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 A B S T R A C T

Data-driven strategies can be used to infer representations of dynamical systems when the underlying model 
is unknown. Dynamic mode decomposition (DMD) is one such approach that can be used to identify the 
finite dimensional linear mapping that minimizes the squared error of the residuals for data recorded at 
successive timesteps. The associated modes of the resulting linear operator are an approximation of the 
Koopman eigenmodes of the underlying dynamical system, but these modes are not explicitly considered in 
the model identification process. General approaches that explicitly consider information about the Koopman 
eigenmodes themselves to inform the model fitting process have yet to be developed. In this work, we 
propose and implement an artificial neural network-based strategy for inferring Koopman eigenmodes from 
data that explicitly considers information about the Koopman eigenvalues during the model identification stage. 
Results are illustrated through a variety of examples that show improved accuracy of the proposed strategy in 
comparison to traditional DMD, especially when long term predictions are required.
1. Introduction

Modeling and analysis of dynamical systems is of paramount im-
portance in a wide variety of fields such as climate, biology, ecology, 
traffic and finance [1]. Forecasting such systems also allows for the 
subsequent design of controllers [2–4]. It is often nontrivial to formu-
late a mathematical model for complex processes that can accurately 
emulate the dynamics. In situations where only observable data is 
accessible, data-driven approaches are often utilized. Numerous data-
driven strategies have been proposed that not only find an accurate 
approximation of the dynamics through data but also perform dimen-
sionality reduction to derive a low-dimensional model representation. 
One such strategy is proper orthogonal decomposition (POD) [5,6] 
and its variants [7,8], which aims to represent large multidimen-
sional datasets with an optimal set of modes in an L2 energy sense. 
These modes can then be utilized to obtain a low-dimensional dynami-
cal model representation by projecting the model equations onto the 
POD modes [9,10]. Authors in [11] propose a data-driven balanced 
truncation for model reduction where observed system response data 
is utilized to find the representation of the reduced model without 
utilizing any prior realization of the original model.

Dynamic mode decomposition (DMD) [12,13] is another well-
established data-driven model identification strategy that fits a linear 
operator to describe the mapping from one timestep to the next. 
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The resulting system representation minimizes the squared norm of 
the residual and can be used to predict the temporal evolution of 
observables. Extended DMD [14] considers a set of user-specified basis 
functions, lifting to a higher dimensional space and fitting the model to 
the resulting data. Another variation, DMD with control [15], accounts 
for external actuation in order to distinguish the autonomous system 
dynamics with those shifted through external input. DMD provides 
a good approximation of the system dynamics in many applications. 
However, one shortcoming is that standard DMD only considers the 
dynamics on a single time scale. When the system evolves on multiple 
timescales or when long term predictions are required, the accuracy of 
the predictions may suffer. Multi-resolution DMD [16], an extension of 
standard DMD that separates the slow decaying modes from fast decay-
ing modes at specified levels, is able to account for different temporal 
resolutions, but its recursive implementation is not straightforward.

DMD has a close connection to Koopman operator theory and can 
be thought of as finding a finite-dimensional realization for the action 
of the (generally) infinite-dimensional Koopman operator [17–19]. The 
eigenvalues and eigenvectors of the resulting model obtained from 
DMD provide an approximation for the true Koopman eigenvalues and 
Koopman eigenfunctions of the Koopman operator [20]. However, at 
present, there are no general techniques available to incorporate a priori
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knowledge about the Koopman eigenvalues and eigenvectors into the 
model fitting procedure. Such methods, for instance, could be used 
to prioritize slow-decaying eigenmodes or eigenmodes corresponding 
to a specific frequency of oscillation, ultimately providing a clearer 
picture about the Koopman eigenmodes that are most relevant to the 
underlying dynamics and subsequently yielding models that provide 
better predictions on longer prediction horizons.

With these considerations in mind, in this work we propose a 
strategy to learn the eigenspace representation of a system from data 
by structuring a neural network in such a way that its trainable weights 
learn information related to Koopman eigenvalues of the underlying dy-
namical model. In addition to minimizing the error associated with the 
mapping between observations, this approach allows for the inclusion 
of explicit constraints on the associated Koopman eigenvalues that can 
account for domain specific knowledge. A similar idea is considered 
in [21] which devises a novel strategy for DMD by reformulating it 
to access its eigenvalues for a given system and enforcing frequency 
constraints to change the eigenvalue placement while ensuring minimal 
changes to DMD. The constrained DMD approach relies on specifying 
frequencies through eigenvalues by utilizing prior domain knowledge 
and applying it using a mathematical derivation unlike our proposed 
approach which finds the eigenspace representation by utilizing a 
neural network. There are other strategies present in literature that find 
eigenvalues through neural networks. For example, the work in [22] 
proposes a simple feed forward neural network structure to compute 
eigenvalues and eigenvectors of the underlying system by training it 
to match desired output patterns. Similarly, in [23], convolutional 
neural networks (CNN) are employed for eigenvalue prediction of 1-
D and 2-D photonic crystals by recognizing the underlying patterns 
observed in the given output data. However, both of these works focus 
on solving the eigenvalue problem and finding the eigenvalues of a 
given system unlike our proposed strategy which learns the under-
lying model dynamics through data by approximating the associated 
Koopman eigenfunctions.

The organization of this paper is as follows: Section 2 provides 
necessary background on time-delay embeddings, the dynamic mode 
decomposition (DMD) algorithm, and its relationship to Koopman op-
erator theory. Section 3 describes the mathematical formulation that 
underlies our proposed approach, ultimately enabling artificial neural 
networks to learn an approximation of the Koopman eigenfunctions. 
Results are given in Section 4 where we illustrate the proposed tech-
nique on a variety of examples with both numerical and experimental 
data. Section 5 gives concluding remarks.

2. Background

In this section, a brief background of the standard DMD algorithm, 
its connection to Koopman operator theory, and the motivation for the 
proposed approach are provided.

2.1. Dynamic mode decomposition and time-delay embedding

As illustrated in [13], for a system with 𝑛 real-valued observables, 
time series measurements can be obtained at fixed time intervals, 𝛥𝑡, 
and then stacked together to construct a matrix. Consider a data matrix 
𝐗 ∈ R𝑛×𝑚 containing time series measurements of the form 
𝐗 =

[

𝐱𝟏 𝐱𝟐 ⋯ 𝐱𝐦
]

, (1)

where 𝐱𝟏,… , 𝐱𝐦 ∈ R𝑛. Similarly, a matrix 𝐘 of the time shifted data is 
defined as 
𝐘 =

[

𝐱𝟐 𝐱𝟑 ⋯ 𝐱𝐦+𝟏
]

. (2)

The primary objective of DMD is to approximate a system matrix 𝐀, 
such that 𝐘 = 𝐀𝐗. Here, 𝐀 ∈ R𝑛×𝑛 can be found by considering a 
least-squares solution to the problem 𝐀 = 𝐘𝐗† where † represents the 
2 
Moore–Penrose pseudoinverse [13]. The pseudoinverse of 𝐗 is taken by 
using singular value decomposition (SVD) which results in 
𝐗 = 𝐔Σ𝐕∗, (3)

where 𝐔 ∈ R𝑛×𝑟, Σ ∈ R𝑟×𝑟 is a diagonal matrix, 𝐕∗ ∈ R𝑟×𝑚, 𝑟 is the rank 
of 𝐗 specified by the number of eigenvalues chosen and ∗ denotes the 
conjugate transpose. An approximation to 𝐀 can then be found using 
DMD based on the number of eigenvalues specified through SVD as 
𝐀 ≈ 𝐘𝐕Σ−𝟏𝐔∗, (4)

Thus, the system 𝐱̂𝐤+𝟏 = 𝐀𝐱̂𝐤 can be obtained for the underlying model 
dynamics where 𝐱̂ is the by DMD.

Standard DMD as described above is generally performed using the 
system observables in the data matrix 𝐗. Lifting the observables to 
a higher dimensional space before performing DMD can be used to 
obtain a richer representation of the system dynamics [24]. Time-delay 
embedding is one approach that can be used to lift data from (1) to a 
higher dimensional space. For data contained in 𝐗 from (1), a time-
delay embedding of length 𝑛𝑑 can be constructed according to [25] 

𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱𝟏 𝐱𝟐 ⋯ 𝐱𝐦−𝐧𝐝+𝟏
𝐱𝟐 𝐱𝟑 ⋯ 𝐱𝐦−𝐧𝐝+𝟐
⋮ ⋮ ⋱ ⋮
𝐱𝐧𝐝 𝐱𝐧𝐝+𝟏 ⋯ 𝐱𝐦

⎤

⎥

⎥

⎥

⎥

⎦

, (5)

where 𝐇 ∈ R(𝑛×𝑛𝑑 )×(𝑚−𝑛𝑑+1). DMD can be subsequently be performed on 
the data set contained in 𝐇. DMD performed in this manner is often 
referred to as Hankel-DMD [17].

2.2. Relationship between DMD and the Koopman operator and the moti-
vation for the proposed approach

Koopman analysis can be used to represent the evolution of the 
observables of a nonlinear dynamical system in terms of a (gener-
ally) infinite dimensional linear operator [26]. Specifically, consider a 
discrete dynamical system of the form 
𝐳𝐤+𝟏 = 𝐅(𝐳𝐤), (6)

where 𝐅 denotes the dynamics of the (possibly nonlinear) mapping from 
𝐳𝐤 → 𝐳𝐤+𝟏 and 𝐳𝐤 ∈  ⊆ R𝑚 is the state. The evolution of the observables 
under this mapping can be described according to 
𝛷(𝐳𝐤) = 𝛷(𝐅(𝐳𝐤)), (7)

where  is the Koopman operator, which operates on the vector space 
of observables 𝛷(𝐳𝐢) = [𝑥1𝑖 … 𝑥𝑛𝑖 ]

𝑇 ∈ R𝑛. Note that 𝑛 and 𝑚 are 
not necessarily the same. Owing to the linearity of the composition 
operator, the Koopman operator is linear, but generally infinite di-
mensional [26–28]. As such, its action can be decomposed in terms of 
eigenmodes/eigenvalues as 

𝛷(𝐳𝐤+𝟏) = 𝛷(𝐳𝐤) =
∞
∑

𝑗=1
𝜆𝑗𝜓𝑗 (𝐳𝐤)𝐯𝐣, (8)

where 𝜆𝑗 is a Koopman eigenvalue associated with the Koopman eigen-
function 𝐯𝐣. It immediately follows that 

𝛷(𝐳𝐤+𝐧) =
∞
∑

𝑗=1
𝜆𝑛𝑗𝜓𝑗 (𝐳𝐤)𝐯𝐣. (9)

Using (8) to represent the evolution of the system observables, the 
critical challenge is in identifying a suitable finite basis to represent 
the infinite dimensional Koopman operator [29]. DMD as described in 
Section 2.1 is one standard approach; the eigenvalues and eigenvectors 
of the inferred matrix 𝐀 from Eq.  (4) provide an approximation of the 
true Koopman eigenvalues and eigenvectors of the Koopman operator 
 [20]. This is true regardless of whether the observables are lifted 
to a higher dimension, for instance, as done when using extended 



T. Ahmed and D. Wilson Physica D: Nonlinear Phenomena 483 (2025) 134991 
DMD [24] or Hankel DMD [17]. However, DMD does not explicitly 
consider the Koopman eigenfunctions as part of the model identifica-
tion procedure, rather, it focuses on identifying an approximation of the 
Koopman operator that minimizes the error from one step to the next. 
The eigenmodes are only considered after the approximation of the 
Koopman operator has already been obtained. Given that eigenvectors 
are generally very sensitive to small matrix perturbations, it can be 
difficult to determine whether the resulting eigenmodes obtained from 
DMD are truly important to the dynamics. Furthermore, because DMD 
only provides a fit to the data that minimizes the error between steps, 
the prediction (9) will not always remain accurate as the prediction 
horizon, 𝑛, increases.

3. Problem formulation and general approach

3.1. Problem description

In this work, we propose and implement an artificial neural network-
based strategy for inferring Koopman eigenmodes from data that ex-
plicitly considers information about the Koopman eigenvalues during 
the model identification stage. We propose an artificial neural network 
based strategy which is trained using mini batch gradient descent to 
find a representation for the Koopman eigenfunctions that is consistent 
with a priori knowledge about the system on sets containing the current 
observable of the system 𝛷(𝐳𝐢) = [𝑥1𝑖 𝑥

2
𝑖 … 𝑥𝑛𝑖 ]

𝑇  as input and the next 
observables 𝛷(𝐳𝐢+𝟏) = [𝑥1𝑖+1 𝑥2𝑖+1 … 𝑥𝑛𝑖+1]

𝑇  as output. Furthermore, 
explicit constraints on the Koopman eigenvalues are enforced by our 
algorithm. In contrast to DMD, the proposed approach incorporates 
information about the Koopman eigenfunctions themselves into the 
model identification procedure. As illustrated in the examples provided 
in Section 4, this approach procedure gives allows for better qualitative 
and quantitative predictions of system behavior, especially as the 
prediction horizon increases.

The proposed approach can be viewed as learning the dominant 
Koopman eigenfunctions directly subject to a set of application specific 
constraints. By contrast, DMD provides a least squares fitting for the 
action of the Koopman operator from which Koopman eigenfunctions 
can subsequently be inferred.

3.2. Reframing the eigendecomposition for the neural network

Considering the evolution of observables according to (7), we seek a 
finite-dimensional linear approximation for the action of the Koopman 
operator on the model observables. The proposed approach aims to 
learn the eigendecomposition of this matrix, i.e., its eigenvalues as well 
as the left and right eigenvectors. In the description of the proposed 
approach, for notational convenience, below we let 𝐱+ = 𝐱, i.e., where 
the set of observables 𝐱 ∈ R𝑛 maps to 𝐱+ ∈ R𝑛 under the action of 
the Koopman operator. Using this notation, we are trying to find the 
following approximation for the action of the Koopman operator:
𝐱+ = 𝐱

≈ 𝐕′Λ′𝐖′𝐱

= 𝐀𝐧𝐞𝐮𝐱, (10)

where 𝐀𝐧𝐞𝐮 ∈ R𝑛×𝑛 is a finite dimensional approximation of the 
Koopman operator, and 𝐕′, Λ′ and 𝐖′ represent the right eigenvectors, 
eigenvalues and the left eigenvectors, respectively, of 𝐀𝐧𝐞𝐮 arranged 
as matrices which are learned by the neural network. The goal of 
this work is to obtain the matrices 𝐕′, Λ′ and 𝐖′ from data which 
provide an approximation for the action of the Koopman operator 
— this is different from standard DMD approaches where the linear 
approximation of the Koopman operator is obtained from data and then 
the eigendecomposition is obtained from this matrix approximation

Of course, eigenvalues and eigenvectors are in the set of complex 
numbers. Although complex-valued neural networks (CVNNs) [30,31] 
3 
can be used for dealing with complex-valued eigendecompositions, 
the implementation is generally more computationally intensive and 
nontrivial when compared with traditional neural networks. Instead, 
we will use a conventional real-valued neural network and the issue of 
complex numbers can be ameliorated with appropriate transformations 
for complex eigenvalues using a Block-II form.

To proceed, let 𝜗 be the total number of eigenvalue/eigenvector 
pairs in the eigendecomposition and let 𝜗1 ≤ 𝜗 be the total number 
with nonzero imaginary part. For any pair of complex eigenvalues 𝜆𝑎
and 𝜆𝑏 = 𝜆∗𝑎, with right and left eigenvector pairs (𝐯𝐚, 𝐯𝐛) and (𝐰𝐚,𝐰𝐛), 
respectively, a Block-II representation is considered 

Λ̄𝐚,𝐛 =
[

Re(𝜆𝑎) Im(𝜆𝑎)
−Im(𝜆𝑏) Re(𝜆𝑏)

]

. (11)

In a similar manner, let 

𝐕̄𝐚,𝐛 =
[

Re(𝐯𝐚) Im(𝐯𝐛)
]

, 𝐖̄𝐚,𝐛 =
[

Re(𝐰𝑇𝐚 )
Im(𝐰𝑇𝐛 )

]

. (12)

Considering the Block-II form for complex eigenvalues given in
Eqs. (11) and (12), one can write 

𝐋 = 𝐖̂𝐱 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐖̄𝟏,𝟐
⋮

𝐖̄𝜗𝟏−𝟏,𝜗𝟏

𝐰𝑇𝜗𝟏+𝟏
⋮
𝐰𝑇𝜗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, (13)

where 𝐋 ∈ R𝜗 is the product of 𝐱 and the matrix 𝐖̂ ∈ R𝜗×𝑛 which 
contains the Block-II form for complex left eigenvectors and real left 
eigenvectors stacked together. This intermediate vector 𝐋 can further 
be transformed as 

𝐋+ = Λ̂𝐋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Λ̄𝟏,𝟐 0 ⋯ ⋯ ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ Λ̄𝜗𝟏−𝟏,𝜗𝟏 ⋱ ⋮
⋮ ⋱ 𝜆𝜗1+1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ ⋯ ⋯ 0 𝜆𝜗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐋𝟏,𝟐
⋮

𝐋𝜗𝟏−𝟏,𝜗𝟏
𝐿𝜗1+1
⋮
𝐿𝜗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (14)

Here, Λ̂ ∈ R𝜗×𝜗 is a diagonal matrix containing the real eigenvalues 
as well as complex eigenvalues of the underlying dynamical system in 
Block-II form and 𝐋+ ∈ R𝜗 is the update of the intermediate vector 𝐋. 
In order to predict the next observable 𝐱+ from this updated vector, 
one can take its product with another matrix containing information of 
right eigenvectors to get 

𝐱+ = 𝐕̂𝐋+ =
[

𝐕̄𝟏,𝟐 ⋯ 𝐕̄𝜗𝟏−𝟏,𝜗𝟏 𝐯𝜗𝟏+𝟏 ⋯ 𝐯𝜗
]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐋+
𝟏,𝟐
⋮

𝐋+
𝜗𝟏−𝟏,𝜗𝟏
𝐿+
𝜗1+1
⋮
𝐿+
𝜗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

The real right eigenvectors and Block-II form for complex right eigen-
vectors are stacked together in the matrix 𝐕̂ ∈ R𝑛×𝜗. For the purpose 
of this work, the values in 𝐖̂, Λ̂ and 𝐕̂ from Eqs. (13), (14) and 
(15) respectively, will be learned using an artificial neural network 
approach. Once these are learned, a system matrix approximation of 
the form 𝐱+ = 𝐀𝐧𝐞𝐮𝐱 as in (10) where 
𝐀𝐧𝐞𝐮 = 𝐕̂Λ̂𝐖̂. (16)

can be obtained.

3.3. Approximating Koopman eigenfunctions using neural networks

Given the current observable measurement, 𝐱, of the system (6), 
the main objective of the proposed strategy is to learn the matrices 
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Fig. 1. General architecture for the proposed neural network based identification strategy.
from Eqs. (13)–(15) for a given system in such a way that we get 
an accurate approximation of the next observable measurement 𝐱+
by considering an optimization subject to different system constraints 
intended to reflect application specific knowledge. Here, the predicted 
next observable from the neural network will be denoted by 𝑥̂+ and the 
true next observable (ground truth) will be denoted by 𝐱+.

In order to learn the approximation of the underlying system dy-
namics, our strategy employs a multi-layer feed-forward artificial neu-
ral network. A simplified layout of the network structure is shown 
in Fig.  1. The architecture is based on the mathematical formulation 
discussed in Section 3.2. The input layer of the neural network takes 
the current observable 𝐱 of the system and feeds it to the first hidden 
layer where it is multiplied by 𝐖̂ which contains information regarding 
the left eigenvectors of the system. The unknown coefficients within 
𝐖̂ correspond to the weights of the first hidden layer and the product 
results in the intermediate vector 𝐋. This intermediate vector is fed to a 
second hidden layer with weights corresponding to Λ̂ that is formed by 
combining real eigenvalues as well as complex eigenvalues converted to 
Block-II form. Subsequently, the update to the intermediate vector 𝐋+ is 
obtained. The number of hidden layers and ultimately, the number of 
intermediate vectors in this hidden layer part of the network depend 
upon the number of Koopman eigenmodes to be approximated. An 
additional hidden layer is added to this part for each pair of eigenvalues 
considering whether they are real or complex. The intermediate vector 
updates are then concatenated and fed forward to the output layer with 
weights from 𝐕̂ learning information about the right eigenmodes to 
obtain the approximation of the next observable 𝐱̂+.

This predicted next observable can then be compared to the ground 
truth 𝐱+ obtained from observations of the underlying system. To 
compute the error between the prediction and the ground truth, both 
are fed to the following loss function 

𝑡𝑜𝑡𝑎𝑙 =
𝛾1

𝜁
∑

(𝐱+𝐢 − 𝐱̂+𝐢 )
2 + 𝛾2(𝐖̂𝐕̂ − 𝐈) + 𝛾3𝐇(Λ̂, 𝐖̂, 𝐕̂). (17)
𝜁 𝑖=1

4 
The loss function consists of three terms; the first term is the MSE loss 
followed by the second term for orthogonality loss which regularizes 
the weights to learn the true Koopman eigenmodes that are orthogonal 
to each other, i.e., 𝐖̂𝐕̂ = 𝐈 where 𝐈 is the identity matrix. The 
orthogonality constraint is necessary to ensure that the columns of 𝐕̂
and rows of 𝐖̂ remain right and left eigenvectors of 𝐀𝐧𝐞𝐮, and hence, 
approximate the Koopman eigenfunctions. Finally, the third term 𝐇
includes a set of additional constraints, for instance, that might reflect 
domain specific knowledge. Here, 𝜁 is the number of measurement pairs 
used for training and 𝛾1,… , 𝛾3 are the weights for each of the penalty. 
The domain knowledge based regularization constraints, represented 
by the third term, can be added to the network depending upon the 
application, for example, magnitude and frequency based constraints. 
For instance, the magnitudes of the resulting eigenvalues can be penal-
ized from being far from the unit circle to prioritize slowly decaying 
eigenmodes. Alternatively, penalties can be placed on the argument of 
the eigenvalue for deviating from set values to prioritize modes with 
specific frequencies. The weights of the trainable layers, i.e., 𝐕̂, Λ̂ and 
𝐖̂ are updated using backpropagation. For the examples presented in 
this work, it is assumed that there is a combination of real and complex 
eigenvalues and the eigenvectors obtained for the underlying system. 
The complex eigenvalues and eigenvectors are converted into Block-II 
form to be learned through a real-valued neural network. Mini-batch 
gradient descent is used for training to take multiple observable pairs 
into account simultaneously so that the resulting system approximation 
is able to generalize for the underlying model efficiently.

Linear activation functions are used for each layer in the artificial 
neural network as the transformations to predict the next observable 
from the current observable using the learned weights. Once these 
weights from Eqs. (13)–(15) are learned, they can be utilized to ap-
proximate the system matrix for the underlying model using the form 
in Eq.  (16). Note that the eigenvalues obtained by the proposed strategy 
are for a discrete dynamical system.
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A simplified layer level diagram for the strategy’s neural network 
architecture is illustrated in Fig.  1. The input layer of the network 
is comprised of the current observable of the dynamical system, 𝐱. 
The input layer component is passed simultaneously through a set of 
parallel hidden layers to transform the current observable into interme-
diate vectors 𝐋 with the coefficients comprising 𝐖̂ as the corresponding 
weights. A set of updates to the intermediate vectors, 𝐋+, is obtained 
by feeding the intermediate vectors to a second set of parallel hidden 
layers having Λ̂ from (14) as their weights. The resulting 𝐋+ vectors are 
then concatenated into a single tensor and then passed to the output 
layer of the network architecture. The output layer transforms these 
updated intermediate vectors into the predicted next observable 𝐱̂+
by taking their dot product with the weights from 𝐕̂. The process is 
repeated for all pairs of current and next observable measurements 
to get the corresponding next observable predictions which are then 
compared with the ground truth to compute the error and update 
the network weights accordingly to learn a generalizable Koopman 
eigenfunction approximation through backpropagation. The next sec-
tion details the type of penalties enforced on the Koopman eigenvalues 
in this work and the intuition behind them.

3.4. Domain knowledge constraints on Koopman eigenvalues

Koopman eigenvalues learned through training the neural network 
on observable data are constrained through our proposed approach 
in such a way that the resulting system approximation is able to 
emulate and replicate the underlying model dynamics more accurately 
as compared to traditional techniques like DMD. In this work, both 
magnitude based and frequency based constraints are applied to the 
examples in the form of function 𝐇(Λ̂, 𝐖̂, 𝐕̂) from Eq.  (17). Magnitude 
based constraints force the magnitude of learned Koopman eigenvalues 
to be close to one. These constraints are derived from the fact that 
eigenvalues close to the unit circle are slow decaying and hence, can 
capture the slow decaying oscillatory dynamics of systems with limit 
cycles more efficiently. Similarly, frequency based constraints penalize 
a given eigenvalue for having an argument far from some specified 
value, prioritizing modes with prespecified frequencies. Specific steps 
and heuristics required for the neural network training process and the 
network architecture are detailed in the next section.

3.5. Implementation of the Koopman eigenmode identification strategy us-
ing the neural network

Details for the implementation of the Koopman eigenmode identifi-
cation strategy described in Section 3.3 are provided here. The neural 
network is coded in python by utilizing Tensorflow and Keras; Keras 
is a library for artificial neural networks which acts as an interface for 
Tensorflow, a machine learning platform in python [32]. In terms of 
training data, our implementation follows the traditional supervised 
learning approach with pairs of current observables and the corre-
sponding next observables used for learning the approximation for the 
Koopman eigenfunctions of the underlying system. The overall steps 
for the identification strategy are outlined below. It is assumed that 
observable data from the underlying model is accessible and a dataset 
containing the current observables 𝐱𝟏,… , 𝐱𝐧 and the corresponding 
next observables 𝐱+1 ,… , 𝐱+𝑛  has already been obtained. Depending upon 
the number of observables, time-delay embeddings are generated to lift 
to a higher dimension [17]; details for the implementation are given in 
Section 2.1. Also, DMD is used to obtain an initialization for the neural 
network weights.

Step (1) Initially, specify the number of eigenvalues and eigenvectors 
to be considered; as a general heuristic, per the structure of Λ̂ from 
(14), a combination of complex eigenvalue pairs and real eigenvalues 
are considered. Standard DMD is applied to the training set and the 
resulting eigenvalue and eigenvector approximation is then used for 
5 
initializing the weights of the neural network after the complex values 
have been converted into the Block-II matrix form specified by (11) and 
(12).
Step (2) Structure the artificial neural network based on the number 
of real eigenvalues and complex eigenvalue pairs; for each complex 
eigenvalue pair and real eigenvalue, an additional hidden layer for Λ̂
and 𝐖̂ is considered along with a single hidden layer for 𝐕̂ per the 
architecture specified in Fig.  1. Linear activation functions are used in 
all network layers.
Step (3) Predictions for the next observables, 𝐱̂+, are generated at the 
output layer of the network.
Step (4) Specify an optimizer, the loss function, and the learning rate. 
Define the additional constraints on the weights of the neural network. 
The multi-objective loss function from (17) is used for the approach.
Step (5) In each epoch during training, the current observable is fed 
to the neural network to compute the next observable prediction while 
using the error between the predicted next observable and the ground 
truth to update the weights of the neural network. This process contin-
ues until the training loss converges.
Step (6) Once the neural network is trained, the learned weights can 
be extracted to obtain an approximation of the system matrix that can 
predict future observable given the current observable.

A few general notes about the implementation of the training pro-
cess described above are given below. The initialization in Step 4 is 
done by applying DMD to the data set and then, computing the eigen-
values and eigenvectors of the resulting system matrix approximation. 
The resulting eigenvalues and eigenvectors are generally a combination 
of complex eigenvalue pairs and real eigenvalues. These complex DMD 
eigenvalues and eigenvectors are then converted to the Block-II matrix 
form according to Eqs. (11)–(12). Based on Eqs. (13)–(15), they are 
then stacked together with the real eigenvalues and eigenvectors to 
be used as the weight initialization of the neural network. To yield 
a more generalizable approximation of the underlying system matrix, 
mini-batch stochastic gradient descent is utilized to train the network 
on multiple batches using the data.

4. Results

4.1. Spike rates of neural populations

For illustration purposes, we start by considering a population of 
spiking thalamic neurons for Koopman eigenmode identification for 
the underlying model through our neural network-based strategy. The 
equations for the dynamical system are [33]:
𝐶𝑚𝑉̇𝑘 = −𝐼L(𝑉𝑘) − 𝐼Na(𝑉𝑘, ℎ𝑘) − 𝐼K(𝑉𝑘, ℎ𝑘) − 𝐼T(𝑉𝑘, 𝑟𝑘)

+ 𝐼𝑏𝑘 − 0.2
𝑁
∑

𝑗=1
(𝑉𝑘 − 𝑉𝑗 ),

ℎ̇𝑘 = (ℎ∞(𝑉𝑘) − ℎ𝑘)∕𝜏ℎ(𝑉𝑘),

̇𝑟𝑘 = (𝑟∞(𝑉𝑘) − 𝑟𝑘)∕𝜏𝑟(𝑉𝑘),

𝑦(𝑡) = 1
𝑁

𝑁
∑

𝑗=1
(𝑉𝑗 (𝑡)), (18)

for 𝑘 = 1,… , 𝑁 . The population in the model above considers 𝑁 = 10
total neurons where 𝑉𝑘, ℎ𝑘, and 𝑟𝑘 represent the transmembrane voltage 
and two gating variables, respectively, that determine the ionic currents 
for neuron 𝑘. 𝐼𝑏𝑘 is defined as the baseline current of the 𝑘th neuron 
computed by 𝐼𝑏𝑘 = 5 + 0.35𝑘. Other important parameters include 
𝐶𝑚 = 1μF∕cm2 and 𝑖𝑘(𝑡) = 𝜐𝑘𝑢(𝑡) where the model incorporates the 
sensitivity parameter 𝜐𝑘 through 𝜐𝑘 = 1 + 0.05𝑘. A full description of 
all the ionic currents and gating variables is given in [33]. We take 𝑦(𝑡)
as the observable for the neural population model. Fig.  2 illustrates 
that in this example, we are including the transient dynamics of the 
neural population as they converge to a periodic orbit.
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Fig. 2. Dynamics of the population of spiking neurons from (18) are illustrated. Five representative voltage traces 𝑉 (𝑡) are being shown along with the average 
value taken as the observable 𝑦(𝑡) (black line). For comparison, the red dashed line shows the observable once the system has converged to the periodic orbit.
As an initial step, data is generated from the neural population 
model for 𝑡 ∈ [0, 120] and then split equally into training and test data. 
Time-delay embedding of length 𝑛𝑑 = 100 is used on both training 
and test data, as described in Section 2.1 to lift to a higher dimension. 
This results in two matrices for the current observable 𝐗 and the next 
observable 𝐘 and two for the test data, i.e., 𝐗𝟏 and 𝐘𝟏 respectively. 
DMD is then applied to the current observable and the next observable 
by specifying the number of eigenvalues 𝜗 to be considered; in the case 
of the neural population model, 𝜗 = 20. By following the procedure 
highlighted in Section 2.1, an approximation of the system matrix 𝐀𝐝𝐦𝐝
for the underlying model is obtained through least-square minimization 
of the observable data. A combination of real and complex eigenvalues 
and eigenvectors are computed by decomposing 𝐀𝐝𝐦𝐝. The complex 
eigenvalues and eigenvectors are then converted to the Block-II matrix 
form before getting stacked together with the real eigenvalues and 
eigenvectors according to Eqs. (13)–(15).

Based on the number of eigenvalues chosen, a neural network 
architecture is constructed using dense layers; the architecture follows 
the structure shown in Fig.  1. The weights of the neural network are 
then initialized by the DMD eigenvalues and eigenvectors in the form 
given by Eqs. (13)–(15). Once the weights are initialized, training is 
done by using ADAM as the optimizer with the learning rate set at 
5 × 10−7. The custom loss function of the form (17) used here is 

𝑡𝑜𝑡𝑎𝑙 =
3
𝜁

𝜁
∑

𝑖=1
(𝐱+𝐢 − 𝐱̂+𝐢 )

2 + (𝐖̂𝐕̂−𝐈) + 3 × 10−3
𝜗
∑

𝑘=1
(|𝜆̂𝐤| − 𝟏), (19)

where 𝜁 gives the number of current and next observable pairs used 
for training while 𝜗 represents the number of eigenvalues. The imple-
mentation follows the same steps highlighted in Section 3.5. Additional 
magnitude constraints are enforced on all the eigenvalues of the net-
work by forcing their magnitude to be close to 1. This is essential so 
that the learned system approximation is able to emulate the model 
dynamics which evolve on a periodic limit cycle accurately by learning 
slow decaying Koopman eigenvalues close to the unit circle.

The obtained eigenvalues from both the DMD and neural network 
strategy are illustrated on the complex plane in Fig.  3. Panel A shows 
the whole unit circle in the complex plane; the DMD eigenvalues are 
6 
represented by red crosses and the neural network ones are given by 
yellow circles. All of the eigenvalues lie to the right hand side of the 
complex plane close to the unit circle. Panel B shows the placement 
of the eigenvalues in more detail; as seen from the figure, almost all 
the eigenvalues from our proposed strategy are closer to the unit circle 
as compared to the ones obtained from DMD. This is because of the 
magnitude constraint applied to the neural network eigenvalues while 
training based on the assumption that by getting the magnitude of 
eigenvalues close to 1, the resulting system approximation will give 
better long term observable predictions by having slowly decaying 
eigenvalues.

After obtaining the system matrices for both DMD and the proposed 
strategy, an initial state is chosen randomly using the initial step value 
generated through initstep = 𝑎1 + (𝑏1 − 𝑎1)rand(0, 1) with 𝑎1 = 0 and 
𝑏1 = 1000. This initial step is then rounded and used to choose the 
corresponding initial state from the data. Given the initial state and 
corresponding observable, future observable estimates are obtained for 
both DMD and the neural network which are then compared with the 
ground truth through mean squared error. The future estimates are 
obtained by using 
𝐱̂𝐤 = 𝐀𝐤

𝐧𝐞𝐮𝐱𝟎, (20)

where 𝐀𝐧𝐞𝐮 is the system approximation learned by the neural network 
by using Eq.  (16) and 𝐱𝟎 is the initial observable. This process is 
repeated for 200 trials; each trial is run for 4000 timesteps and has 
a different initial state. The resulting MSE for all the timesteps is 
averaged over the trials for both the proposed strategy and DMD. 
Obtained results are shown in Fig.  4 which illustrate the average error 
trends for both DMD and the proposed neural network approach. The 
full model exhibits oscillatory dynamics with a period of approximately 
6.72 or 672 time steps. On average, for the first 1300 timesteps, DMD 
has a lower MSE value (shown in blue) than the neural network (shown 
in red). However, as predictions are made for subsequent timesteps, the 
MSE for the neural network approach is significantly less than DMD.

We note that though the eigenvalues of the proposed approach 
are not substantially different than those obtained when using DMD, 
the long term state predictions from Fig.  4 are markedly better than 
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Fig. 3. Placement of eigenvalues obtained from system approximation of spiking neuron population dataset through DMD and our proposed neural network 
strategy. Panel A shows the unit circle with most of the eigenvalues on the right hand side whereas Panel B shows a detailed view of eigenvalues from both the 
DMD and neural network approach. DMD eigenvalues are given in red while yellow represents the neural network eigenvalues.
Fig. 4. Mean squared error plot for our proposed strategy is compared with DMD for the spiking neuron population model. The plot gives the error difference 
between the predicted next observables and the ground truth given the current observable. MSE trend for neural network strategy is given in red while blue 
shows the trend for DMD.
those obtained using standard DMD. Even though standard DMD yields 
a good approximation of the eigenmodes of the system, the small 
adjustments obtained when using the proposed method lead to sub-
stantial improvements in the long term state prediction. Notice that 
DMD does provide a slightly better short term prediction of the system 
state over the first 300 time steps. This is not surprising since DMD 
provides an estimate of the action of the Koopman operator which 
minimizes the error over a single time step. By focusing the structure 
of the eigendecomposition instead of simply focusing on the short term 
accuracy, the proposed approach is able to make substantially better 
long term predictions.

4.2. Mixed frequency synthetic image dataset

In this example, the proposed approach is tested on a synthetic 
dataset with multiple modes and frequencies to evaluate its perfor-
mance against DMD. A synthetic movie is generated by creating frames 
7 
through mixing different frequencies as described in [34]. The movie 
consists of 1000 frames in total for a duration of 10 seconds and each 
frame is 80 × 80 = 6400 pixels with a sampling rate of 𝑑𝑡 = 0.01
seconds. The movie is derived by mixing three different frequencies 
having varying spatial distributions as shown in Fig.  5. For the first 
half of the movie, mode 1 is dominant with a oscillating frequency of 
5.55 Hz and an amplitude of 1. The second mode only exists from 3 to 7
seconds in the movie with amplitude 1 and a frequency of 0.9 Hz. The 
last mode has an slow oscillating frequency of 0.15 Hz for the entire 
duration of the movie with an amplitude of 0.5. 
mode𝑖 = 𝐴𝑖𝑢𝑖 sin(2𝜋𝑓𝑖𝑡). (21)

Eq.  (21) shows how each of the three modes are computed with the 
amplitude given by 𝐴𝑖 and the frequency given by 𝑓𝑖 for 𝑖 = 1, 2 and 
3. Also, 𝑢𝑖 gives the distribution of the modes on the image frame. 
Gaussian white noise is added to every pixel randomly in the movie 
by using a normal distribution with a magnitude of 0.1.
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Fig. 5. Figure shows the three modes used to generate the synthetic image dataset to compare the proposed strategy with standard DMD and mrDMD. The modes 
have an oscillating frequency of 5.55, 0.9 and 0.15 Hz and overlap each other.
For this example, an additional test image dataset is generated by 
using mode 3 from Eq.  (21) for 𝑡 = 10,… , 20. Mean is computed for 
both the testing and training dataset separately and then subtracted 
from the original datasets. Proper orthogonal decomposition is then 
applied to reduce the dimensionality of the data by representing both 
the test and training data, retaining the 10 most important modes 
which contain more than 90 percent of the information. Resulting POD 
reduced data is then lifted to a new basis by generating time-dependent 
chunks through time-delay embeddings that can be stacked together 
in matrices to increase the number of observables from 10 to 50 for 
both current and next observable in training and testing data by using 
Eq. (5). For comparison purposes, we also implement multi-resolution 
DMD (mrDMD) [16] to predict dynamics given the current observable.

The authors in [34] present multi-resolution DMD or mrDMD as 
the optimal approach to deal with datasets containing multiple modes 
and frequencies like this example. The mrDMD approach splits the 
data in halves recursively based on the specified number of levels and 
thus separates fast modes from the slow decaying modes. The DMD 
algorithm is then applied at each level, and the overall solution is 
computed by summing up all the individual level components. Using 
the training matrices 𝐗𝟏 and 𝐗𝟐, DMD approach is applied to the given 
data by prespecifying the number of eigenvalues to be considered for 
system approximation; for this example, 𝜗 = 30 are considered. The 
same data matrices are fed to the multi-resolution DMD algorithm to 
generate approximations of underlying dynamics at specified levels; for 
the purpose of this illustration, number of levels are 6 with the same 
number of eigenvalues as standard DMD. The mrDMD algorithm is 
adapted from [16] with some minor changes like applying POD on the 
data to remove noise and generating system approximation in matrix 
form at each level of mrDMD. Once the DMD matrix 𝐀𝐝𝐦𝐝 is obtained, 
it is decomposed into real and complex eigenvalues and corresponding 
eigenvectors. The complex eigenvalues and eigenvectors are converted 
into Block-II form to separate their real and imaginary components and 
then, put together with real eigenvalues using Eqs. (11)–(13) so that 
they can be utilized for our proposed strategy.

Based on the architecture presented in Fig.  1, a neural network 
framework is constructed considering the number of eigenvalues whose 
training weights are initialized using the eigenvalues and eigenvectors 
from DMD converted to the form from Eqs. (13)–(15). A loss function 

𝑡𝑜𝑡𝑎𝑙 =
3
𝜁

𝜁
∑

𝑖=1
(𝐱+𝐢 − 𝐱̂+𝐢 )

2 + (𝐖̂𝐕̂ − 𝐈) + 6 × 10−3
𝜗
∑

𝑘=1
(|𝜆̂𝐤| − 𝟏), (22)

is constructed. The final term is included to move the eigenvalues 
close to the unit circle. By getting the magnitude of these eigenvalues 
close to 1, the learned system approximation by our proposed strategy 
can capture the oscillating dynamics of the underlying system more 
efficiently than standard DMD as the learned Koopman eigenvalues 
will be slow decaying. Also, 𝜗 represents the number of eigenvalues 
whereas 𝜁 gives the number of current and next observable pairs used 
for training. The learning rate for the ADAM optimizer is set as 1 ×
8 
10−3; the overall implementation follows the same steps highlighted in 
Section 3.5.

Distribution of eigenvalues on the complex plane from the proposed 
strategy, mrDMD and DMD is illustrated in Fig.  6. The overall view of 
how these eigenvalues are placed inside the unit circle is presented in 
Panel A with yellow circles representing neural network eigenvalues, 
blue pluses and green stars for different levels of mrDMD and red 
crosses for DMD. As seen from Panel B in the figure which gives a 
magnified view of the eigenvalue distribution, most of the eigenvalues 
obtained from the proposed approach are significantly closer to the unit 
circle when compared to the ones from DMD and mrDMD. This is the 
effect of the magnitude based constraint, from Eq.  (22), applied during 
training which pushes the learned eigenvalues to be close to the unit 
circle. The learned eigenvalues are thus more slowly decaying and the 
resulting system approximation from the proposed strategy will give 
better long term observable predictions. Eigenvalues for mrDMD are 
only shown for the first level and second level for comparison purposes; 
these eigenvalues are similar to the ones obtained from DMD.

To compare the system approximation matrices computed for DMD, 
mrDMD and the neural network strategy, an initial state is chosen 
randomly from the test dataset by using initstep = 𝑎2+(𝑏2−𝑎2)rand(0, 1)
with 𝑎2 = 0 and 𝑏2 = 200. This initial step specifies which instance from 
the data is chosen as the initial current state. Comparison is done by 
computing the difference between the ground truth and the predicted 
next observables through MSE from both variations of DMD and neural 
network approach for 700 timesteps. Given the initial observable 𝐱𝟎, the 
predicted observables are obtained by using Eq.  (20). This is repeated 
for 200 trials with each trial having different initial state. Computed 
MSE is averaged over all the trials for both strategies; the obtained 
average error trends are shown in Fig.  7. From the observed trends, 
it can be seen that the error for the proposed strategy is notably less 
than the error computed for both DMD and mrDMD except for the 
first 100 timesteps where the trends are opposite with significantly less 
difference.

The proposed strategy is able to outperform standard DMD by 
predicting the future observables of the system more accurately. For 
this specific test dataset, although the proposed approach does perform 
better than mrDMD in terms of MSE, it should be noted that only one 
frequency, i.e., mode 3 from training data, is dominant for the whole 
data set. Multi-resolution DMD is primarily used for mode identifica-
tion by splitting the data at different levels and identifying dynamic 
modes for each specified level as seen in [16,35,36]. Therefore, multi-
resolution DMD is better suited for data involving multiple spatial 
distributions and hence, might give better performance in terms of 
MSE when compared to the proposed strategy at individual levels. Also, 
compared to both DMD and mrDMD, the key advantage of our proposed 
method is that it allows utilization of prior domain knowledge to 
steer the method to minimize prediction error further than the vanilla 
DMD or mrDMD where the sole objective is to minimize the loss for 
the observable data. Similar to the results from the previous section, 
this domain knowledge allows the proposed method to significantly 
outperform previously proposed model identification strategies when 
considering the long term prediction error.
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Fig. 6. Panel A shows the eigenvalues from DMD, mrDMD and the proposed neural network approach on the complex plane for the synthetic image dataset. 
Panel B gives a zoomed-in view of how these eigenvalues are placed when compared to each other. Only Level 1 and Level 2 eigenvalues from mrDMD are shown 
for comparison.
Fig. 7. Red and blue lines in the figure represent the MSE trends for the proposed neural network strategy and DMD. Meanwhile, yellow represents the error 
computed for multi-resolution DMD. Note here that the blue and yellow lines are nearly indistinguishable. The error is computed by measuring the difference 
between the predicted next observable and the ground truth given the current observable.
4.3. Schlieren images of supersonic flow past a cylinder

The proposed eigendecomposition strategy is finally applied to ex-
perimental data containing schlieren images of cylinder-generated tran-
sitional shock-wave/boundary layer interactions in response to super-
sonic (Mach 2) flow. These are taken at 50 kHz. In each image, the 
flow goes from left to right. Salient features of the image include a flat 
plate visible on the bottom edge and an upright cylinder on the right 
side. A key feature of these images is its characteristic frequency found 
through analyzing power spectral densities and employing linear data 
analysis techniques like proper orthogonal decomposition (POD) to be 
9 
approximately 5 kHz as shown in [37]. Ref. [37] details the overall 
experimental setup and how data is collected.

The original dataset consists of 12 500 frames; each one of them 
contains 5472 pixels. These are then converted into grayscale and then 
resized to mostly contain features around the cylinder as shown in 
Panel B of Fig.  8. Fig.  8 illustrates an example image from the schlieren 
dataset in Panel A; differences in pixel intensities correspond to the 
difference in fluid density gradients. Meanwhile, Panel B in the figure 
shows a sized down version of the image centered close to the cylinder. 
The red rectangles show the regions from where the pixels intensities 
shown in panels B-D from Fig.  10 are taken. The resulting dataset is split 
into training and testing data equally; the testing data is kept aside to 
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Fig. 8. Panel A in the figure shows an example snapshot from the experimental dataset showing how the Mach 2 flow interacts with the cylinder mounted to 
the bottom plate. A scaled down image centered close to the cylinder is shown in Panel B; the labeled red boxes show the region from which the three pixel 
intensities in Panel B-D of Fig.  10 are taken.
be used for checking the accuracy of the system approximation after 
it is obtained from the proposed strategy. To minimize the effects of 
noise, POD is applied to the training data reducing the dimension of 
each image of the dataset and representing them through a 5-mode POD 
basis. The POD basis captures almost 28 percent of the total energy of 
the measured data; only 28 percent is captured through the POD basis 
so that the resulting reduced datasets inherit a minimum amount of 
noise present in the raw data while retaining important information 
about the dynamics from the data. The obtained POD modes are then 
used to reduce the dimensionality of both the training and testing data 
that have been mean subtracted before POD strategy is applied.

Both the POD reduced training and test data are then stored in 
two separate matrices each containing the current observables and 
the corresponding next observables. Time-delay embedding technique 
is used to generate additional snapshots of data to lift the 5-mode 
POD basis in both the training and test data matrices to a new basis 
containing 50 observables as described in Section 2.1. As done for 
the previous neural population example, the number of eigenvalues 
used for both DMD and our proposed strategy are specified first; in 
this case, they are chosen to be 30. The initial observable is specified 
and the system matrix 𝐀𝐝𝐦𝐝 for the given data is computed through 
DMD based on the chosen number of eigenvalues. By decomposing 
𝐀𝐝𝐦𝐝, the eigenvalues and the corresponding left and right eigenvectors 
are found; these contain both real and complex eigenvalues. For the 
proposed strategy, the complex eigenvalues and eigenvalues from DMD 
are transformed into Block-II form, given by Eqs. (11) and (12), and 
then stored with the real eigenvalues with corresponding eigenvectors.

Using the DMD eigenvalues and eigenvectors converted to the form 
from Eqs. (13)–(15) as the initial weights, a neural network is struc-
tured based on the implementation shown in Fig.  1. For training the 
neural network, the ADAM optimizer is used with a learning rate of 
2 × 10−2. The training loss

𝑡𝑜𝑡𝑎𝑙 =
10
𝜁

𝜁
∑

𝑖=1
(𝐱+𝐢 − 𝐱̂+𝐢 )

2 + (𝐖̂𝐕̂ − 𝐈) + 1 × 10−2
𝜗
∑

𝑘=1
(|𝜆̂𝐤| − 𝟏)

+ 2 × 10−1
5
∑

𝑘=1
(𝐀𝐫𝐠(𝜆̂𝐤) − 0.5519), (23)

contains the MSE loss, the orthogonality loss term to ensure that 
learned left and right eigenvectors are orthogonal and finally, a com-
bination of magnitude and frequency constraints. The magnitude con-
straint is applied to all the weights in Λ̂ to push their magnitude value 
close to the unit circle and learn eigenvalues that are slow decay-
ing. The frequency constraint, in this example, utilizes the dominant 
10 
4.7 kHz frequency identified from the power spectrum in [37] (the cor-
responding argument in radians is 0.5519). This is included to prioritize 
this dominant frequency while learning the Koopman eigenfunctions. 
All these loss terms are added to each other with specific weights 
that are found through successive trials to learn an optimal set of 
eigenvalues and eigenvectors that give better long term observable 
predictions than DMD. The learning process follows the same steps 
highlighted in Section 3.5.

By utilizing the learned eigenvalues and eigenvectors from the 
neural network, a system matrix approximation 𝐀𝐧𝐞𝐮 is generated. To 
compare how these learned eigenvalues differ from the DMD eigen-
values, both of them are plotted on the complex plane through their 
real and imaginary components as shown in Fig.  9. Panel A shows the 
distribution of eigenvalues in the unit circle; all of them lie inside the 
unit circle in its right half. Panel B shows how the learned eigenvalues 
contrast with the eigenvalues obtained through DMD in more detail. 
Neural network eigenvalues, represented by yellow circles, are closer to 
the unit circle when compared with the red crosses that represent DMD 
eigenvalues. This is because of the magnitude constraint that pushes the 
learned eigenvalues towards the unit circle, i.e. their magnitude should 
be close to 1. Also, many learned eigenvalues have the same argument 
close to the dashed lines in Fig.  9 due to the frequency constraint 
applied through regularization that forces their argument to be close 
to a set value; this set value is computed using the dominant frequency 
4.7 kHz obtained from power spectrum analysis of the dataset.

By randomly choosing the initial observable, observable estimates 
for 100 timesteps are generated by using the system matrix approxima-
tions 𝐀𝐝𝐦𝐝 and 𝐀𝐧𝐞𝐮 for DMD and our proposed strategy respectively. 
For getting the initial observable, an initial step value is calculated 
using initstep = 𝑎3 + (𝑏3 − 𝑎3)rand(0, 1) with 𝑎3 = 0 and 𝑏3 = 6000
which is then used as an index to get the initial observable from 
the test data. Future observables can be predicted given the initial 
observable by using Eq.  (20). Generated observable predictions are 
then compared with the corresponding ground truth through MSE; this 
process is repeated for 200 trials. Fig.  10 depicts the resulting MSE plot 
in panel A obtained by averaging over all the trials. Panels B-D compare 
pixel intensities from three different pixels for over a 100 timestep 
window for the proposed neural network approach and DMD; these 
pixels are taken from the regions highlighted in Panel B of Fig.  8. For 
the initial few timesteps, both DMD and the neural network estimates 
have approximately the same error. However, the difference becomes 
significant for subsequent predictions with the proposed approach hav-
ing lower mean squared error than standard DMD. The initial jump 
in MSE error in the trends shown in Fig.  10 is due to the usage of 
POD basis which only captures 28 percent of the total energy of the 
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Fig. 9. Real and imaginary components of eigenvalues for both DMD and the proposed neural network approach are shown on the complex plane. The unit 
circle is shown in blue whereas red and yellow depict the eigenvalues for DMD and the neural network respectively. Panel A depicts how all the eigenvalues are 
placed on the complex plane while Panel B shows how the DMD and neural network eigenvalues differ in more detail. Black dashed lines in both panels show 
the target complex value argument.
Fig. 10. Panel A shows the error difference between the estimated next observables and the ground truth for DMD (in blue) and the proposed approach (in 
red) given the initial observable. Pixel intensity values are plotted for three different pixels of a single frame from the original dataset (shown in yellow) and 
compared to the predicted pixel values from DMD (in blue) and our approach (in red) in Panels B to D. It should be noted that predicted pixel intensities from 
DMD decay quickly as compared to our proposed approach; this is due to the fast decaying eigenmodes learned by DMD that fail to capture the oscillations in 
the original dataset as accurately as the proposed approach.
measured data.  Only 28 percent is captured through POD to minimize 
the interference of noise present in the raw data while learning the 
system approximation for the observable data. It is still impossible to 
filter out the noise completely due to the need to retain important 
information from the original data; for the dynamics that can be 
captured, the proposed neural network approach does reasonably well. 
These results are further considered by examining the pixel intensity 
plots illustrated in panels B-D which show that for each of the three 
pixels, neural network based system approximation does a better job 
in approximating the oscillatory dynamics of the full model pixels as 
compared to standard DMD. While the neural network approach is not 
able to perfectly match the pixel intensity amplitude, it is able to match 
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the pixel’s frequency for all time steps. The pixel intensities predicted 
by DMD converge to the average of the original pixel intensity values as 
time proceeds as many of its eigenvalues are fast decaying and hence, 
DMD generates an approximation that is unable to account for the 
full model dynamics as accurately as our proposed approach. Thus, 
by applying both the magnitude and frequency constraints through 
the proposed strategy, eigenvalues and corresponding eigenvectors are 
learned that have better long term observable predictions and match 
the ground truth profile better than DMD as seen in Fig.  10 as the 
slow decay of the eigenmodes account for the dominant characteristic 
frequency in the power spectrum of the original dataset better than 
DMD.
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5. Discussion and conclusion

We propose an approach for inferring the Koopman eigenvalues 
and eigenfunctions from data in this work to predict future dynamics 
given the current observables of the system. A neural network based 
strategy is devised to learn these Koopman eigenfunctions as weights 
of the network shown in Eqs. (13)–(15) while explicitly considering 
and utilizing information about the Koopman eigenvalues during the 
learning process. This information is incorporated as a combination 
of domain knowledge based constraints which regularize the learned 
weights such that the system approximation obtained through these 
learned Koopman eigenfunctions outperform standard techniques like 
DMD in terms of long term observable predictions. The results are 
illustrated through a collection of datasets from nonlinear models.

Domain knowledge constraints are applied according to the sys-
tem under consideration. For example, magnitude based constraints 
are primarily applied to systems like the spiking neuron population 
model in the first example which has sustained limit cycle oscilla-
tions. To ensure that learned system approximation is able to capture 
such periodicity accurately, the magnitude based constraints force the 
Koopman eigenvalues to be close to the unit circle. This means that 
the learned Koopman eigenvalues will be slow decaying and hence, 
will contribute more to the system dynamics alongside capturing the 
periodicity of the limit cycle as 𝑡 → ∞. Similarly, frequency based 
constraints are chosen to incorporate domain knowledge or specific 
frequency patterns observed from the full model data by regularizing 
the argument of the learned Koopman eigenvalues to be near a specific 
value. The value can be computed by analyzing the power spectrum 
of given data as done with the schlieren images data example. This 
allows our proposed approach to learn a system approximation that 
can capture the frequency profile of the underlying model efficiently 
by prioritizing the relevant frequency modes. Choosing the constraint, 
the argument and the combinations of neural network weights these 
constraints are applied to, requires a trial and error process. It might 
not be beneficial to apply different kinds of constraints for better long 
term observable predictions for some applications as demonstrated by 
the neuron population and the synthetic image dataset example.

Neural networks have been used in previous works to learn the 
dynamics of an underlying model from observable data. Authors in [38] 
present a model identification strategy utilizing isostable coordinates 
for systems with a fixed point. The neural network is structured based 
on an isostable coordinate reduced model that is reframed through a 
lifted basis into a set of unknown linear functions that are subsequently 
learned using the weights of the neural network in conjunction with 
known nonlinear functions. The neural network is then trained on ob-
servable data to learn these unknown coefficients and obtain a reduced 
model to approximate the full model dynamics. Work presented in [39] 
extends the neural network based model identification strategy for 
oscillatory dynamics where the weights of the neural network are the 
Fourier series coefficients of the unknown linear functions of the phase 
isostable coordinate-based reduced model. By training the network, one 
can learn an approximation to the underlying oscillatory dynamics by 
obtaining a phase isostable coordinate-based reduced model.

The proposed strategy in this work follows a similar idea by utilizing 
a neural network to learn an approximation of the Koopman eigen-
functions for approximating the underlying system dynamics through 
observable data. Comparing our proposed work with the strategies 
from [38,39], a supervised learning framework is used to implement 
our approach where both the input and output data is already available, 
unlike the other two strategies which generate data as the training 
proceeds. Our proposed approach also makes use of constraints based 
on prior domain knowledge to learn better approximation of the un-
derlying system matrix while the neural networks presented in [38,
39] do not rely on domain knowledge. Note that the neural network 
framework in our proposed approach does not include nonlinear ac-
tivation functions to preserve the linearity in the eigendecomposition 
12 
structure from (16). The neural network framework is primarily used 
as an optimization tool in our approach to learn the approximation 
of eigenvalues and eigenvectors of the underlying dynamical system 
through the backpropagation algorithm. Moreover, the neural network 
framework allows for both scalability in the number of parameters to be 
learned and to adjust the learned eigendecomposition according to the 
domain knowledge-based constraints through the loss function which 
is one of the key innovations of our proposed method.

The effectiveness of the proposed strategy can be improved in a 
number of ways from a deep learning perspective. For example, in order 
to consider complex eigenvalues and eigenvectors, the neural network 
is restructured according to forms shown in Eqs. (13)–(15) separating 
the real and imaginary components for complex values to allow for a 
real-valued neural network to be used. It might be worthwhile to em-
ploy complex-valued neural networks (CVNN) [31,40] for our strategy. 
These networks have their own specific architectures, learning schemes 
and optimization algorithms which might be advantageous in learning 
the complex eigenvalues and eigenvectors of the underlying dynamical 
system more efficiently. Also, the current MSE based loss function in Eq. 
(17) incorporates the orthogonality constraint and other regularization 
constraints in an additive fashion which makes this approach a multi-
objective optimization problem. Even though this implementation gives 
adequate performance in presented examples, it might result in sub-
optimal solutions. Therefore, it would be useful to investigate a custom 
training functions that can incorporate the constraints within itself 
more efficiently rather than in an additive fashion.

Also, it might be useful to replace the MSE error in the loss function 
with a more suitable metric as the MSE is unable to fully account for 
discrepancies related to the frequency of the full model output. This 
ultimately results in mismatches between the predicted and the ground 
truth output profiles. Because one of the main goals of our proposed 
strategy is to provide more accurate long term observable predictions 
than DMD, it might be advantageous to modify the loss function in a 
way that we are able to compute errors for training based on multi-step 
predictions. This might potentially lead to solutions obtained through 
our approach performing much better than presented against DMD that 
only relies on minimizing error for one-step ahead predictions. Another 
potential approach is to use batch normalization [41,42] for our pro-
posed strategy which makes the network convergence during training 
more stable and efficient. However, the implementation is non-trivial 
and a workaround is needed to avoid altering the eigendecomposition 
based network structure.
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