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 A B S T R A C T

A data-driven model identification strategy is developed for dynamical systems near a supercritical Hopf 
bifurcation with nonautonomous inputs. This strategy draws on phase–amplitude reduction techniques, 
analytically relating the phase and amplitude response curves to the terms of the controlled Hopf normal 
form. Fitting can be performed by recording the system output during the relaxation to the stable limit cycle 
after applying as few as two carefully timed pulse inputs. Unlike standard phase-based model identification 
strategies, the resulting model is valid in the neighborhood of the Hopf bifurcation, rather than just in a close 
vicinity of the unperturbed limit cycle. This strategy is illustrated in two examples with relevance to circadian 
oscillations. In each example, the proposed model identification strategy allows for the formulation, solution, 
and implementation of a closed loop nonlinear optimal control problem.
1. Introduction

Phase-based reduction techniques have a rich history in the analysis 
and control of weakly perturbed oscillators [1–4]. This approach allows 
for the transformation of a general system of equations
𝑥̇ = 𝐹 (𝑥, 𝑢), (1)

where 𝑥 ∈ R𝑁  is the state, 𝑢 ∈ R𝑀  is an input, and 𝐹  gives the dynamics 
to a phase reduced form 
𝜃̇ = 𝜔 +𝑍(𝜃)𝑢, (2)

where 𝜃 ∈ S, 𝜔 is the unperturbed natural frequency, and 𝑍 is 
an appropriately sized vector that captures the response to inputs 
as a function of phase. The transformation of (1) to (2) enables the 
rigorous mathematical analysis of the dynamics of both coupled and 
externally forced oscillations in applications that would otherwise 
be intractable [2,4]. The relatively simple form of (2) allows for a 
straightforward data-driven model identification strategy: by applying 
a brief pulse of input and considering the resulting change in phase one 
can obtain a pointwise measurement of 𝑍(𝜃). Repeating this procedure 
multiple times by applying inputs at different phases, one can obtain 
a data-driven estimate of 𝑍(𝜃). This so-called ‘direct method’ [5,6] has 
been used in a variety of experimental applications to study behaviors 
such as synchronization, phase locking, and entrainment [5,7–10].

While phase reduction and phase models of the form (2) are remark-
ably useful, a fundamental limitation is that it is only valid in the limit 
that inputs are infinitesimally small, i.e., its accuracy is only guaranteed 
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in a weakly perturbed regime. Practically, the allowable magnitude of 
the input is related to the nonunity Floquet multipliers that govern the 
decay in directions transverse to the periodic orbit. Recent years have 
seen a flurry of interest in the development of phase-based reduction 
methods that can accommodate stronger magnitude inputs [11–17]. 
While such techniques provide a more accurate representation of the 
dynamics in applications where strong magnitude inputs must be ap-
plied, it is typically more difficult to infer the associated reduced order 
models from data. Associated model identification methods have been 
developed for some of these approaches [18–20], but they typically 
require much more data (and subsequently many more experiments) 
than what is required for the fitting of a standard phase model of the 
form (2).

In this work, a direct method approach for model identification is 
developed and investigated for systems near a supercritical Hopf bifur-
cation. This strategy draws on phase–amplitude reduction techniques, 
first obtaining an analytical representation for the phase and amplitude 
response curves of the Hopf normal form and using this information to 
uniquely fit system parameters. Unlike standard phase-based models of 
the form (2), the resulting model is valid in the neighborhood of the 
Hopf bifurcation, which extends far beyond the unperturbed limit cycle. 
The proposed approach can be implemented by recording a general 
output during the relaxation to the limit cycle after applying as few as 
two carefully timed pulse perturbations. The organization of this paper 
is as follows:  Section 2 gives necessary background information about 
phase–amplitude reduction techniques using isochrons and Floquet 
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coordinates and discusses associated methods for model identification 
using the direct method. Section 3 considers the normal form of the 
Hopf bifurcation in relation to these phase–amplitude reduction tech-
niques. A careful consideration of the resulting reduced order equations 
yields a model identification strategy that can infer all terms of the 
Hopf normal form with a combination of passive observations and 
a small number of pulse perturbations. Section 4 provides illustra-
tive examples on two models with relevance to circadian oscillations. 
In both examples, the resulting model identification strategy enables 
the application of closed-loop optimal control algorithms. Section 5 
provides concluding remarks.

2. Background

2.1. Phase reduction

Consider an ordinary differential equation of the form
𝑥̇ = 𝐹 (𝑥, 𝑢),

𝑦 = 𝑔(𝑥), (3)

where 𝑥 ∈ R𝑁  is the state, 𝑦 ∈ R𝐾 is the output, 𝑢 ∈ R𝑀  is an input, 
𝐹  gives the dynamics, and 𝑔 maps the state to the output. Suppose 
that when 𝑢 is held constant at 𝑢 = 0, Eq. (3) has a stable 𝑇 -periodic 
orbit 𝑥𝛾 . Rather than considering the state of (3), it can be useful to 
consider the timing of oscillations. In this case, one can define a phase 
𝜃 ∈ [0, 2𝜋] for 𝑥 ∈ 𝑥𝛾 . By convention, 𝜃 is typically scaled so that 
𝑑𝜃
𝑑𝑡 = 2𝜋

𝑇 = 𝜔 when taking 𝑢 = 0. Isochrons can be used to define 
phase in the basin of attraction of the limit cycle [21,22]. Subsequently 
changing to phase coordinates, one can represent Eq. (3) in terms of its 
phase dynamics [2] 

𝜃̇ = 𝜔 +𝑍(𝜃)𝑢, (4)

where 𝑍(𝜃) = 𝜕𝜃
𝜕𝑥
𝑇 𝜕𝐹
𝜕𝑢  with all partial derivatives evaluated at 𝑥𝛾 (𝜃), 

and 𝑇  denotes the transpose. Eq. (4) is valid in the limit that 𝑢 is small. 
Numerically, 𝑍(𝜃) can be computed by first finding 𝜕𝜃∕𝜕𝑥, which has 
solutions that satisfy the adjoint equation [23,24] 
𝑑∇𝜃
𝑑𝑡

= −𝐽𝑇∇𝜃. (5)

Above, ∇𝜃 ≡ 𝜕𝜃
𝜕𝑥  and 𝐽 denotes the Jacobian of 𝐹 , both evaluated on 

the periodic orbit at 𝜃(𝑡). In addition to satisfying (5), ∇𝜃 must also be 
scaled so that ∇𝜃𝑇𝐹 (𝑥𝛾 ) = 𝜔.

2.2. Phase–amplitude reduction

Phase reduction of the form (4) only considers the timing of os-
cillations. To incorporate amplitude-based effects, one can augment 
the phase equation with Floquet coordinates. Towards this end, first 
consider the linear approximation of (3) near the periodic orbit 

𝑥̇ = 𝐽𝛥𝑥, (6)

where 𝛥𝑥 = 𝑥−𝑥𝛾𝑝(𝜃) and 𝐽 is the Jacobian evaluated at 𝑥𝛾 (𝜃(𝑡)). Noting 
that 𝐽 is 𝑇 -periodic and leveraging Floquet theory [25], provided the 
monodromy matrix of this linear time varying system is diagonalizable, 
Eq. (6) admits solutions of the following form 

𝑥 − 𝑥𝛾 (𝜃) =
𝑁−1
∑

𝑗=1
𝜓𝑗𝑔𝑗 (𝜃). (7)

Above, 𝑔𝑗 (𝜃, 𝑝) ∈ C𝑁  is a Floquet eigenfunction associated with the 
Floquet coordinate 𝜓𝑗 ∈ C. Above, the contribution from the Floquet 
eigenfunction with associated Floquet multiplier 𝜆𝑁 = 1 has been 
absorbed by the phase coordinate to give 𝑁 − 1 total Floquet coordi-
nates. Note that each 𝑔  is unique to a constant scaling. Considering the 
𝑗
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underlying Eq. (3) and changing to Floquet coordinates, the dynamics 
of the Floquet coordinates are [26]
𝜓̇𝑗 = 𝜅𝑗𝜓𝑗 + 𝐼𝑗 (𝜃)𝑢,

𝑗 = 1,… , 𝑁 − 1, (8)

where 𝐼𝑗 (𝜃, 𝑝) = 𝜕𝜓𝑗
𝜕𝑥

𝑇 𝜕𝐹
𝜕𝑢  with all partial derivatives evaluated at 

𝑥𝛾𝑝(𝜃), and 𝜅𝑗 ∈ C is the Floquet exponent associated with the 𝑗th 
Floquet eigenfunction. Eqs. (4) and (8) together constitute a phase–
amplitude-based representation for the underlying system (3) that is 
valid provided 𝛥𝑥 remains small. In many cases, it can be useful to 
truncate the most rapidly decaying 𝜓𝑗 (as gauged by the magnitude 
of the associated 𝜅𝑗) thereby arriving at a phase–amplitude reduction. 
Indeed, the inclusion of amplitude coordinates allows for the formula-
tion and solution of control problems that phase reduction alone cannot 
accommodate [26–28]. Numerically, each 𝐼𝑗 (𝜃) can be computed by 
first finding 𝜕𝜓𝑗𝜕𝜃  which has solutions that satisfy [26] 
𝑑∇𝜓𝑗
𝑑𝑡

= −(𝐽𝑇 − 𝜅𝑗 Id)∇𝜓𝑗 , (9)

where ∇𝜓𝑗 ≡ 𝜕𝜓𝑗
𝜕𝜃  evaluated on the periodic orbit at 𝜃(𝑡) and Id is an 

appropriately sized identity matrix. Additionally, the solution to (9) 
must be scaled so that ∇𝜓𝑇𝑗 𝑔𝑗 (𝜃) = 1 for all states on the periodic orbit.

Note that the phase and amplitude reduced equations from (4) 
and (8) are only valid in the limit that the input magnitude is small 
relative to the magnitude of the nonunity Floquet multipliers. Floquet 
coordinates can be generalized to the entire basin of attraction of the 
limit cycle using the concept of isostable coordinates, which are level 
sets of principal Koopman eigenfunctions [29], in order to improve 
the accuracy of the phase–amplitude reduction when larger magnitude 
inputs are required [13]. For a broader discussion regarding the use 
of isostable coordinates in control applications, the interested reader is 
referred to [4].

2.3. Direct methods for inference of phase and amplitude response curves

In an experimental setting, the equations that comprise 𝐹  are often 
unavailable thereby precluding the use of Eqs. (5) and (9) for finding 
𝑍(𝜃) and 𝐼𝑗 (𝜃), respectively. Alternatively, one can infer 𝑍(𝜃) and from 
data by applying pulse inputs and observing the subsequent relaxation 
to the limit cycle. To summarize approaches from [5,6], for simplicity 
of exposition, consider 𝑀 = 1 so that 𝑢 ∈ R (although this is not a 
strict requirement). First, it is necessary to define a Poincaré section 
𝛤0 constructed as a 𝐾 − 1 dimensional hyperplane in the space of 
outputs that is transversal to 𝑔(𝑥𝛾 (𝜃)) at 𝜃 = 0. When 𝑔(𝑥) ∈ 𝛤0, 
𝜃 is approximately zero with the mismatch depending on the local 
curvature of the isochrons relative to the 𝛤0 hyperplane. Next, the 
frequency and associated period (𝜔 and 𝑇 , respectively) of the system 
(3) must be approximated from passive observations.

Starting with estimation of 𝑍(𝜃), for an initial condition 𝑥 = 𝑥𝛾 (𝜃0)
one can apply a short pulse of input 𝑢(𝑡) = 𝑚 lasting 𝑡0 time units. By 
determining the resulting change in phase, for instance, as gauged by 
the subsequent crossing of 𝛤0 relative to the expected crossing had the 
pulse input not been applied, one can obtain an estimate of the phase 
response curve according to 

𝑍(𝜃0) ≈
𝛥𝜃
𝑚𝑡0

. (10)

This procedure can be repeated at different choices of 𝜃0 allowing 
𝑍(𝜃) to subsequently be fit to a Fourier series basis 𝑍(𝜃) = 𝑏0 +
∑𝜈
𝑘=1

[

𝑎𝑘 sin(𝜃) + 𝑏𝑘 cos(𝜃)
] choosing 𝜈 appropriately to avoid overfit-

ting.
For the amplitude coordinate dynamics, suppose that |𝜅𝑗 | = 𝑂(1∕𝜖)

for 𝑗 ≥ 2 where 0 < 𝜖 ≪ 1, i.e., so that all but one Floquet coordinate 
decays rapidly. In this case, it is possible to use the same pulses inputs 
to obtain an estimate for the slowly decaying Floquet exponent, 𝜅 , 
1
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and the corresponding response curve, 𝐼1(𝜃). A careful description of 
this strategy is given in [20] and summarized here. Let 𝜃(𝑡) at some 
time 𝑡 = 𝑡𝑝 be equal to 𝜃0. Applying a pulse input 𝑢(𝑡) = 𝑚 starting at 
𝑡 = 𝑡𝑝 and lasting 𝑡0 time units, one can define 𝑡∗𝑘 to be the 𝑘th crossing 
of the 𝛤0 Poincaré section after the application of the pulse input. 
Subsequently letting 𝜏𝑘 = 𝑡∗𝑘 − 𝑡

∗
𝑘−1 the slope of a linear regression of 𝑘

versus log(𝜏𝑘 − 𝑇 )∕𝑇  is equal to 𝜅1. For the same pulse input, as shown 
in [20], the amplitude response curve can be computed according to 

𝐼1(𝜃0) =
𝜌
𝑚𝑡0

2𝜋(𝑘 − 1) − 𝜔(𝑡∗𝑘 − 𝑡
∗
1)

exp(𝜅1(𝑡∗𝑘 − 𝑡𝑝)) − exp(𝜅1(𝑡∗1 − 𝑡𝑝))
, (11)

for and 𝑘 ≥ 2. Above, 𝜌 is a constant that depends on the underlying 
system (3). As with the phase response curve, this procedure can be re-
peated for different choices of 𝜃0 allowing 𝐼1(𝜃) to subsequently be fit to 
a Fourier basis. Note that data from the same pulse input can be used to 
obtain a pointwise estimate of both 𝑍(𝜃0) and 𝐼1(𝜃0). Related strategies 
for estimating 𝑍(𝜃) and 𝐼𝑘(𝜃) for systems with multiple non-negligible 
Floquet coordinates have been developed leveraging machine learning 
techniques [30]. Phase autoencoders have also been used successfully 
to infer phase response curves from data [31]. Refs. [20,32], and [18] 
provide a more complete description of these model identification 
strategies for the interested reader. In general these approaches require 
the collection of enough data to fully resolve both 𝑍(𝜃) and 𝐼1(𝜃), 
potentially requiring a substantial of trials.

3. Data-driven model identification for Hopf oscillators

As shown here, for oscillatory systems of the form (3) that result 
from a supercritical Hopf bifurcation, the phase–amplitude coordinate 
framework enables model identification by observing the relaxation 
to the limit cycle following as few as two pulse perturbations. The 
following analysis will assume that 𝑀 = 1 so that 𝑢 ∈ R, but 
appropriate modifications could be made straightforwardly to consider 
the case where 𝑀 > 1.

3.1. Normal form for a Hopf bifurcation with applied control

The autonomous form of the Hopf bifurcation has been widely 
studied [33,34]. This basic structure is adapted here for use with an 
additional nonautonomous forcing term. To begin suppose that 𝐹  from 
(3) is at least 𝐶5 differentiable with an unstable fixed point 𝑥0 with 
𝐹 (𝑥0, 0) = 0. Suppose also that the system is close to a supercritical 
Hopf bifurcation so that the linearized vector field has a complex-
conjugate pair of eigenvalues 𝜆1,2 with Real(𝜆1,2) ≈ 0 with the remaining 
eigenvalues 𝜆𝑗 having |Real(𝜆𝑗 )| sufficiently bounded away from 0 
for 𝑗 ≥ 3. Note that 𝑢 is not explicitly assumed to be a bifurcation 
parameter. Considering the normal form of the Hopf bifurcation, when 
taking 𝑢 = 0, it is possible to transform (3) to the following form:
̇̃𝑥 = 𝛼̃𝑥̃ − 𝛽𝑦̃ + (𝑎̃𝑥̃ − 𝑏̃𝑦̃)(𝑥̃2 + 𝑦̃2),

̇̃𝑦 = 𝛽𝑥̃ + 𝛼̃𝑦̃ + (𝑏̃𝑥̃ + 𝑎̃𝑦̃)(𝑥̃2 + 𝑦̃2), (12)

which is valid up to fifth order of accuracy. Above, 𝑥̃ ∈ R and 𝑦̃ ∈ R
represent Cartesian coordinates on the center manifold associated with 
the Hopf bifurcation that result from the analytic coordinate change 
𝑥̃ = ℎ1(𝑥), 𝑦̃ = ℎ2(𝑥) and 𝛼̃, 𝛽, 𝑎̃, 𝑏̃ ∈ R are coefficients associated with 
the Hopf normal form. In radial coordinates, i.e., for which 𝑥̃ = 𝑟 sin(𝜑̃)
and 𝑦̃ = 𝑟 cos(𝜑̃) the dynamics are ̇̃𝑟 = 𝛼𝑟+𝑎𝑟3+𝑂(𝑟5), ̇̃𝜑 = 𝛽+𝑏𝑟2+𝑂(𝑟4). 
Focusing on the dynamics of 𝑥̃ and 𝑦̃ from (12) when 𝑢 ≠ 0 one can 
write

̇̃𝑥 =
𝜕ℎ1
𝜕𝑥

⋅
𝑑𝑥
𝑑𝑡

=
𝜕ℎ1
𝜕𝑥

⋅
(

𝐹 (𝑥, 0) + 𝜕𝐹
𝜕𝑢
𝑢 + 𝑂(𝑢2)

)

= 𝛼̃𝑥̃ − 𝛽𝑦̃ + (𝑎̃𝑥̃ − 𝑏̃𝑦̃)(𝑥̃2 + 𝑦̃2) +𝐻1𝑢 + 𝑂(𝑢2) + 𝑂(𝑢|𝑥 − 𝑥0|),

̇̃𝑦 =
𝜕ℎ2 ⋅

𝑑𝑥

𝜕𝑥 𝑑𝑡

3 
=
𝜕ℎ2
𝜕𝑥

⋅
(

𝐹 (𝑥, 0) + 𝜕𝐹
𝜕𝑢
𝑢 + 𝑂(𝑢2)

)

= 𝛽𝑥̃ + 𝛼̃𝑦̃ + (𝑏̃𝑥̃ + 𝑎̃𝑦̃)(𝑥̃2 + 𝑦̃2) +𝐻2𝑢 + 𝑂(𝑢2) + 𝑂(𝑢|𝑥 − 𝑥0|), (13)

where 𝐹 (𝑥, 𝑢) is the underlying dynamical system from (3), the ‘dot’ 
denotes the dot product and 𝐻𝑖 = 𝜕ℎ𝑖

𝜕𝑥 ⋅ 𝜕𝐹
𝜕𝑢  for 𝑖 = 1, 2 with all 

partial derivatives evaluated 𝑥 = 𝑥0 and 𝑢 = 0. Recall that both 𝑢
and |𝑥 − 𝑥0| are assumed to be small; as such the higher order terms 
from (13) will be truncated to focus on the dominant contribution 
from the input. A final coordinate change 𝑥̂ = 𝜇(𝑥̃ cos(𝜃0) − 𝑦̃ sin(𝜃0)), 
𝑦̂ = 𝜇(𝑥̃ sin(𝜃0) + 𝑦̃ cos(𝜃0)) will be considered. Choosing 𝜃0 so that 
𝐻1 sin(𝜃0) + 𝐻2 cos(𝜃0) = 0, letting 𝜇 = 1∕(𝐻1 cos(𝜃0) − 𝐻2 sin(𝜃0)), 
and truncating 𝑂(𝑢2) and 𝑂(𝑢|𝑥 − 𝑥0|), the dynamics of the transformed 
coordinates become
̇̂𝑥 = 𝛼𝑥̂ − 𝛽𝑦̂ + (𝑎𝑥̂ − 𝑏𝑦̂)(𝑥̂2 + 𝑦̂2) + 𝑢,

̇̂𝑦 = 𝛽𝑥̂ + 𝛼𝑦̂ + (𝑏𝑥̂ + 𝑎𝑦̂)(𝑥̂2 + 𝑦̂2), (14)

where 𝛼, 𝛽, 𝑎, 𝑏 ∈ R are defined appropriately. In the following analysis, 
Eq. (14) will be referred to as the controlled Hopf normal form.

3.2. Phase–amplitude reduction of the controlled Hopf normal form

While normal form theory guarantees the existence of an analytic 
coordinate changes that places the dynamics of (3) in the form (14) 
describing the system’s behavior on the center manifold associated with 
the Hopf bifurcation, the specific coefficients depend on the terms that 
comprise (3). This poses a challenge when 𝐹  is unknown. In this case, 
the relevant terms must be inferred from data, but the mapping 𝑦 = 𝑔(𝑥)
is generally also unknown and is not guaranteed to be invertible. Here, 
phase–amplitude reduction is considered to aid in model identification. 
Considering the controlled Hopf normal form (14), provided 𝑎 < 0
and 𝛼 > 0 the system has a stable periodic orbit [𝑥̂𝛾 (𝜃), 𝑦̂𝛾 (𝜃)] =
[𝑟0 cos(𝜃), 𝑟0 sin(𝜃)] where 𝑟0 =

√

−𝛼∕𝑎. Here, 𝜃̇ = 𝜔 when 𝑢 = 0 where 
𝜔 = 𝛽 − 𝛼𝑏∕𝑎. Considering the adjoint equation from (5) with the 
constraint that 𝑑𝑑𝑡 [𝑥̂, 𝑦̂]∇𝜃 = 𝜔 when evaluated on the periodic orbit 
taking 𝑢 = 0, one can verify that 

∇𝜃 =
[

−
√

−𝑎∕𝛼
(

sin(𝜃) + 𝑏 cos(𝜃)∕𝑎
)

,
√

−𝑎∕𝛼
(

cos(𝜃) − 𝑏 sin(𝜃)∕𝑎
)]𝑇

,

(15)

gives the gradient of the phase along the periodic orbit. Towards 
considering the Floquet coordinates, first note that with the coordinate 
change 𝑥̂ = 𝑟 cos(𝜃), 𝑦̂ = 𝑟 cos(𝜃), the dynamics of the radial coordinate 
are 𝑟̇ = 𝛼𝑟+𝑎𝑟3. For the fixed point at 𝑟 = 𝑟0, the associated linearization 
is 𝛥̇𝑟 = −2𝛼𝛥𝑟 giving the Floquet exponent 
𝜅1 = −2𝛼. (16)

With this in mind, for the periodic orbit, 𝑥𝛾 , using Eq. (9) one can verify 
that for the Floquet coordinate 
∇𝜓1 = 𝐶1[cos(𝜃), sin(𝜃)]𝑇 , (17)

provides the gradient along the periodic orbit, where 𝐶1 ∈ C is a 
constant that reflects the fact that the Floquet eigenfunctions are unique 
up to a constant scaling. Considering the definition of 𝑍(𝜃) and 𝐼1(𝜃)
provided after Eqs. (4) and (8), respectively, in conjunction with the 
results from Eqs.  (15) and (17), one finds

𝑍(𝜃) = −
√

−𝑎∕𝛼
(

sin(𝜃) + 𝑏 cos(𝜃)∕𝑎
)

, (18)

𝐼1(𝜃) = 𝐶1 cos(𝜃), (19)

gives the phase and amplitude response curves for the transformed 
Hopf normal form from (14). Notice that the terms 𝑎, 𝑏, and 𝛼 appear in 
𝑍(𝜃) from Eq.  (18). Additionally, 𝛽 is related to the natural frequency, 
𝜔. Ultimately, as discussed in the following sections, with knowledge of 
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both 𝑍(𝜃) and 𝐼1(𝜃) from Eqs. (18) and (19) as well as the natural fre-
quency, 𝜔, it is possible to infer the terms of the controlled Hopf normal 
form (14). As distinct from standard phase-based model identification 
strategies, the region of validity of the resulting model extends beyond 
a close vicinity of the unperturbed limit cycle to the neighborhood of 
the Hopf bifurcation. It is important to mention that previous authors 
have considered the computation of the phase and amplitude response 
curve for the supercritical Hopf bifurcation [23,32,35,36].

3.3. Preservation of the terms of the phase–amplitude reduction following 
transformation to the controlled Hopf normal form

Consider the linearization near the periodic orbit (6). For any 𝑥 ∈ 𝑥𝛾

(so that 𝜓𝑗 = 0 for all 𝑗), suppose 𝑥 is perturbed slightly to 𝑥 + 𝛥𝑥
where |𝛥𝑥| = 𝑂(𝜖) with 0 < 𝜖 ≪ 1. To leading order in 𝜖, using the 
representation (7), one can write 

𝑥 + 𝛥𝑥 = 𝑥𝛾 (𝜃) + 𝛥𝜃𝑔𝑁 +
𝑁−1
∑

𝑗=1
(𝜓𝑗 + 𝛥𝜓𝑗 )𝑔𝑗 (𝜃). (20)

Above, the terms 𝛥𝜃 and 𝛥𝜓𝑗 capture the change in the phase and 
Floquet coordinates in the basis of Floquet eigenfunctions and 𝑔𝑁 ≡
𝜕𝑥𝛾

𝜕𝜃  is the 𝑁 th Floquet eigenfunction of (3) which is associated with 
translation along the periodic orbit. It is relatively straightforward to 
show that shifts in the phase and Floquet coordinate are preserved 
through the transformation to the controlled Hopf normal form. To 
this end, let 𝐷(𝑥) =

[

𝑥̂, 𝑦̂
]𝑇  be the analytic, continuously differentiable 

coordinate transformation between the state variables in the given 
coordinate system and the controlled Hopf normal form. In this trans-
formed coordinate system, the periodic orbit becomes [𝑥̂𝛾 (𝜃), 𝑦̂𝛾 (𝜃)]𝑇 =
𝐷(𝑥𝛾 (𝜃)). To leading order accuracy, Eq. (20) becomes
[

𝑥̂ + 𝛥𝑥̂, 𝑦̂ + 𝛥𝑦̂
]𝑇

= 𝐷

(

𝑥𝛾 (𝜃) + 𝛥𝜃 𝜕𝑥
𝛾

𝜕𝜃
+
𝑁−1
∑

𝑗=1

[

(𝜓𝑗 + 𝛥𝜓𝑗 )𝑔𝑗 (𝜃)
]

)

= 𝐷(𝑥𝛾 (𝜃)) +𝐷′(𝜃) ⋅ 𝜕𝑥
𝛾

𝜕𝜃
𝛥𝜃 +

𝑁−1
∑

𝑗=1

[

(𝜓𝑗 + 𝛥𝜓𝑗 )𝐷′(𝜃) ⋅ 𝑔𝑗 (𝜃)
]

,

(21)

where ′ ≡ 𝜕
𝜕𝑥 . Looking closer at the terms of (21), one can rewrite 

Eq. (21) as
[

𝑥̂ + 𝛥𝑥̂, 𝑦̂ + 𝛥𝑦̂
]𝑇 = 𝐷(𝑥𝛾 (𝜃)) + 𝑔̂𝑁 (𝜃)𝛥𝜃 +

𝑁−1
∑

𝑗=1

[

𝐶𝑗 (𝜓𝑗 + 𝛥𝜓𝑗 )𝑔̂𝑗 (𝜃)
]

, (22)

where 𝑔̂𝑗 for 𝑗 = 1,… , 𝑁 are the Floquet eigenfunctions in the 
transformed coordinate system with the constant 𝐶𝑗 ∈ C reflecting the 
fact that these eigenfunctions are unique to a constant scaling. Above, 
the fact that 𝑔̂𝑁 (𝜃) ≡ 𝜕

𝜕𝜃

[

𝑥̂𝛾 , 𝑦̂𝛾
]

= 𝐷′(𝜃) ⋅ 𝜕𝑥
𝛾

𝜕𝜃  is used. Comparing (20) to 
(22), one finds that phase shifts are preserved in the coordinate system 
associated with the controlled Hopf normal form and shifts in the 
Floquet coordinates are preserved up to a constant scaling. Recalling 
that 𝛥𝑥 was arbitrary, this implies that 𝑍(𝜃) is equivalent between 
coordinate systems with each 𝐼𝑗 (𝜃) being preserved up to a constant 
scaling (i.e., the shape of 𝐼𝑗 (𝜃) is the same).

3.4. The relationship between the geometry of original and transformed 
coordinate systems

As shown here, the phase–amplitude reduction framework enables 
the inference of the terms associated with the controlled Hopf normal 
form despite the fact that the transformed coordinates 𝑥̂ and 𝑦̂ are 
generally not directly recoverable from measurements of the observ-
able. The key here is to relate the geometry of the problem relative 
to the coordinates of the controlled Hopf normal form from (14) to 
the geometry in observable space. Note that here and below, the 
asymptotic phase is denoted by 𝜃̂ when viewed from the perspective 
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of the controlled Hopf normal form and denoted by 𝜃 when viewed 
from the perspective of the original Eqs. (3).

Fig.  1 highlights the details of the geometry in both frameworks for 
the case that 𝐾 = 1 so that 𝑦 ∈ R. Panel A emphasizes the geometry of 
the Hopf normal form, with (𝑥̂, 𝑦̂) = (0, 𝑟0) corresponding to 𝜃̂ = 0. From 
this perspective, the gradient of the phase and amplitude equations 
can be written analytically according to (15) and (17), respectively. 
Panel B considers the output 𝑔(𝑥̂, 𝑦̂) plotted against 𝜃̂ evaluated on 
the periodic orbit [𝑥̂𝛾 (𝜃), 𝑦̂𝛾 (𝜃)]. Considering the model identification 
strategies described in Section 2.3, the terms of the phase–amplitude 
reduction can be obtained by first defining a Poincaré section 𝛤0
transversal to 𝑔(𝑥𝛾 (𝜃)) at 𝜃 = 0. For practical purposes, 𝛤0 is usually 
chosen to be an easily identifiable feature of the model output. While 
the results from Section 3.3 show that information about phase and 
Floquet coordinate shifts are preserved to a constant scaling, there is 
no a priori way of identifying where 𝜃̂ = 0; as such a phase offset 𝜙 is 
necessary to relate 𝜃 and 𝜃̂.

3.5. A direct method for inference of the unknown coefficients of the 
controlled Hopf normal form

The results presented above can be leveraged to develop a data-
driven model identification strategy for systems that are close to a 
supercritical Hopf bifurcation. This strategy can be implemented by 
applying as few as two pulse perturbations and examining the subse-
quent relaxation to the unforced periodic orbit. The proposed approach 
infers the phase and amplitude response curves as an intermediate step, 
but goes beyond standard phase-based model identification strategies 
to infer terms of the controlled Hopf normal form (14). As such, the 
resulting model is valid in the vicinity of the Hopf bifurcation which 
extends beyond the unperturbed limit cycle.

As discussed in Section 3.4, the notation 𝜃 and 𝜃̂ is used to distin-
guish between the asymptotic phase in the original system coordinates 
and the coordinates of the controlled Hopf normal form, with the 
conversion 𝜃 = 𝜃̂ + 𝜙. The steps required to implement this model 
identification strategy are summarized below

(1) Choose some 𝐾 −1 dimensional hyperplane 𝛤0 ∈ R𝐾 transversal 
to 𝑔(𝑥𝛾 ) to serve as a Poincaré section. The output 𝑔(𝑥(𝑡)) crossing 
𝛤0 signifies that 𝜃 ≈ 0.

(2) From passive observations (i.e., taking 𝑢 = 0) let 𝑇  be defined 
as the average transversal between crossings of 𝛤0. Note that for 
noisy systems, the time between crossings of 𝛤0 will generally 
not be constant.

(3) After holding 𝑢 = 0 long enough for transients to decay, at some 
time for which 𝑔(𝑥) ∈ 𝛤0 (so that 𝜃 ≈ 0), apply a short pulse 𝑢(𝑡) =
𝑚 lasting 𝑡0 time units. By observing the subsequent relaxation to 
the periodic orbit, the strategies described in Section 2.3 can be 
used to provide an estimate of 𝜅1 (by observing the time between 
crossings of 𝛤0 during relaxation to the periodic orbit) as well as 
𝑍(0) and 𝜌𝐼1(0) (according to Eqs. (10) and (11), respectively). 
Recall that 𝜌 is a constant that depends on system parameters 
that ultimately does not need to be inferred.

(4) After the system fully relaxes to the periodic orbit, apply an iden-
tical pulse 𝑇 ∕4 time units after the crossing of the 𝛤0 Poincaré 
section (so that 𝜃 = 𝜋∕2. Record the subsequent relaxation to 
the periodic orbit and use (10) and (11) to provide estimates of 
𝑍(𝜋∕4) and 𝜌𝐼1(𝜋∕4), respectively.

(5) Considering Eq. (19), 
𝐼1(𝜃) = 𝐶1 cos(𝜃 − 𝜙). (23)

The two data points obtained from Steps 3 and 4 can be used 
to obtain an approximation for 𝜙 and 𝐶1∕𝜌. Note that due to 
symmetries in the cosine fitted function, the pair (𝜙,𝐶1∕𝜌) and 
(𝜙 + 𝜋,−𝐶1∕𝜌) are equally good fits to the data; both of these 
options represent candidates for the true phase offset.
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Fig. 1. Panel A highlights the geometry of the model identification problem from the perspective of the controlled Hopf normal form. Panel B gives the representation as seen 
from the observable space in the context of the model identification strategies described in Section 2.3. Note that the moment where 𝜃 = 0 is determined by the choice of the 
Poincaré section 𝛤0 and that 𝜃 = 𝜃̂ + 𝜙. This offset accounts for the fact that 𝜃̂ = 0 will generally not correspond to 𝜃 = 0.
(6) Infer the terms 𝛼, 𝛽, 𝑎, and 𝑏 for the controlled Hopf normal form 
starting with

𝛼 = −
𝜅1
2
, (24)

which is obtained from (16). Considering Eq. (18), one can write 

𝑍(𝜃) = −
√

−𝑎∕𝛼
(

sin(𝜃 − 𝜙) + 𝑏 cos(𝜃 − 𝜙)∕𝑎
)

. (25)

With knowledge of 𝛼, and for the two candidates for 𝜙 from Step 
5, a minimization over 𝑎 and 𝑏 can be performed with the data 
points obtained from Steps 3 and 4. Choose the true value of 𝑎, 𝑏, 
and 𝜙 to be the parameter set that minimizes the residual for 
the fit of 𝑍(𝜃). Consequently, the radius of the periodic orbit in 
controlled Hopf normal form coordinates is 𝑟0 =

√

−𝛼∕𝑎. Finally, 
considering the period on the unforced periodic orbit in relation 
to the radial form of the Hopf bifurcation, one finds 

𝛽 = 2𝜋
𝑇

− 𝑏𝑟20. (26)

A few general notes about the implementation of the above model order 
reduction strategy and its subsequent use are provided below.

te 1) Implementing Steps 1–6 above uniquely determines the coef-
ficients associated with the controlled Hopf normal form. For 
𝑥 ∈ 𝑥𝛾 , the output 𝑔(𝑥) crossing the 𝛤0 level set corresponds to 
(𝑥̂, 𝑦̂) = (𝑟0 cos(−𝜙), 𝑟0 sin(−𝜙)). Without further information, this 
is the only moment that an observation of the transformed co-
ordinates can be obtained. Under certain conditions, additional 
real-time estimates of the transformed state can be obtained as 
described in the section to follow.

te 2) Only two pulse perturbations are sufficient to uniquely deter-
mine the unknown coefficients in the model fitting procedure 
described above. Pulses are applied at 𝜃 = 0 and 𝜃 = 𝜋∕2
to ensure, in the worst case scenario, that |𝐼(𝜃)| is within 70 
percent of its peak value for at least one of the datapoints so 
that the dynamics associated with the amplitude coordinates 
can be clearly observed. Of course, additional data points can 
be incorporated into the parameter fitting from Steps 5 and 6. 
Redundant measurements can be especially helpful to overcome 
measurement or system noise.

3.6. Real-time inference of state variables for the controlled Hopf normal 
form

In control applications, it can be useful to obtain real-time state 
information. The state of the controlled Hopf normal form (14) cannot 
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be directly observed from the system output 𝑦 as defined in Eq.  (3). 
For simplicity of exposition, it will be assumed that 𝐾 = 1 so that 
𝑦 ∈ R, but the following strategy could be straightforwardly applied in 
higher dimensions. To proceed, noting that the series of near identity 
coordinate changes that yield 𝑥̃ = ℎ1(𝑥) and 𝑦̃ = ℎ2(𝑦) in the Hopf 
normal form (12) and the subsequent transformation to the controlled 
Hopf normal form (14) are all invertible. As such, letting−1 denote the 
inverse, the function 𝐷−1(𝑥̂, 𝑦̂) = 𝑥 which gives the state on the center 
manifold as a function of the coordinates in the controlled Hopf normal 
form is guaranteed to exist. Assuming that both 𝑥̂ and 𝑦̂ are small and 
that 𝑔 is at least 𝐶1 differentiable, to leading order one can write
𝑦 = 𝑔(𝑥)

= 𝑔(𝐷−1(𝑥̂, 𝑦̂))

≈ 𝑐0 + 𝑐1𝑥̂ + 𝑐2𝑦̂, (27)

where 𝑐0 = 𝑔(𝐷−1(0, 0)), 𝑐1 = 𝜕
𝜕𝑥̂ 𝑔(𝐷

−1), and 𝑐2 = 𝜕
𝜕𝑦̂ 𝑔(𝐷

−1), with partial 
derivatives taken at 𝑥̂ = 𝑦̂ = 0. Taking the time derivative of (27) yields
𝑦̇ = 𝑐1 ̇̂𝑥 + 𝑐2 ̇̂𝑦

= 𝑐1(𝛼𝑥̂ − 𝛽𝑦̂ + (𝑎𝑥̂ − 𝑏𝑦̂)(𝑥̂2 + 𝑦̂2) + 𝑢) + 𝑐2(𝛽𝑥̂ + 𝛼𝑦̂ + (𝑏𝑥̂ + 𝑎𝑦̂)(𝑥̂2 + 𝑦̂2))

= 𝑐1𝑓1(𝑥̂, 𝑦̂) + 𝑐1𝑢 + 𝑐2𝑓2(𝑥̂, 𝑦̂), (28)

where the second line is obtained by substituting (14) and 𝑓1 and 𝑓2
in the third line are defined appropriately. Still assuming 𝑥̂ and 𝑦̂ are 
small one can write

𝑦̇ ≈
(

𝑐1
𝜕𝑓1
𝜕𝑥̂

+ 𝑐2
𝜕𝑓2
𝜕𝑥̂

)

𝑥̂ +
(

𝑐1
𝜕𝑓1
𝜕𝑦̂

+ 𝑐2
𝜕𝑓2
𝜕𝑦̂

)

𝑦̂ + 𝑐1𝑢

= (𝑐1𝛼 + 𝑐2𝛽)𝑥̂ + (𝑐2𝛼 − 𝑐1𝛽)𝑦̂ + 𝑐1𝑢

= 𝑐3𝑥̂ + 𝑐4𝑦̂ + 𝑐1𝑢, (29)

where the second line is obtained by evaluating the partial derivatives 
at 𝑥̂ = 𝑦̂ = 0, noting that 𝑓1(0, 0) = 𝑓2(0, 0) = 0 and defining 𝑐3 and 𝑐4
appropriately. Considering both (27) and (29) together, one can obtain 
an estimate of 𝑥̂ and 𝑦̂ according to 
[

𝑥̂
𝑦̂

]

=
[

𝑐1 𝑐2
𝑐3 𝑐4

]−1 [ 𝑦 − 𝑐0
𝑦̇ − 𝑐1𝑢

]

. (30)

Above, the coefficients 𝑐0, 𝑐1 and 𝑐2 can be obtained through observa-
tions of the periodic orbit 𝑦(𝑥𝛾 (𝜃)), comparing to (𝑥̂(𝜃), 𝑦̂(𝜃)) = (𝑟0 cos(𝜃−
𝜙), 𝑟0 sin(𝜃−𝜙)), and inferring 𝑐0, 𝑐1, and 𝑐2 through least squares fitting. 
Instantaneous estimates of 𝑦̇ can be obtained from finite difference 
approximations.

As mentioned previously, for 𝑥 ∈ 𝑥𝛾 , when the output 𝑔(𝑥) crosses 
the 𝛤  level set, (𝑥̂, 𝑦̂) = (𝑟 cos(−𝜙), 𝑟 sin(−𝜙)) provided 𝑥̂ and 𝑦̂ are 
0 0 0
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Fig. 2. The proposed model identification strategy is applied to the 16-dimensional circadian model described in Appendix  A. In panel A, a pulse is applied at phase 𝜃 = 𝜋∕2 and 
the subsequent crossings of the 𝛤0 surface are used to infer 𝜅1, 𝐼(𝜋∕2)∕𝜌, and 𝑍(𝜋∕2). Direct estimates for 𝐼(0)∕𝜌 and 𝑍(0) are also obtained. Black dots in panel B represent the 
direct estimates of 𝐼(𝜃) and the black line is a curve fit of the form (23). Panel C provides the same information for 𝑍(𝜃) where the data is fit to a curve of the form (25). This 
information uniquely determines the unknown coefficients of the controlled Hopf normal form (14).
small. The approximation (30) relies on the additional assumption that 
𝑔 is smooth. In practice, it can be useful to use (14) to approximate 
the state dynamics in response to the input 𝑢 and supplement with a 
state estimation algorithm with the information from (30). This will be 
described more carefully in the example from Section 4.

4. Examples

4.1. Model identification for a detailed computational model for circadian 
clock oscillations

As a preliminary example, a detailed model for mammalian cir-
cadian clock oscillations is considered. The model contains 16 state 
variables that characterize the dynamical behavior of regulatory loops 
that govern the Per, Cry, Bmal1, and Clock genes [37]. Full model 
equations are provided in Appendix  A. The control parameter 𝑣𝑠𝑃 (𝑡) =
𝑣0𝑠𝑃 + 𝑢(𝑡) is taken to be the control input which acts as a surrogate 
for the ambient light intensity. Here 𝑣0𝑠𝑃 = 1.2 nM∕h corresponds to a 
moderate light intensity with higher and lower values corresponding to 
higher and lower intensity ambient light. 𝑀𝑃  (the concentration of Per 
mRNA) is taken to be the measured output, i.e., 

𝑦(𝑡) =𝑀𝑝(𝑡). (31)

Other observables can be used for this example and give comparable 
results. This model undergoes a supercritical Hopf bifurcation when 
𝑢 = −0.134; when 𝑢 = 0, the associated fixed point is unstable with 
eigenvalues 𝜆1,2 = 0.0254 ± 0.275. This information is provided for 
context but is not used in the model identification strategy described 
below.

Fig.  2 provides an illustration of the proposed model identification 
strategy applied to the circadian model from Appendix  A. The 𝛤0
Poincaré section is defined as the crossing of 𝑀𝑝 = 1.37 with a positive 
slope. 𝑥𝛾 is taken to be the stable periodic orbit that results when taking 
𝑢 = 0, i.e., holding 𝑣𝑠𝑃  constant at 1.2 nM∕h. In panel A, a short pulse in 
𝑢 is applied at 𝜃 = 𝜋∕2, 𝑇 ∕4 hours after the phase crosses the 𝛤0 surface. 
Subsequent crossings of the 𝛤0 surface are used to infer 𝜅1, 𝐼(𝜋∕2)∕𝜌
and 𝑍(𝜋∕2) using the strategy described in Section 2.3. A second pulse 
applied at 𝜃 = 0 is used to infer 𝐼(0)∕𝜌 and 𝑍(0). Recall that while 
the data driven model identification strategy from Section 2.3 provides 
an estimate of 𝜌𝐼(𝜃) where 𝜌 is an undetermined constant. The two 
directly inferred data points shown as black lines in panel B (resp., C) 
are used to fit curves of the form (23) (resp., (25)). These fits are 
used to determine the unknown coefficients 𝑎 = −0.0106, 𝑏 = −0.0034, 
𝛼 = 0.0224, and 𝛽 = 0.2721 in the controlled Hopf normal form (14) 
as well as the phase offset 𝜙 = 1.005 rad. Note here that the model 
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dynamics are inferred by observing the output during the recovery to 
the periodic orbit for only two pulse perturbations.

The resulting model is validated with the formulation and solution 
of an optimal control problem of shifting the oscillation timing, with 
relevance to the development light exposure scheduling for jet-lag 
mitigation strategies [38–40]. Following the optimal control problem 
formulation described in Appendix  B and letting 𝜉(𝑡𝑖) =

[

𝑥̂(𝑡𝑖), 𝑦̂(𝑡𝑖)
]𝑇 , 

the cost function considered here is 

𝐽 = 𝑘
𝜂
∑

𝑖=0

[

1 − exp(−30‖𝜉(𝑖𝛥𝑡) − 𝜉targ(𝑖𝛥𝑡)‖2)
]

+
𝜂−1
∑

𝑖=0
𝑢2(𝑖𝛥𝑡), (32)

where 𝑘 is a positive constant that weights the relative importance 
of the state-based and control-based costs and 𝜉targ(𝑡) = 𝑟0
[

cos(𝜃0 + 𝜔𝑡), sin(𝜃0 + 𝜔𝑡)
] with 𝜔 = 𝛽 − 𝛼𝑏∕𝑎 and 𝑟0 =

√

−𝛼∕𝑎 and 
𝜃0 ∈ [0, 2𝜋). The target 𝜉targ represents a state evolving on the periodic 
orbit at the unperturbed natural frequency. During the application of 
the optimal control, the state estimate is updated according to

𝜁𝑖+1 = 𝑓 (𝜁𝑖, 𝑢) + 𝜈

(

[

𝑐1 𝑐2
𝑐3 𝑐4

]−1 [ 𝑦 − 𝑐0
𝑦̇ − 𝑐1𝑢

]

− 𝑓 (𝜁𝑖, 𝑢)

)

. (33)

Above, as in (B.1), 𝜁𝑖 = [𝑥̂(𝑖𝛥𝑡), 𝑦̂(𝑖𝛥𝑡)]𝑇  and 𝑓 gives the evolution of 
𝑥̂ and 𝑦̂ under the evolution of (14) when applying a constant 𝑢. As 
described in Section 3.6, the constants 𝑐1 − 𝑐4 can be obtained through 
least-squares fitting with knowledge of 𝑦(𝑥𝛾 (𝜃)). The constant 𝜈 ∈ (0, 1]
sets how aggressively to update the state when comparing the expected 
evolution of the coordinates in the controlled Hopf normal to estimates 
obtained from direct observations of 𝑦 and 𝑦̇. For this example, 𝜈 = 0.02.

As described in Appendix  B, the cost-to-go function (B.4) associated 
with the cost function (32) is solved numerically taking 𝛥𝑡 = 0.1 hours, 
𝜂 = 1200, 𝑘 = 1∕50, and 𝜃0 = −𝜙 + 12𝜔 with allowable control input 
𝑢 ∈ [−0.2, 0.2]. For an initial condition at 𝜃 = 0 on 𝑥𝛾 (i.e., the periodic 
orbit that results when taking 𝑢 = 0) the resulting control defined by 
(B.6) will advance the state by 12 h, or approximately 𝜋 radians. Fig.  3 
shows the result of the application of this optimal control strategy. The 
black trace in Panel A gives the actual output for the model with the 
blue trace giving the output computed according to (27) as a function of 
the coordinates of the controlled Hopf normal form. Note that these two 
traces are slightly different and that the correction term from the state 
update Eq. (33) is small. The dashed line gives a plot of the unperturbed 
reference highlighting the shift in the oscillation timing caused by the 
optimal input which is shown in Panel B. After the application of the 
optimal input, the true shift in oscillation timing as determined by 
successive crossings of the 𝛤0 Poincaré surface is 11.3 h. The curve 
in Panel C shows the evolution of 𝑥̂ and 𝑦̂ over time. Note that these 
coordinates cannot be measured directly and are instead estimated 
according to (33). For the large phase shift, the state comes close to 
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Fig. 3. After model identification, the optimal control strategy from Appendix  B is applied to the inferred model (14). The goal is to shift the phase 12 h in advance while limiting 
the control effort. The optimal control is shown in panel B. The solid black line in panel A gives the resulting model output with the blue line obtained using the estimation of 
the state of the inferred model (14). The dashed line gives the trajectory for a system for which 𝑢 = 0 for reference. Panel C shows the evolution of 𝑥̂ and 𝑦̂ over time, estimated 
according to (33), during the application of the control. The dashed circle shows the unperturbed periodic orbit with radius 𝑟0 =

√

−𝛼∕𝑎 for reference.
the unstable fixed point at 𝑥̂ = 𝑦̂ = 0 before being driven back to the 
periodic orbit with the correct phase.

4.2. Model identification for population-level oscillations in a coupled os-
cillator model

As a second example, a phenomenological model is considered for 
coupled oscillations in the suprachiasmatic nucleus (SCN) [41], the 
‘‘master clock’’ responsible for circadian pacemaking:

𝐵̇𝑖 = 𝑣1
𝐾𝑛

1
𝐾𝑛

1 +𝐷𝑛
𝑖
− 𝑣2

𝐵𝑖
𝐾2 + 𝐵𝑖

+ ℎ𝑐
𝐾𝐹

𝐾𝑐 +𝐾𝐹
+ 𝜎𝑖𝑢(𝑡) +

√

2𝐷𝜂𝑖(𝑡),

𝐶̇𝑖 = 𝑘3𝐵𝑖 − 𝑣4
𝐶𝑖

𝐾4 + 𝐶𝑖
,

𝐷̇𝑖 = 𝑘5𝐶𝑖 − 𝑣6
𝐷𝑖

𝐾6 +𝐷𝑖
,

𝐸̇𝑖 = 𝑘7𝐵𝑖 − 𝑣8
𝐸𝑖

𝐾8 + 𝐸𝑖
, 𝑖 = 1,… , 𝑁. (34)

In mammals, the SCN is comprised of roughly 10,000 coupled neurons 
that respond to environmental cues such as light intensity in order 
to entrain to a 24-hour light-dark cycle [42,43]. The above model 
considers 𝑁 = 3000 oscillators with the variables 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 rep-
resenting mRNA concentrations of clock gene, the associated protein, 
and the nuclear form of the protein, respectively, for the 𝑖th oscillator. 
𝐸𝑖 represents a neurotransmitter that contributes to the mean-field 
coupling 𝐹 (𝑡) = 1

𝑁
∑𝑁
𝑖=1 𝐸𝑖(𝑡) that influences the behavior of the variable 

𝐵. 𝐹 (𝑡) is taken to be the measured output for this model. Time is 
measured in units of hours. The control input 𝑢 can be thought of as 
the intensity of ambient light; each neuron has an intrinsic sensitivity 
to light 𝜎𝑖 = max(1+0.4𝑁(0, 1), 0) where 𝑁(0, 1) is a normal distribution 
with zero mean and unit variance. The term 

√

2𝐷𝜂𝑖(𝑡) incorporates an 
independent and identically distributed zero-mean white noise process 
with intensity 𝐷 = 0.0001. Nominal model parameters are 𝑛 = 5, 𝑣1 =
0.55, 𝑣2 = 0.39, 𝑣4 = 0.35, 𝑣6 = 0.35, 𝑣8 = 1, 𝑘3 = 0.7, 𝑘5 = 0.5, 𝑘7 =
0.35, 𝐾1 = 1, 𝐾 − 2 = 1, 𝐾4 = 1, 𝐾6 = 1, 𝐾8 = 1, ℎ𝑐 = 0.35, 𝐾𝑐 = 1 and 
𝐾 = 0.5. To incorporate heterogeneity, parameters 𝑣1, 𝑣2, 𝑣4, 𝑣6, 𝑘3, and 
𝑘5 are drawn from a normal distribution with mean being equal to the 
nominal parameter and a variance of 0.0001.

Fig.  4 provides an illustration of the proposed model identification 
strategy applied to the circadian model from (34). The 𝛤0 Poincaré sec-
tion is taken to correspond to the crossing of 𝐹 (𝑡) = 0.044 with a positive 
slope and is represented by the dashed line in panel A. Recording 230 
cycles, the mean return time to the 𝛤0 section is 24.17 h. Colored traces 
in panel A show individual recordings of 𝐹  over these individual cycles. 
𝐹 (𝑥𝛾 ) is taken to be the average of these 230 recordings and shown 
as a solid black line. Note that because of the noise, the system never 
7 
settles to the periodic orbit. Following the strategy from Section 2.3, 
pointwise estimates of 𝐼(𝜃) and 𝑍(𝜃) are obtained applying a short pulse 
of input at specific times and recording the relaxation back to the limit 
cycle. Results of individual trials in panels B and C are shown with 
blue circles and the black curves are fit to functions of the form (23) 
and (25) for 𝐼(𝜃)∕𝜌 and 𝑍(𝜃), respectively (recall from Section 2.3 that 
𝐼(𝜃) can only be estimated up to a positive constant 𝜌). Here, multiple 
samples are considered in order to contend with the noise inherent to 
(34) but similar fits to the data can be obtained using only a subset of 
these samples. The fitted curves from panels B and C are used to infer 
the terms of the controlled Hopf normal form from (14); here 𝑎 = −0.41, 
𝑏 = −1.24, 𝛼 = 0.0034, and 𝛽 = 0.27 with phase offset 𝜙 = 1.30.

The accuracy of the inferred model resulting from the proposed 
model identification procedure is first tested by applying an open loop 
input 𝑢(𝑡) = max[0.02 sin(0.24𝑡)+0.02 cos(0.15𝑡)+0.025 sin(0.4𝑡), 0] starting 
at 𝑡 = 0. Results are shown in Fig.  5. While the output and input do not 
match perfectly, the timing of the oscillations in response to the input 
matches well. Results are qualitatively similar when using other inputs 
of similar magnitude.

The inferred model is also validated by formulating and solving an 
optimal control problem with the goal of driving the system to the 
unstable fixed point of the associated Hopf bifurcation (i.e., the phase-
less set [22]). Following the optimal control formulation described in 
Appendix  B and letting 𝜉(𝑡𝑖) =

[

𝑥̂(𝑡𝑖), 𝑦̂(𝑡𝑖)
]𝑇 , the cost function considered 

here is

𝐽 = 𝑘
𝜂
∑

𝑖=0

[

1 − exp(−20‖𝜉(𝑖𝛥𝑡)‖2)
]

+
𝜂−1
∑

𝑖=0
𝑢2(𝑖𝛥𝑡), (35)

where 𝑘 is a positive constant that weights the relative importance of 
the state-based and control-based costs. As described in Appendix  B 
the cost-to-go function (B.4) associated with the cost function (35) is 
solved numerically taking 𝛥𝑡 = 0.1 hours, 𝜂 = 240, and 𝑘 = 1 with 
allowable control input 𝑢 ∈ [0, 0.04]. The resulting optimal control is 
applied to the full order model (34) with a 24 h prediction horizon, 
i.e., by using the 𝐽1 cost-to-go function at all times when computing 
the optimal control according to (B.6). During the application of the 
optimal control, the inferred state of the controlled Hopf normal form 
is updated according to (33) where 𝜈 = 0.005. Results are shown in 
Fig.  6. Starting from an initial condition near the unperturbed periodic 
orbit, the control is turned on at 𝑡 = 100 hours and quickly drives the 
system to the phaseless set. Panel A shows the controlled output (black 
line) for the model along with the output computed according to (27) as 
a function of the coordinates of the controlled Hopf normal form (blue 
line); notice that there is relatively little discrepancy between these two 
curves. The applied optimal control is shown in panel B. Panel C shows 
the evolution of 𝑥̂ and 𝑦̂ over time calculated according to the estimator 
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Fig. 4. For the population circadian model (34), colored traces in panel A show recordings of the output, 𝐹 (𝑡), between crossings of the 𝛤0 Poincaré section. 𝐹 (𝑥𝛾 ) is taken to 
be the average of these traces. Pulse inputs are applied with resulting estimates of 𝐼(𝜃)∕𝜌 and 𝑍(𝜃) shown as blue circles in panels B and C, respectively. This data is used to fit 
sinusoidal curves shown in black which in turn are used to infer the terms of the controlled Hopf normal form from (14).
Fig. 5. Panel A shows the output from both the true model and inferred model in response the applied input from panel B. While not a perfect match, the 2-dimensional inferred 
model provides a reasonable representation of the dynamics of the 12,000 dimensional model (34).
Fig. 6. Optimal control applied to the population model for circadian oscillations (34). The optimal state feedback controller is computed according to the dynamic programming 
strategy described in the text. The goal here is to drive the system to the phaseless set, i.e., the unstable fixed point associated with the Hopf bifurcation. At 𝑡 = 100 the controller 
is turned on. Panel A shows the output from the full model (black line) along with an estimate obtained from (27) (blue line) which uses the estimate for the state of the controlled 
Hopf normal form. Panel B shows the control applied as a function of time. Panel C shows the evolution of 𝑥̂ versus 𝑦̂ during the simulation. The unperturbed periodic orbit with 
radius 𝑟0 =

√

−𝑎∕𝛼 is shown for reference as a dashed line.
(33). The initial burst of input at 𝑡 = 100 quickly drives the system close 
to the unstable fixed point of the controlled Hopf normal form. The 
subsequent inputs are much smaller, counteracting the effect of noise 
to keep the system close to the target.
8 
5. Discussion and conclusion

In this work, a general strategy is developed and investigated for 
data-driven inference of oscillatory dynamical systems close to a su-
percritical Hopf bifurcation. By first augmenting the Hopf normal form 
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with a control input to yield (14), the unknown coefficients can be 
determined uniquely by obtaining as few as two pointwise estimates 
of the phase and amplitude response curves when considering the dy-
namics from the perspective of isochrons and Floquet coordinates. The 
resulting model is valid in the vicinity of the Hopf bifurcation, which 
extends far beyond the unperturbed limit cycle. Examples illustrate the 
utility of this model identification strategy with the formulation and 
solution of different optimal control problems.

With regard to the underlying form of the model from (3), while 
the proposed model identification strategy assumes that the underlying 
state dynamics that comprise 𝐹 (𝑥, 𝑢) are sufficiently smooth, there is no 
explicit requirement about differentiability or continuity of the state-to-
output map 𝑔(𝑥). In principle, sparse identification strategies [44–46] 
could also be used for data-driven model identification purpose, but 
such strategies may prove difficult in situations where 𝑔 is not suffi-
ciently smooth. Note that the real-time state inference strategy from 
Section 3.6 does require that 𝑔 is at least 𝐶1 differentiable, but even 
without the state-inference strategy, the phase and associated coordi-
nates of the controlled Hopf normal form can always be estimated once 
per cycle at the crossing of the 𝛤0 Poincaré section provided the system 
is close enough to the unperturbed periodic orbit.

There are many limitations of the proposed model identification 
strategy that are worth mentioning. The proposed model identification 
approach cannot be straightforwardly generalized to systems undergo-
ing a supercritical Hopf bifurcation. For such systems, the resulting sta-
ble limit cycle typically settles far from the fixed point associated with 
the Hopf bifurcation thereby invalidating the assumptions required 
to implement the proposed approach. For these systems, other data-
driven approaches that rely on related phase-based model identification 
approaches would likely be more applicable [18–20]. Additionally, the 
current manuscript does not explicitly consider noise or other sources of 
uncertainty in the problem formulation. In the results from Section 4.2 
noise is included in the model equations necessitating multiple redun-
dant measurements of the associated phase and amplitude response 
curves with the goal of averaging out the effects of noise. It would be of 
particular interest to obtain rigorous estimates of how noise contributes 
to errors in the representation of the resulting models. Furthermore, 
while the proposed approach is valid provided the system is sufficiently 
close to a subcritical Hopf bifurcation, estimates for how this estimation 
degrades as the state moves farther from the Hopf bifurcation are not 
considered.

Almost certainly, other data-driven model identification strategies 
could be applied to the systems considered in this work, but careful 
consideration of the dynamical behavior near the Hopf bifurcation 
yields a relatively simple model fitting approach that requires very little 
data. The results presented here serve to highlight the need for the 
continued development of data-driven model identification strategies 
that leverage the knowledge of normal forms near bifurcations of vector 
fields. While the strategy proposed in this work is only applicable 
for one specific (but commonly observed) bifurcation, other authors 
have investigated the shape of phase and amplitude response curves 
for oscillatory systems that are near other bifurcations [23,47,48]. It 
would be of interest to consider the development of similar model 
identification approaches for systems near other types of bifurcations.
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Appendix A. Circadian model equations

The circadian oscillator model used in Section 4.1 was originally 
published in [37]. The version used here is comprised of 16 coupled 
ordinary differential equation. The state variables are as follows: Con-
centrations of Per, Cry, and Bmal1 mRNA are designated by 𝑀𝑃 , 𝑀𝐶 , 
and 𝑀𝐵 , respectively; phosphorylated (resp., nonphosphorylated) Per 
and Cry proteins in cytosol are designated by 𝑃𝐶𝑃  and 𝐶𝐶𝑃  (resp., 𝑃𝐶
and 𝐶𝐶 ); concentrations of Per-Cry complex in cytosol and nucleus 
are designated by 𝑃𝐶𝐶 , 𝑃𝐶𝑁 , 𝑃𝐶𝐶𝑃 , and 𝑃𝐶𝑁𝑃 ; concentrations of 
BMAL1 in cytosol and nucleus are designated by 𝐵𝐶 , 𝐵𝐶𝑃 , 𝐵𝑁 , and 
𝐵𝑁𝑃 ; the variable 𝐼𝑁  represents the inactive complex between Per-Cry 
and Clock-Bmal1 in the nucleus. Subscripts 𝐶, 𝑁 , 𝐶𝑃  and 𝑁𝑃  denote 
cytosolic, nuclear, cytosolic phosphorylated, and phosphorylated forms, 
respectively. The model equations are: 

𝑀̇𝑃 = 𝑣𝑠𝑃 (𝑡)
𝐵𝑛𝑁

𝐾𝑛
𝐴𝑃 + 𝐵𝑛𝑁

− 𝑣𝑚𝑃
𝑀𝑃

𝐾𝑚𝑃 +𝑀𝑃
− 𝑘𝑑𝑚𝑝𝑀𝑃 , (A.1)

𝑀̇𝐶 = 𝑣𝑠𝐶
𝐵𝑛𝑁

𝐾𝑛
𝐴𝐶 + 𝐵𝑛𝑁

− 𝑣𝑚𝐶
𝑀𝐶

𝐾𝑚𝐶 +𝑀𝐶
− 𝑘𝑑𝑚𝑐𝑀𝐶 , (A.2)

𝑀̇𝐵 = 𝑣𝑠𝐵
𝐾𝑚
𝐼𝐵

𝐾𝑚
𝐼𝐵 + 𝐵𝑚𝑁

− 𝑣𝑚𝐵
𝑀𝐵

𝐾𝑚𝐵 +𝑀𝐵
− 𝑘𝑑𝑚𝑏𝑀𝐵 , (A.3)

𝑃̇𝐶 = 𝑘𝑠𝑃𝑀𝑃 − 𝑉1𝑃
𝑃𝐶

𝐾𝑝 + 𝑃𝐶
+ 𝑉2𝑃

𝑃𝐶𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝑃

+ 𝑘4𝑃𝐶𝐶 − 𝑘3𝑃𝐶𝐶𝐶 − 𝑘𝑑𝑛𝑃𝐶 ,

(A.4)

𝐶̇𝐶 = 𝑘𝑠𝐶𝑀𝐶 − 𝑉1𝐶
𝐶𝐶

𝐾𝑝 + 𝐶𝐶
+ 𝑉2𝐶

𝐶𝐶𝑃
𝐾𝑑𝑝 + 𝐶𝐶𝑃

+ 𝑘4𝑃𝐶𝐶 − 𝑘3𝑃𝐶𝐶𝐶 − 𝑘𝑑𝑛𝑐𝐶𝐶 ,

(A.5)

𝑃̇𝐶𝑃 = 𝑉1𝑃
𝑃𝐶

𝐾𝑝 + 𝑃𝐶
− 𝑉2𝑃

𝑃𝐶𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝑃

− 𝑣𝑑𝑃𝐶
𝑃𝐶𝑃

𝐾𝑑 + 𝑃𝐶𝑃
− 𝑘𝑑𝑛𝑃𝐶𝑃 , (A.6)

𝐶̇𝐶𝑃 = 𝑉1𝐶
𝐶𝐶

𝐾𝑝 + 𝐶𝐶
− 𝑉2𝐶

𝐶𝐶𝑃
𝐾𝑑𝑝 + 𝐶𝐶𝑃

− 𝑣𝑑𝐶𝐶
𝐶𝐶𝑃

𝐾𝑑 + 𝐶𝐶𝑃
− 𝑘𝑑𝑛𝐶𝐶𝑃 , (A.7)

̇𝑃𝐶𝐶 = −𝑉1𝑃𝐶
𝑃𝐶𝐶

𝐾𝑝 + 𝑃𝐶𝐶
+ 𝑉2𝑃𝐶

𝑃𝐶𝐶𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝐶𝑃

− 𝑘4𝑃𝐶𝐶 + 𝑘3𝑃𝐶𝐶𝐶

+ 𝑘2𝑃𝐶𝑁 − 𝑘1𝑃𝐶𝐶 − 𝑘𝑑𝑛𝑃𝐶𝐶 , (A.8)

̇𝑃𝐶𝑁 = −𝑉3𝑃𝐶
𝑃𝐶𝑁

𝐾𝑝 + 𝑃𝐶𝑁
+ 𝑉4𝑃𝐶

𝑃𝐶𝑁𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝑁𝑃

− 𝑘2𝑃𝐶𝑁 + 𝑘1𝑃𝐶𝐶

− 𝑘7𝐵𝑁𝑃𝐶𝑁 + 𝑘8𝐼𝑁 − 𝑘𝑑𝑛𝑃𝐶𝑁 , (A.9)

̇𝑃𝐶𝐶𝑃 = 𝑉1𝑃𝐶
𝑃𝐶𝐶

𝐾𝑝 + 𝑃𝐶𝐶
− 𝑉2𝑃𝐶

𝑃𝐶𝐶𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝐶𝑃

− 𝑣𝑑𝑃𝐶𝐶
𝑃𝐶𝐶𝑃

𝐾𝑑 + 𝑃𝐶𝐶𝑃
− 𝑘𝑑𝑛𝑃𝐶𝐶𝑃 ,

(A.10)

̇𝑃𝐶𝑁𝑃 = −𝑉3𝑃𝐶
𝑃𝐶𝑁

𝐾𝑝 + 𝑃𝐶𝑁
− 𝑉4𝑃𝐶

𝑃𝐶𝑁𝑃
𝐾𝑑𝑝 + 𝑃𝐶𝑁𝑃

− 𝑣𝑑𝑃𝐶𝑁
𝑃𝐶𝑁𝑃

𝐾𝑑 + 𝑃𝐶𝑁𝑃
− 𝑘𝑑𝑛𝑃𝐶𝑁𝑃 ,

(A.11)

𝐵̇𝐶 = 𝑘𝑠𝐵𝑀𝐵 − 𝑉1𝐵
𝐵𝐶

𝐾𝑝 + 𝐵𝐶
+ 𝑉2𝐵

𝐵𝐶𝑃
𝐾𝑑𝑝 + 𝐵𝐶𝑃

− 𝑘5𝐵𝐶 + 𝑘6𝐵𝑁 − 𝑘𝑑𝑛𝐵𝐶 ,

(A.12)

𝐵̇𝐶𝑃 = 𝑉1𝐵
𝐵𝐶

𝐾𝑝 + 𝐵𝐶
− 𝑉2𝐵

𝐵𝐶𝑃
𝐾𝑑𝑝 + 𝐵𝐶𝑃

− 𝑣𝑑𝐵𝐶
𝐵𝐶𝑃

𝐾𝑑 + 𝐵𝐶𝑃
− 𝑘𝑑𝑛𝐵𝐶𝑃 , (A.13)

𝐵̇𝑁 = −𝑉3𝐵
𝐵𝑁

𝐾𝑝 + 𝐵𝑁
+ 𝑉4𝐵

𝐵𝑁𝑃
𝐾𝑑𝑝 + 𝐵𝑁𝑃

+ 𝑘5𝐵𝐶 − 𝑘6𝐵𝑁 − 𝑘7𝐵𝑁𝑃𝐶𝑁

+ 𝑘8𝐼𝑁 − 𝑘𝑑𝑛𝐵𝑁 , (A.14)

𝐵̇𝑁𝑃 = 𝑉3𝐵
𝐵𝑁

𝐾𝑝 + 𝐵𝑁
− 𝑉4𝐵

𝐵𝑁𝑃
𝐾𝑑𝑝 + 𝐵𝑁𝑃

− 𝑣𝑑𝐵𝑁
𝐵𝑁𝑃

𝐾𝑑 + 𝐵𝑁𝑃
− 𝑘𝑑𝑛𝐵𝑁𝑃 , (A.15)

𝐼̇𝑁 = −𝑘8𝐼𝑁 + 𝑘7𝐵𝑁𝑃𝐶𝑁 − 𝑣𝑑𝐼𝑁
𝐼𝑁

𝐾𝑑 + 𝐼𝑁
− 𝑘𝑑𝑛𝐼𝑁 . (A.16)

Basal values listed in Supplementary Table 1 of [37] are used with the 
exception of 𝑘1 = 0.58 and 𝑘2 = 2.0, which determine the dynamics of 
the nonphysphorylated cytosolic Per and Cry protein concentrations. 
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Units of time are in hours. Light intensity acts as an input for this 
model that changes the value of 𝑣𝑠𝑃 , the maximum rate of Per expres-
sion. 𝑣𝑠𝑃 = 1.2 nM/h corresponds to a moderate light intensity with 
higher/lower values corresponding to higher/lower light intensities.

Appendix B. Optimal control using a dynamic programming ap-
proach

The inferred models from Sections 4.1 and 4.2 are validated by 
formulating and solving an optimal control problem. In this work, a 
dynamic programming approach is used. Note that the models obtained 
from the model identification procedure in Section 3.5 capture the 
behavior in response to general inputs and that if desired, other control 
strategies could be considered.

To begin, the inferred model from (14) is discretized considering 
time steps of length 𝛥𝑡. For some initial condition 𝜁0 = [𝑥̂(0), 𝑦̂(0)]𝑇 , 
define 𝜁𝑖 = [𝑥̂(𝑖𝛥𝑡), 𝑦̂(𝑖𝛥𝑡)]𝑇  to be the solution to (14). Taking 𝑢 to 
be constant on the interval 𝑡 = [𝑖𝛥𝑡, (𝑖 + 1)𝛥𝑡] one can use (14) to 
numerically evaluate the mapping 
𝜁𝑖+1 = 𝑓 (𝜁𝑖, 𝑢). (B.1)

Next, one can define a general cost function 

𝐽
(

(𝑢𝑖)
𝜂−1
𝑖=0 , (𝜁𝑖)

𝜂
𝑖=0

)

=
𝜂−1
∑

𝑖=0
𝑐1(𝑢𝑖, 𝑖) +

𝜂
∑

𝑖=0
𝑐2(𝜁𝑖, 𝑖), (B.2)

where 𝑐1 and 𝑐2 are time-dependent functions of the input and state, 
respectively. The optimization problem considered in this work is 
defined as follows: for a sequence of inputs 𝑢0, 𝑢1, 𝑢𝜂−1 where the input 
𝑢𝑖 denotes a constant input applied over the interval [𝑖𝛥𝑡, (𝑖 + 1)𝛥𝑡]

minimize
𝑢𝑖

0≤𝑖≤𝜂−1

𝐽
(

(𝑢𝑖)
𝜂−1
𝑖=0 , (𝜁𝑖)

𝜂
𝑖=0

)

, (B.3)

over all allowable inputs 𝑢𝑖 ⊂   where 𝜂 is the number of iter-
ations considered and the evolution of 𝜁 is governed by (B.1). As 
described in [49,50], The minimization can be performed using a 
dynamic programming approach. Defining 

𝐽 ∗
𝜂−𝑦(𝜁𝜂−𝑦) =

⎧

⎪

⎨

⎪

⎩

min
𝑢𝑖

𝜂−𝑦≤𝑖≤𝜂−1

𝐽
(

(𝑢𝑖)
𝜂−1
𝑖=𝜂−𝑦, (𝜁𝑖)

𝜂
𝑖=𝜂−𝑦

)

, if 𝑦 > 0,

𝑐2(𝜁𝜂 , 𝜂), if 𝑦 = 0,
(B.4)

where 𝐽 ∗
𝜂−𝑦 is the cost-to-go function that gives the remaining cost over 

the final 𝑦 time steps when applying an optimal series of inputs. The 
principle of optimality [49] implies that 𝐽 ∗

𝜂−𝑦 can be found iteratively 
according to 

𝐽 ∗
𝜂−𝑦(𝜁𝜂−𝑦) = min

𝑢𝜂−𝑦

(

𝑐1(𝑢𝜂−𝑦, 𝜂 − 𝑦) + 𝑐2(𝜁𝜂−𝑦, 𝜂 − 𝑦) + 𝐽 ∗
𝜂−𝑦+1(𝜁𝜂−𝑦+1)

)

, (B.5)

by starting with the endpoint cost 𝐽 ∗
𝜂 (𝜁𝜂) = 𝑐2(𝜁𝜂 , 𝜂) and working 

backwards. With knowledge of the cost-to-go function, the optimal 
control at each timestep is then 

𝑢∗𝑘(𝜁𝑘) = argmin
𝑢𝑘⊂

(

𝑐1(𝑢𝑘, 𝑘) + 𝑐2(𝜁𝑘, 𝑘) + 𝐽 ∗
𝑘+1(𝑓 (𝜁𝑘, 𝑢𝑘))

)

. (B.6)
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