardly generalized to systems undergo-
ing a supercritical Hopf bifurcation. For such systems, the resulting sta-
ble limit cycle typically settles far from the fixed point associated with
the Hopf bifurcation thereby invalidating the assumptions required
to implement the proposed approach. For these systems, other data-
driven approaches that rely on related phase-based model identification
approaches would likely be more applicable [18-20]. Additionally, the
current manuscript does not explicitly consider noise or other sources of
uncertainty in the problem formulation. In the results from Section 4.2
noise is included in the model equations necessitating multiple redun-
dant measurements of the associated phase and amplitude response
curves with the goal of averaging out the effects of noise. It would be of
particular interest to obtain rigorous estimates of how noise contributes
to errors in the representation of the resulting models. Furthermore,
while the proposed approach is valid provided the system is sufficiently
close to a subcritical Hopf bifurcation, estimates for how this estimation
degrades as the state moves farther from the Hopf bifurcation are not
considered.

Almost certainly, other data-driven model identification strategies
could be applied to the systems considered in this work, but careful
consideration of the dynamical behavior near the Hopf bifurcation
yields a relatively simple model fitting approach that requires very little
data. The results presented here serve to highlight the need for the
continued development of data-driven model identification strategies
that leverage the knowledge of normal forms near bifurcations of vector
fields. While the strategy proposed in this work is only applicable
for one specific (but commonly observed) bifurcation, other authors
have investigated the shape of phase and amplitude response curves
for oscillatory systems that are near other bifurcations [23,47,48]. It
would be of interest to consider the development of similar model
identification approaches for systems near other types of bifurcations.
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Appendix A. Circadian model equations

The circadian oscillator model used in Section 4.1 was originally
published in [37]. The version used here is comprised of 16 coupled
ordinary differential equation. The state variables are as follows: Con-
centrations of Per, Cry, and Bmall mRNA are designated by Mp, M,
and My, respectively; phosphorylated (resp., nonphosphorylated) Per
and Cry proteins in cytosol are designated by P.p and Cqp (resp., P
and C.); concentrations of Per-Cry complex in cytosol and nucleus
are designated by PC., PCy, PCcp, and PCyp; concentrations of
BMAL1 in cytosol and nucleus are designated by B., Bop, By, and
By p; the variable Iy represents the inactive complex between Per-Cry
and Clock-Bmall in the nucleus. Subscripts C, N, CP and N P denote
cytosolic, nuclear, cytosolic phosphorylated, and phosphorylated forms,
respectively. The model equations are:

A B! M,
Mp = 0p() = — U,p — kgmyMp, (A1)
YK, + By " Kyp + Mp P
B" M,
y N C
M = v, K" +B" Unc K -+ M. KgmeMcs (A.2)
AC N mC C
. K7 M
My=v B _ _, Bk, My, A.3
B sB K;nB + B',s mB KmB + MB dmb B ( )
5 PC PCP
Fe=kpMp— VlPKp+PC +Vap Ko + Por +ky PCc = k3 PcCe = ky, Pe
(A.4)
Co=k,oMq -V, SR 74 Cer 4k PCo—kyPoCo—k, C
c — Mse C 1C 2C 4 C 3ftchc dne™~C»
K, +Cc Ky, + Cep
(A.5)
5 Fe Fep Fep
Pop=V, - — Uype —ky,Pep, A.6
cP 1P K, + Pc 2P K, + Por Vipc K, + Pop anfcp ( )
: Cc Cer c
Cop =V, 7 - Pk, Ceps A7
CcP 1C Kp+CC 2C de+CCP dcc Kd+CCP dn~CP ( )
PC. =-V, PCc Ly, PCer kyPC,. + k; P-.C,
C 1PC Kp+PCC 2pPC de+PCCP 4 C 3fcvc
+kyPCy — k, PC. — ky, PC., (A.8)
PCy =-V, LY +V, PCe k, PCy + k, PC,
N — 3pPC Kp+ PCN 4PC de + PCNP 2 N 1 C
—k;ByPCy + kgIy —ky, PCy, (A.9)
. PC, PCep PCqp
PCqp =V, - - —ky, PCep,
CcpP 1pPC Kp + PCC 2PC de +PCCP UdI’CC Kd + PCCP dn CcpP
(A.10)
) PCy, PCyp PCyp
PCyp=-V, -, - —k,, PCyp,
NP 3pC Kp+PCN 4pPC K:ip +PCNP dPCN Kd +PCNP dn NP
(A11)
B =k My—Vig—2C 1, Ber i B +k.By—k, B
C — "sB B 1B 2B 52C 6PN dn2C»
K, + B¢ Ky, + Bcp
(A.12)
; Bc Bcp Bep
Bep =V, -7, —Ugpe —k,,Beps A.13
CP 1B Kp+ BC 2B de+ BCP dBC Kd + BCP dnPCP ( )
By = -V By +V, Bue + ksBp — kg By — k; By PC
N 3B Kp+BN 4B de+BNP 52C 6PN 7PN N
+kgly —kqy By, (A.14)
5 By Byp Byp
Byp =V, -, -v —k,,Byps A.15
NP 3B Kp + BN 4B de + BNP dBN Kd + BNP dnP NP ( )
) I
Iy = —kgIy +kyBy PCy — vgrn ﬁ — kg Iy (A.16)
d N

Basal values listed in Supplementary Table 1 of [37] are used with the
exception of k; = 0.58 and k, = 2.0, which determine the dynamics of
the nonphysphorylated cytosolic Per and Cry protein concentrations.
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Units of time are in hours. Light intensity acts as an input for this
model that changes the value of v,p, the maximum rate of Per expres-
sion. v;p = 1.2 nM/h corresponds to a moderate light intensity with
higher/lower values corresponding to higher/lower light intensities.

Appendix B. Optimal control using a dynamic programming ap-
proach

The inferred models from Sections 4.1 and 4.2 are validated by
formulating and solving an optimal control problem. In this work, a
dynamic programming approach is used. Note that the models obtained
from the model identification procedure in Section 3.5 capture the
behavior in response to general inputs and that if desired, other control
strategies could be considered.

To begin, the inferred model from (14) is discretized considering
time steps of length At. For some initial condition ¢, = [%(0), 5(0)]7,
define ¢; = [%(i4), 5(i4H)]T to be the solution to (14). Taking u to
be constant on the interval + = [i4r,(i + 1)A¢] one can use (14) to
numerically evaluate the mapping

Civ1 = F(&w). (B.1)
Next, one can define a general cost function
) n-1 n
J((u,—>7;0,(c,->;'=0) =Y oy, i)+ Y, ex(&n i), (B.2)
i=0 i=0

where ¢, and ¢, are time-dependent functions of the input and state,
respectively. The optimization problem considered in this work is
defined as follows: for a sequence of inputs ug, u;,u,_; where the input
u; denotes a constant input applied over the interval [ids, (i + 1)4r]
minimize J <(u,-);’;(} N ;’=0> . (B.3)
ogislr;—l
over all allowable inputs u; C U where 5 is the number of iter-
ations considered and the evolution of ¢ is governed by (B.1). As
described in [49,50], The minimization can be performed using a
dynamic programming approach. Defining
* mulin J<(u")t"’=_rll—y’ i=n-y
J,’_y(cn—y)= n—y<i<n—1

(& 1)s

where gy is the cost-to-go function that gives the remaining cost over
the final y time steps when applying an optimal series of inputs. The
principle of optimality [49] implies that J o, can be found iteratively
according to

(9 ) if y>0,
(B.4)

if y=0,

TGy = Ernqua(cl(un_y, =3+ Gy — 1) + J,;‘_y+1(c,,_y+1)>, (B.5)

by starting with the endpoint cost J:;({n) = ¢(g,,n and working
backwards. With knowledge of the cost-to-go function, the optimal
control at each timestep is then

<01(Mk, k) + 3G k) + T (f (s Mk))>- (B.6)

u;(§y) = argmin
uy CU
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