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Abstract
The dynamics of a periodic nonlinear system can be represented accurately beyond
the limit cycle in a reduced-order phase-amplitude coordinate-based model reduction
framework. When only observable time series data is available, data-driven strategies
must be employed formodel inference. In thiswork,wepropose a data-driven approach
that can predict the unknown, periodic terms of a phase-amplitude coordinate-based
reduced-order model by considering their Fourier series expansions and reframing
the terms as a composition of a known nonlinear function with an unknown linear
function. These linear functions can be structured as weights of a feed-forward neural
network and learned to obtain a reduced-order model representation valid to arbitrary
orders of accuracy in an expansion of amplitude coordinates by training the network
on observable data. The proposed approach can be used in conjunction with other
recently developed reduced-order modeling approaches to yield very high accuracy
reduced-order models. The proposed strategy is illustrated in a variety of examples
that consider the dynamics of a synaptically coupled neuronal population.

Keywords Model identification · Periodic orbit · Artificial neural networks ·
Phase-isostable coordinates · Dynamical systems · Model order reduction

Mathematics Subject Classification 34E10 · 37Cxx · 92Bxx · 68Txx

1 Introduction

Many naturally occurring phenomenon, especially complex dynamical systems, lack a
mathematical model to explain their underlying dynamics. In most cases, one only has
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access to a finite set of observables for the system; to extract useful information from
the available data, data-driven strategies have beendeveloped to infer low-dimensional,
predictive dynamical models (Kutz et al. 2016; Brunton andKutz 2019). Thesemodels
attempt to approximate the fullmodel dynamics of the underlying system in response to
any general stimulus without prespecifying an underlying dynamical structure. Data-
driven strategies are particularly effective in situations where a clear mapping between
state variables and model observables is not available and where the underlying model
mechanisms are not well understood.

To infer a set of equations of a reduced model from a given dataset, numerous
data-driven techniques have been proposed. Eigensystem realization algorithm (ERA)
(Juang and Pappa 1985) works by identifying a linear model for a given nonlinear sys-
tem based on temporal data which is then transformed into modal space for parameter
identification. Similarly, authors in Holmes et al. (1996), Towne et al. (2018), Berkooz
et al. (1993) utilize proper orthogonal decomposition (POD) which is another data-
driven model reduction technique that finds an orthogonal basis to fit the provided
temporal dataset. A dynamical system can subsequently be obtained using Galerkin
projection (Holmes et al. 1996; Noack et al. 2003). Approaches in Schmid (2010),
Rowley et al. (2009), Kutz et al. (2016) employ dynamic mode decomposition (DMD)
which computes a set of linear modes from time series data. Other techniques employ
a prespecified function library from which relevant terms are sparsely selected in a
way to effectively replicate the observable data without overfitting (Mangan et al.
2019; Brunton et al. 2016; Pantazis and Tsamardinos 2019; Schaeffer 2017). Alter-
natively, by incorporating adaptive parameter sets (Wilson 2021b, 2022a, b; Wilson
and Djouadi 2020), reduced-order modeling methods can be devised that can capture
the salient features of the nonlinear system. These adaptive parameters can efficiently
capture the effect of large inputs, that perturb the state far from a nominal family of
attractors that emerge as the adaptive parameter is changed. Various methods are also
based on Koopman operator theory to identify reduced linear model representations.
Koopman analysis can be used to represent nonlinear system dynamics with a linear
representation by lifting its dynamics to an infinite-dimensional linear space (Budišić
et al. 2012; Mezić 2013, 2019). In a data-driven setting, approaches (Geneva and
Zabaras 2020; Kaiser et al. 2021; Lusch et al. 2018) have accomplished this by finding
representative eigenmodes of the Koopman operator.

Variations of neural network-based approaches have also been used in previous
works in order to infer dynamics of nonlinear systems. For example, Ortin et al.
(2005) compares performance of feed-forward neural networks with modular neural
networks for inferring chaotic time-delay system dynamics. Reference (Tan and Saif
2000) uses external recurrent neural networks (RNNs) for model identification of spe-
cific processes occurring in an automotive engine. To predict the solution of various
time-dependent and autonomous systems, (Omidi et al. 2022) proposes the idea of
orthogonal neural networks. The predicted systems generally follow singular Emden–
Fowler dynamics, and hence, their behavior can generally be described by either an
ordinary differential equation (ODE) or partial differential equation (PDE). Physics
informed neural networks (PINNs) (Raissi et al. 2019) are a class of neural networks
for model identification of systems involving nonlinear partial differential equations
(PDEs). The approach incorporates PDE-based domain knowledge into essential com-
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ponents of the neural network’s training process, thus allowing for convergence to the
optimal solution even with limited training input data. The PINN-based approaches
can also be adjusted to solve both the forward and inverse problems for PDEs given
a set of noisy measurements from a dynamical system. Feed-forward artificial neural
networks have also been used in literature to performmodel identification of nonlinear
dynamics. Presented inWray andGreen (1994), the approach computesVolterra kernel
representations for dynamical systems by assuming equivalency of Volterra series to
feed-forward neural networks and utilizing the network’s internal parameters. Work in
Masri et al. (1992) uses the idea of dynamic neurons in feed-forward neural networks
in order to capture system nonlinearities. For long-time predictive modeling of non-
linear dynamical systems, authors of Pan and Duraisamy (2018) modify feed-forward
neural networks to augment Jacobian regularization in the network’s loss function.

In this work, we consider data-driven strategies for reduced-order model iden-
tification of oscillatory dynamical systems. In these applications, phase-amplitude
coordinates provide a robust modeling framework for identifying a reduced-order
model that can effectively represent the full model dynamics of the underlying peri-
odic system (Wilson 2020c; Ahmed and Wilson 2021). If the mathematical model
is known, various approaches have been proposed that employ the direct method to
compute the necessary phase and amplitude response curves (Wilson 2020c; Wilson
and Ermentrout 2019). However, there are no general strategies available for systems
with multiple amplitude coordinates and for systems that require accuracy beyond
linear order. An alternative data-driven framework for phase-amplitude reduction was
derived inWilson (2020a) which employed a proper orthogonal decomposition (POD)
reduction strategy to identify important features of the transient decay of solutions to
the limit cycle. The extracted features can be explicitly related to phase-amplitude
coordinates and ultimately define so-called data-driven phase-amplitude coordinates
that are valid in the entire basin of attraction of a limit cycle. The efficacy of the
approach is also illustrated in the work done in Ahmed and Wilson (2021) which
also utilized these data-driven phase-amplitude reduced-order model representations
to obtain optimal control inputs for mitigating the effects of jet lag. Related work in
Wilson and Djouadi (2019) andWilson (2021a) proposed a least-squares model fitting
approach using the steady-state response to periodic forcing. However, the strategy
only works with sinusoidal inputs limiting its utility for model fitting, requires a sub-
stantial amount of data and is sensitive to noise.

Recently, a strategy for reduced-order model identification was developed for
dynamical systems with fixed points employing neural networks based on isostable
coordinates (Mauroy et al. 2013;Wilson andMoehlis 2015), which represent level sets
of the slowest decaying eigenmodes of the Koopman operator. This is done by refram-
ing the isostable coordinate-based input–output dynamics in terms of the composition
of a set of known nonlinear functions and unknown linear functions such that the
unknown coefficients correspond to the neural network’s weights and learning them
through training the network. In this work, we extend this idea for nonlinear periodic
systems by structuring neural networks in terms of phase and isostable coordinates
to extract a reduced-order model representation. Unlike other data-driven approaches
such as SINDy (Fasel et al. 2021) which utilize neural networks to identify terms of
the reduced model’s right-hand side, our approach uses the neural network to learn the
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reduced model’s unknown coefficients and provide a solution that can approximate
the full model dynamics given an initial condition. The learned coefficients can also
be utilized independently to obtain the corresponding isostable and phase response
curves which can be used for further analysis of the full model dynamics. Our pro-
posed approach restructures the neural network based on phase-amplitude dynamics in
order to derive a reduced-order model. By contrast, the structure of PINNs is tailored
to a given application. Moreover, our approach does not require any prior domain
knowledge including any physical laws that govern the dynamical system in consid-
eration. Also, our proposed approach builds the artificial neural network according to
the derived reduced-order phase-amplitude coordinate dynamics rather than utilizing
the network as a black-box like most vanilla neural network approaches do.

The organization of this paper is as follows: Sect. 2 provides necessary back-
ground on the phase and amplitude coordinates as well as previously developed
phase-amplitude-coordinate-based model order reduction frameworks for oscillatory
dynamical systems. Section3 describes the mathematical formulation that allows for
the implementation of themodel identification strategy using artificial neural networks
and discusses practical matters related to implementation. Results are given in Sect. 4
where we illustrate the proposed technique through a simple dynamical model along
with a more complicated illustration in a model that captures neural spiking behav-
ior before using adaptive phase-isostable reduction in conjunction with the proposed
framework to emulate full model dynamics of a neuron population. Section5 provides
a discussion of the proposed strategy in the context of the results and gives concluding
remarks.

2 Background

2.1 Phase and Isostable Coordinates

To begin, consider a general dynamical system of the form (1)

ẋ = F(x, u(t)),

y = Fout(x) (1)

where x ∈ R
N is the system state, F represents the nominal dynamics, Fout maps

the state to the single observable output y ∈ R, and the system ẋ = F(x, u(t)) has a
stable limit cycle xγ (p0, t) that emerges when holding u(t) ∈ R constant at p0. One
can define a phase θ ∈ [0, 2π) valid for all locations on the limit cycle that results
when u(t) is held constant at the nominal value p0. The phase is generally scaled so
that dθ/dt = 2π/T = ω. Phase can be defined in the entire basin of attraction of the
limit cycle using the notion of isochrons which are defined such that when u(t) = p0,
for any initial condition a(0) ∈ xγ (p0, t), the isochron associated with a(0) is defined
to be the set of all b(0) where b(0) is in the basin of attraction of xγ (p0, t) such that

lim
t→∞ ||a(t) − b(t)|| = 0, (2)
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where || · || can be any vector norm. Using the isochron-based definition of phase,
we can encode for the infinite time behavior of solutions. To effectively capture the
transient decay of solutions toward the periodic orbit, it is also useful to consider the
amplitude dynamics. This is possible using Floquet theory (Jordan and Smith 2007).
First define �x(t) = x(t)− xγ (p0, t) so that to a linear approximation, the dynamics
of Eq. (1) are

�ẋ = J�x, (3)

where J is the time-varying Jacobian of F evaluated at both xγ (p0, t) and u = p0.
Letting � be the monodromy matrix defined such that �x(T ) = ��x(0), consider
the eigenvalues and associated left and right eigenvectors of � denoted by λ j , w j

and v j , respectively. Letting λ1 be the nonunity eigenvalue (i.e., Floquet multiplier)
of largest magnitude, it is possible to define a set of isostable coordinates valid in the
basin of attraction of the limit cycle according to Wilson and Ermentrout (2018)

ψ1(x) = lim
k→∞

[
wT
1 (ν(tk�, x) − x0) exp(−κ1t

k
�)

]
, (4)

where tk� denotes the time of the kth transversal of the θ = 0 isochron, ν(t, x) gives the
flow of Eq. (1) under the constant application of u = p0, x0 is the intersection of the
periodic orbit and the θ = 0 isochron, and κ1 = log(λ1)/T is the associated Floquet
exponent. The explicit definition in Eq. (4) is only generally valid for the slowest
decaying isostable coordinate, but additional isostable coordinates ψ2, . . . , ψN−1 can
be defined implicitly by considering level sets of Koopman eigenfunctions associated
with the nonunity Floquetmultipliers of the linearized dynamics. A detailed discussion
about the relationship of isostable coordinates to the Koopman operator can be found
in Kvalheim and Revzen (2021), Mezić (2019).

2.2 Model Order Reduction Using Phase-Amplitude Coordinates

By assuming that both u(t)− p0 and x− xγ (p0, t) are order ε terms at all times where
0 < ε � 1 and p0 = 0, one can asymptotically expand Eq. (1) about xγ (p0, t) to
yield

ẋ = F(x, p0) + ∂F

∂u
U (t) + O(ε2), (5)

where the partial derivative is evaluated at both xγ (p0, t) and p0 andU (t) = u(t)− p0
is the input. Changing to phase and isostable coordinates via the chain rule as inWilson
and Moehlis (2016), Wilson and Ermentrout (2018) gives

θ̇ = ∂θ

∂x

T (
F(x, p0) + ∂F

∂u
U (t)

)
+ O(ε2)

= ω + Z(θ)U (t) + O(ε2), (6)

ψ̇ j = ∂ψ j

∂x

T (
F(x, p0) + ∂F

∂u
U (t)

)
+ O(ε2)
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= κ jψ j + I j (θ)U (t) + O(ε2),

j = 1, . . . , β, (7)

where Z(θ) = ∂θ
∂x · ∂F

∂u and I j (θ) = ∂ψ j
∂x · ∂F

∂u are the phase and isostable response curves.
It is often possible to ignore isostable coordinates ψ j for which the corresponding
Floquet exponents κ j are large in magnitude so that they decay rapidly (Monga et al.
2019; Wilson and Ermentrout 2019; Wilson 2020b); in this work, only β isostable
coordinates are considered so that the resulting model has a lower dimensionality than
the full model.

Although standard phase reduction has been used extensively in literature formodel
reduction of systems with periodic orbits, it has its own set of drawbacks. The main
limitation of the phase-based framework is its inability to account for large inputs,
which makes it unusable in many real applications. As a workaround to this limitation,
one can consider amplitude coordinates in conjunction with the phase dynamics. Here,
a slight modification of the phase-amplitude coordinates fromWilson (2020c) is used
to yield the reduced-order model of the form

θ̇ = ω + Z(θ, ψ1, . . . , ψβ)U (t),

ψ̇ j = κ jψ j + I j (θ, ψ1, . . . , ψβ)U (t),

j = 1, . . . , β,

y(p0, θ, ψ1, . . . , ψβ) = y(xγ (p0, θ)) + G(θ, ψ1, . . . , ψβ), (8)

where Z(θ, ψ1, . . . , ψβ) ∈ R and I j (θ, ψ1, . . . , ψβ) ∈ C provides an approxima-
tion for the phase and isostable response curves for arbitrary orders of accuracy
in an expansion of isostable coordinates centered at the periodic orbit xγ (p0, θ).
G(θ, ψ1, . . . , ψβ) ∈ R

N provides a good approximation for y(p0, θ, ψ1, . . . , ψβ) −
y(xγ (p0, θ)). Considering the Taylor expansion of Z , Ik and G in a basis of the
nontruncated isostable coordinates near the periodic orbit, one finds

Z(θ, ψ1, . . . , ψβ) ≈ Z(θ) +
β∑

k=1

[
ψk Z

k (θ)
]

+
β∑
j=1

j∑
k=1

[
ψ jψk Z

jk (θ)
]

+
β∑

i=1

i∑
j=1

j∑
k=1

[
ψiψ jψk Z

i jk (θ)
]

+ . . . ,

(9)

In(θ, ψ1, . . . , ψβ) ≈ In(θ) +
β∑

k=1

[
ψk I

k
n (θ)

]
+

β∑
j=1

j∑
k=1

[
ψ jψk I

jk
n (θ)

]
+

β∑
i=1

i∑
j=1

j∑
k=1

[
ψiψ jψk I

i jk
n (θ)

]
+ . . . ,

(10)

G(θ, ψ1, . . . , ψβ) ≈
β∑

k=1

[
ψk g

k (θ)
]

+
β∑
j=1

j∑
k=1

[
ψ jψk g

jk (θ)
]

+
β∑

i=1

i∑
j=1

j∑
k=1

[
ψiψ jψk g

i jk (θ)
]

+ . . . , (11)

for n = 1, . . . , β. Note that in the reduced-order model (8) given above, it is assumed
that bothU (t) and each isostable coordinateψ1, . . . , ψβ are order O(ε) terms. There-

fore, In(θ), I kn (θ), I jkn (θ) as well as Z(θ), Zk(θ), Z jk(θ) from the expansion (10)
and (9) are commonly referred to as first-, second-, third-order terms, respectively, of
the reduced-order model. Likewise, from Eq. (11), gk(θ), g jk(θ) and gi jk(θ) will be
referred to as the first-, second-, and third-order terms, respectively, with this conven-
tion also being followed for higher orders.
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3 Problem Formulation and General Approach

3.1 Problem Description

It is possible to directly solve for each of the gi jk...(θ), Zi jk...(θ) and I i jk...n (θ) terms
from Eqs. (9), (10), (11) if the underlying model equations from (1) are known as
described in Wilson (2020c). In case the model dynamics are unknown, the necessary
termsmust be identified using data-drivenmethods. Our proposed framework trains an
artificial neural network through gradient descent by considering a collection of output
measurements y1(t), y2(t), . . . , yn(t) that result from the application of an arbitrary
collection of applied inputsU1(t),U2(t), . . . ,Un(t) for t ∈ [t0, t1] on a general system
of the form of Eq. (1). Using this strategy, we infer the unknown terms from Eqs. (9),
(10) and (11) to arbitrary orders of accuracy in the expansion of phase and isostable
coordinates. We emphasize that Sect. 3 assumes that the value of p0 is fixed, i.e., that
the resulting terms of the reduction in Eqs. (9), (10), (11) are associated with a single
periodic orbit xγ (p0, t). The resulting model inference strategy can be repeated for
different values of p0 if necessary.

3.2 Reframing the Dynamics for the Neural Network

Using the phase-amplitude coordinate-based reduction of the form (8), we reframe
the problem so that neural networks can provide an appropriate solution. Each of the
terms Zi jk...(θ), gi jk...(θ) and I i jk...n (θ) from Eqs. (9), (10), (11) will be written as a
series of Fourier coefficients, i.e.,

X(θ) ≈ aX0 +
m∑
j=1

[aX j sin( jθ) + bX j cos( jθ)], (12)

where X ∈ [Zi jk..., I i jk...n , gi jk...] and m is the number of Fourier coefficients consid-
ered. By learning the coefficients of these terms to a desired order of accuracy in both
the isostable coordinate and the Fourier series expansion, a reduced order model can
be obtained that accurately replicates nonlinear behaviors of the underlying system
(1). Letting � = [ψ1, . . . , ψβ ]T and considering the phase and isostable dynamics,
we can use a forward Euler method of solution with a timestep of �t to represent the
phase and isostable coordinates as well as the corresponding outputs at t + �t as

θ(t + �t) = f (θ(t), �(t),U (t))

= θ(t) + ω�t + Z(θ(t))U (t)�t +
k∑
j=1

[ψk(t)Z
1
k (θ(t))]U (t)�t + . . . ,

= θ(t) + ω�t +
⎡
⎣aZ0 +

m∑
j=1

[aZ j sin( jθ(t)) + bZ j cos( jθ(t))]
⎤
⎦U (t)�t
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+
β∑

k=1

⎡
⎣aZ1

k 0
+

m∑
j=1

[aZ1
k j

sin( jθ(t)) + bZ1
k j

cos( jθ(t))]
⎤
⎦ψk(t)U (t)�t + . . . ,

ψk(t + �t) = hk(θ(t), �(t),U (t))

= (1 + κk�t)ψk(t) + Ik(θ(t))U (t)�t +
k∑
j=1

[ψk(t)I
1
k (θ(t))]U (t)�t + . . . ,

= (1 + κk�t)ψk(t) +
⎡
⎣aIk0 +

m∑
j=1

[aIk j sin( jθ(t)) + bIk j cos( jθ(t))]
⎤
⎦U (t)�t

+
β∑

k=1

⎡
⎣aI 1k 0

+
m∑
j=1

[aI 1k j sin( jθ(t)) + bI 1k j cos( jθ(t))]
⎤
⎦ψk(t)U (t)�t + . . . ,

k = 1, . . . , β,

y(t) − y(xγ (p0, θ(t))) = ĝ(θ(t), �(t)),

=
β∑

k=1

⎡
⎣agk0 +

m∑
j=1

[agk j sin( jθ(t)) + bgk j cos( jθ(t))]
⎤
⎦ψk(t)

+
β∑

l=1

l∑
k=1

⎡
⎣aglk0 +

m∑
j=1

[aglk j sin( jθ(t)) + bglk j cos( jθ(t))]
⎤
⎦ψl (t)ψk(t) + . . . .

(13)

Above, the functions h1, . . . , hβ and f consider the current phase and isostable
coordinates as well as the perturbation input and map to the phase and isostable
coordinates �t time units later. Each hk with associated IRC Ik and f associated
with PRC Z , defined according to the Taylor expansion in (9) and (10), respectively,
is linear in a basis of lifted coordinates consisting of both the state and input. For
instance, when using only one isostable coordinate (i.e., when β = 1), one can write

ψ1(t + �t) = (1 + κ1�t)ψ1(t) + I1(θ(t))U (t)�t + I 11 (θ(t))ψ1(t)U (t)�t . . . ,

= (1 + κ1�t)ψ1(t) +
⎡
⎣aI10 +

m∑
j=1

[aI1 j sin( jθ(t)) + bI1 j cos( jθ(t))]
⎤
⎦U (t)�t

+
⎡
⎣aI 11 0

+
m∑
j=1

[aI 11 j sin( jθ(t)) + bI 11 j cos( jθ(t))]
⎤
⎦ ψ1(t)U (t)�t + . . . , (14)

Keeping this in consideration, each hk can be taken as the composition of two functions

hk = wk ◦ nI , (15)

for k = 1, . . . , β, where nI : S × C
β × R → C

�, wk : C� → C, and � is the size
of the lifted basis. For example, when β = 1 and taking the asymptotic expansion
to third order of accuracy in the isostable coordinate with first-order Fourier series
expansion,
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nI (θ, ψ1,U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1
U

sin(θ)U
cos(θ)U

ψ1U
sin(θ)ψ1U
cos(θ)ψ1U

ψ2
1U

sin(θ)ψ2
1U

cos(θ)ψ2
1U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, w1 = nI (θ, ψ1,U )T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + κ1�t
aI10�t
aI11�t
bI11�t
aI 11 0

�t

aI 11 1
�t

bI 11 1
�t

aI 111 0�t

aI 111 1�t

bI 111 1�t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The terms ψ3
1U and I 1111 (θ) and higher terms are truncated at third order of accu-

racy as U and ψ1 are both O(ε). The coefficients that comprise each wk need to be
learned alongside the corresponding coefficients for both Z and G in order to obtain
the reduced-order model representations. Similarly, f can also be written as the com-
position of two functions as

f = wZ ◦ nZ , (17)

where nZ : S×C
β ×R → C

�+1,wZ : C�+1 → R. Here, �+1 is the size of the lifted
basis. As done before, taking the asymptotic expansion to third order of accuracy for
one isostable coordinate with first-order Fourier series expansion,

nZ (θ, ψ1,U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

ω

U
sin(θ)U
cos(θ)U

ψ1U
sin(θ)ψ1U
cos(θ)ψ1U

ψ2
1U

sin(θ)ψ2
1U

cos(θ)ψ2
1U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, wZ = nZ (θ, ψ1,U )T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�t

aZ0�t
aZ1�t
bZ1�t
aZ1

10
�t

aZ1
11

�t

bZ1
11

�t

aZ11
1 0�t

aZ11
1 1�t

bZ11
1 1�t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Finally, we can consider ĝ as the composition of two additional functions as well

ĝ = wG ◦ nG, (19)

where nG : S × C
β → C

�−1, wG : C�−1 → R. Here, � − 1 is the size of the lifted
basis. Taking the asymptotic expansion to third order of accuracy with one isostable
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coordinate with first-order Fourier series expansion,

nG(θ, ψ1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1
sin(θ)ψ1
cos(θ)ψ1

ψ2
1

sin(θ)ψ2
1

cos(θ)ψ2
1

ψ3
1

sin(θ)ψ3
1

cos(θ)ψ3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, wG = nG(θ, ψ1)
T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ag10
ag11
bg11
ag110
ag111
bg111
ag1110
ag1111
bg1111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

For a general system of the form (1), the nonlinear functions nZ , nI and nG are known
once the order of accuracy along with the number of isostable coordinates is specified.
On the other hand, the functions wZ , w1, . . . , wβ and wG are linear and contain the
unknown coefficients that need to be learned and are comprised of the Fourier series
coefficients of the terms Zi jk...(θ), I i jk...n (θ) and gi jk...(θ) from Eqs. (9), (10) and
(11), respectively. Hence, the phase and isostable coordinate update rules from (13)
are specified through the identification of these unknown Fourier series coefficients.

3.3 A Data-Driven Approach for Model Identification of Oscillatory Dynamics
Using Neural Networks

Ultimately, the goal is to infer the Fourier series coefficients comprising the unknown
terms from Eqs. (15), (17) and (19) as described in Sect. 3.2, along with the decay
rates κ1, . . . , κβ using discrete sets of observable measurements [y j (t0), y j (t0 +
�t), . . . , y j (t0+η�t)] that result when applying inputs [Uj (t0),Uj (t0+�t), . . . ,Uj

(t0 + (η − 1)�t)] to the system for j = 1, . . . , ν, yielding a reduced order model
of the form in Eq. (8). Here, ν is the number of distinct input profiles, U (t) and
each of these input profiles has η measurements. Also, it is assumed that at time
t0, the system state is on the limit cycle with initial phase and isostable coordinates
θ(t0) = ψ1(t0) = ψ2(t0) = · · · = ψβ(t0) = 0.

The implementation for the reduced-order phase-amplitude coordinate-based rep-
resentation is done using a multi-layer simple feed-forward network architecture
structured for model learning purposes. A representation of the network structure is
shown in Fig. 1 which is based on the mathematical formulation from Sect. 3.2. First,
the neural network’s input layer accepts a concatenation of the phase coordinate θ(t0),
isostable coordinates�(t0) and the applied inputU (t0)which is then fed to a nontrain-
able function layer for both phase and isostable coordinate. This layer lifts the input
layer variables to a higher dimension implementing the (known) functions nZ and nI .
The lifted states are passed through two respective hidden layers that implement the
linear functions wZ and w1, . . . , wβ to yield both the updated isostable coordinate
�(t0 + �t) and the updated phase θ(t0 + �t). This intermittent state, comprised of
the phase and isostable coordinate update, is then fed through another nontrainable
function layer which implements the lifting described by nG . This second lifted state is
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Fig. 1 General architecture for the proposed neural network-based strategy

fed through a fully connected trainable output layer that implementswG and results in
an intermediate output denoted by ĝ(θ,�). Another intermediate output is generated
by a nontrainable function layer containing the parametric function of the system’s
periodic orbit; this layer takes the phase coordinate update as the input. Summing up
both these intermediate inputs ultimately generates the final output.

The obtained observable estimate at a given time is denoted as ŷ j (t) and compared
with a system measurement y j (t) that results from the application of the input Uj (t).
Then, we use the current approximation for the update function, for a given set of
input–output measurements y j andUj , from Eq. (13) to yield a set of approximations
ŷD = [ŷ j (t0), ŷ j (t0 + �t), . . . , ŷ j (t0 + η�t)]. For computing the error between the
estimate and the ground function, the mean squared error (MSE) is taken as the loss
function

MSE = 1

νη

ν∑
j=1

η∑
i=1

(y j (t0 + i�t) − ŷ j (t0 + i�t))2. (21)

Note that ν represents the number of inputs while η denotes the number of timesteps
for each input. During backpropagation, the weights of the trainable layers, i.e., wZ ,
w1, . . . , wβ and wG are updated. In the examples presented in this work, we assume
that isostable coordinates are real and the weights are updated accordingly during
backpropagation. To ensure that the network learns a solution that is generalizable
for a variety of input profiles, the neural network is trained using mini-batch gradient
descent which allows us to train on multiple inputs simultaneously.

As we are learning weights of a linear function, we use a linear activation function
in the artificial neural network. A nonlinear reduced-order model of the form (9)–
(11) can be obtained based upon the learned weights of the network once training
is done that is independent of the artificial neural network. Note that in Eq. (13),
the Fourier series expansion of both Z(θ) and In(θ) for n = 1, . . . , β is multiplied
by �t ; as such, the learned Fourier coefficients for the terms Z(θ), Zk(θ), . . . and
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In(θ), I kn (θ), . . . will be proportional to �t . Therefore, appropriate scaling of the
learned coefficients is required during conversion between the discrete time update
rule (13) and the continuous reduced-order model (9)–(11).

Figure1 illustrates a layer level diagram representing the neural network’s general
architecture employed in this work. Starting from the input layer, it is comprised of
the phase and isostable coordinates value at the current timestep, i.e., θ(t), �(t), as
well as the input, U (t). These input layer components are then passed through the
functions, nI and nZ that transforms these components to the lifted coordinate basis
for both isostable and phase coordinates, respectively, denoted by the nontrainable
function layer. Following that, both the isostable and phase coordinate update rules
from Eq. (13) are implemented by multiplying the lifted coordinate basis with the
coefficients comprising w1, . . . , wβ and wZ ; these coefficients are the weights asso-
ciated with the respective hidden layers in the neural network and are learned through
training. The updated phase-amplitude coordinates, θ(t+�t) and�(t+�t), are then
computed through the two hidden layers. The updated values are recursively fed back
into the input layer of the network to generate further updates at successive timesteps.
Once all phase and isostable coordinate updates are obtained, these are passed through
nG , to transform�(t+�t) and θ(t+�t) to a second set of lifted coordinates obtained
through another nontrainable function layer. A transitional output, shown as ĝ(θ,�),
is generated though mapping from the phase and isostable coordinates to the state
from Eq. (13) wherewG contains the associated weights. Another intermediate output
is generated by a nontrainable function layer containing the periodic orbit function.
Finally, the output layer is comprised of the summation of both of these intermediary
outputs. The predicted outputs [ŷ(t0), ŷ(t0+�t), ŷ(t0+2�t), . . . ] are identified recur-
sively and compared with the full model output [y(t0), y(t0 + �t), y(t0 + 2�t), . . . ]
to compute the prediction error needed for training through backpropagation. The
next section details the specific steps required for the training process and the network
implementation.

3.4 Implementation of theModel Identification Strategy Using a Neural Network

Implementation for our neural network-based approach for model identification
described in Sect. 3.3 is detailed here; the network structure is feed-forward with no
recurrent connections. Keras is used for building the neural network on top of Tensor-
flow, a machine learning platform within python; Keras is a deep learning application
programming interface (API) written in python. Furthermore, the training data, i.e., the
phase and isostable coordinates, needs to be generated simultaneously as the learning
proceeds. This is different from conventional supervised learning methods which have
the training data readily available. The process for the model identification strategy is
outlined below. At the start of this procedure, it is assumed that a dataset of outputs
y1(t), . . . , yn(t) generated by inputs U1(t), . . . ,Un(t) has been measured from the
full model. Also, the initial phase and isostable coordinates are taken to be zero and
thus, each of the measured outputs are taken at the periodic orbit xγ (p0, θ) at θ = 0.
Finally, for the system under consideration, the representation for its periodic orbit as
well as its natural frequency ω is obtained prior to training the neural network.
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Step (1) Initially, specify the number of isostable coordinates β. Measure the periodic
orbit for the full model and the natural frequency ω. Also, set the order of the
Fourier series expansion for each of the terms of Z , Ik , and G denoted by m.
To avoid overfitting, one should generally use the fewest isostable coordinates
possible. Define functions for the nontrainable function layers that implement
the lifting functions nI , nZ and nG from (15), (17) and (19). Also, define the
layer containing the representation of the periodic orbit.

Step (2) Define the artificial neural network’s structure based on the order of accuracy
(in the expansion in isostable coordinates) and the Fourier series expansion of
the functions f , h1, . . . , hβ and ĝ from Eq. (13). To ensure that the trained
weights directly correspond to the Fourier series coefficients from Eqs. (16),
(18) and (20), linear activation functions are used in the network layers.

Step (3) Define an auxiliary function that uses the current network weights to compute
the forward Euler step from Eq. (13). Output predictions ŷD(t) for training the
network are also generated by this function.

Step (4) Initialize network weights, specify an optimizer, a loss function and a learning
rate. Mean square error loss from (21) is used for the approach.

Step (5) Every epoch consists of two loops. The first loop calculates the phase and
isostable coordinate update for a given inputU (t) by implementing the forward
Euler update rule from Eq. (13). The data generated by the first loop is fed
into the second loop which updates the weights of the trainable layers. It is
assumed that the system starts at the limit cycle, i.e., θ(t0) = 0, ψk(t0) = 0 for
k = 1, . . . , β; all subsequent coordinate updates are generated while training
without the need of direct measurements. Finally, an outer loop iterates over
the epochs until the training loss converges.

Step (6) The trained neural network weights correspond to Fourier series coefficients of
the Taylor expanded terms from Eqs. (9), (10) and (11) along with decay rates
and the natural frequency. The learned weights are independent of the training
network and can be extracted to yield a reduced-order model of the form (8).

Note that the proposed approach learns the Fourier series coefficients for each of
the terms of Z , I andG from Eqs. (9), (10) and (11) to provide a good characterization
of the full model dynamics but will not necessarily match with the true Z , I and G
functions obtained, for instance, using the adjoint method (Monga et al. 2019) or
other direct numerical strategies. For the training procedure detailed above, a few
general notes about its implementation are given. The weight initialization in Step 4
can sometimes cause the proposed model identification strategy to perform poorly.
As such, it is generally useful to initially train the network using small magnitude
inputs, finding the Fourier series coefficients for the first-order terms Z(θ), In(θ) and
gn(θ), alongwith the Floquet exponents κn for n = 1, . . . , β. For higher-ordermodels,
one can use larger magnitude inputs to obtain data for training by using the learned
first-order coefficients for weight initialization from Step 4 in the procedure above. To
ensure that these baseline first-order coefficients do not deviate substantially from their
linear order values that were already fit to the lower-ordermodel, weight regularization
can be used during learning for the higher-order weights and added as a penalty term
to the loss function. For first-order accuracy, the isostable response curves are unique
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to constant scaling. As such, the coefficients must be constrained. A regularization
scheme is incorporated within the strategy that forces the sum of squares of the learned
weights to be equal to 1 by penalizing the network training if their sum is far from 1.
Furthermore, to yield a reduced model that can generalize to novel inputs, the training
dataset consists of multiple batches corresponding to different inputs. A single batch
is comprised of the total number of timesteps for a specific input–output pair, and thus,
through the mini-batch stochastic gradient descent algorithm, training on all network
inputs in each epoch is important for the network. As indicated previously, periodically
updating the training dataset is crucial as the inputs for subsequent timesteps depend
on the network itself; it is done after each epoch in the presented approach using the
current weight updates. As the network inputs themselves are generated from incorrect
updates, there is no need to reach convergence before updating weights. However, for
a more generalizable solution, training is allowed to occur on all input–output pairs
by waiting for an entire epoch.

4 Results

4.1 Illustration in aModelWith Dynamics Near a Hopf Bifurcation

We consider the modified version of the radial isochron clock (Winfree 2001) illus-
trating the proposed phase-amplitude model identification strategy

ẋ1 = Cσ x1(μ − x21 − x22 ) − x2(1 + ρ(x21 + x22 − μ)) + u(t),

ẋ2 = Cσ x2(μ − x21 − x22 ) + x1(1 + ρ(x21 + x22 − μ)),

y(t) = x1(t), (22)

where u(t) is an external input applied directly to the x1 variable and C = 2π
T with

T = 24.2. Above, we choose the parameters σ = 0.04, ρ = 0.12 and μ = 1. Here,
μ is a bifurcation parameter; when μ = 0, a Hopf bifurcation occurs resulting in a
stable limit cycle for μ > 0. With these parameters, the model has a limit cycle at
x21 + x22 = 1 when taking u(t) = 0.

The neural networkmodel is trained on data from output measurements considering
a single isostable coordinate for the reduced model; Fig. 1 shows the general archi-
tecture for the associated neural network. For optimizing and learning the weights,
adaptive moment estimation (ADAM) optimizer is used with an MSE loss of the form
(21) and a learning rate of 0.001. For the update rule from (13), the time step is taken
to be �t = 0.05. For training, a summation of step inputs of the form

u(t) =
5∑

i=0

εi+1(ξ(t − ti ) − ξ(t − ti+1)), (23)

is used where ξ(t) is the Heaviside step function. Meanwhile, ε1, . . . , ε6 sets the
magnitude of the respective components of the input, and finally, t0, . . . , t6 controls
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the duration of the input application. It should be noted that each of the successive
duration is greater than the previous one by a certain amount, i.e., t6 > · · · > t0.
For this example, one hundred training inputs are generated using εn = a + (b −
a)rand(0, 1) with n = 1, . . . , 6 by randomly taking values between a = −0.030 and
b = 0.030 drawn from a uniform distribution for first-order accuracy. Meanwhile,
the input durations are assigned using tn = a1 + (b1 − a1)rand(0, 1) + tn−1 for
n = 1, . . . , 6 with t0 = 0 by drawing from a random distribution between 0 and 1 and
choosing randomly between a1 = 10 and b1 = 20 with each successive time value
greater than the previous one.

Considering expansion of isostable coordinates to first order of accuracy around the
limit cycle, a total of 36 coefficients are learned with a single isostable coordinate and
fifth order of Fourier series expansion for each of the terms of Z , I and G. The natural
frequency for the model is specified to be 0.2596 and the functional representation for
the periodic orbit is given by y(t) = sin(θ); this is done before training the model as
specified in Sect. 3.4. The learned first-order coefficients are then used for initialization
of weights and fixed as a baseline through regularization for subsequent training of
higher-order models up to third order of accuracy. The learning rate is kept at the same
value of 0.001 for higher-order models.

The second-order model is trained by generating a set of inputs with same range
of magnitude and input duration as done for the first order. For the third-order model,
another set of one hundred training inputs of the form (23) is generated at random
such that εn = a + (b − a)rand(0, 1) with n = 1, . . . , 6 by taking values between
a = −0.032 andb = 0.032 and input duration, i.e., tn = a1+(b1−a1)rand(0, 1)+tn−1
for n = 1, . . . , 6 with t0 = 0 generated within the values of a1 = 10 and b1 = 20.
The set with larger magnitude inputs is used here to drive the state far from the limit
cycle so that the contribution from nonlinear terms can be captured efficiently. In terms
of training time, the first-, second- and third-order reduced models take 92, 147 and
225s, respectively, to achieve convergence using a desktop computer with a midgrade
processor. The subsequent increase in learning time for the higher order accuracy
models can be attributed to the increasing number of coefficients at higher orders of
accuracy, i.e., that comprise the Taylor expansions from Eqs. (9), (10) and (11).

For validation, three test inputs of the form u(t) = α(1 − ξ(t − ts)) are used with
α ∈ {0.020, 0.030, 0.040} and ts = 24.2. In Fig. 2, Panels A, B and C show outputs
in response to these test inputs (shown in Panel G, H and I). Panels D, E and F show
the associated magnitudes of the error. For all the step inputs shown, the third-order
model has substantially smaller error than the first and second-order accurate models.
One can see that for the test input results shown in Panel A, the predicted outputs
for all orders of accuracy are nearly identical to the full model output. The difference
between the first to third-order accuracy models and the full model output is more
apparent in panel B; error for first-order accuracy is the highest followed by second
order with third-order accuracy error being the lowest. For higher magnitude inputs in
panels H and I, the error plots in panel E and F follow the same trend even though the
error magnitudes increase. This increase in error is also evident in the outputs shown
in panels B and C when compared to panel A.
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Fig. 2 The proposed model identification algorithm is applied to Eq. (22). For this illustration, a single
isostable coordinate is considered and models of the form (8) are obtained that are valid to first through
third orders of accuracy in the expansion in the isostable coordinates. Three inputs of varying magnitudes
shown in panel (G)-(I) are applied and the obtained outputs from full and phase-amplitude-coordinate-based
models are compared in panels (A)–(F)

For additional validation of the learned models, a sinusoidal test input of the form
u(t) = 0.03 sin(0.1t) is used. The obtained results are shown in Fig. 3. Panels A and
Panel B follow the same pattern as observed in Fig. 2.

4.2 Spike Rates of Neural Populations

As a second example, amore complicated system is considered for our proposedmodel
identification strategy. The system consists of a large, coupled population of neurons
that captures spiking rates in response to external inputs. Dynamical equations are
based on a model for thalamic neurons from Rubin and Terman (2004):

CmV̇k = −IL(Vk) − INa(Vk, hk) − IK(Vk, hk) − IT(Vk, rk)

+ I bk − 0.2
N∑
j=1

(Vk − Vj ) + ik(t),

ḣk = (h∞(Vk) − hk)/τh(Vk),

ṙk = (r∞(Vk) − rk)/τr (Vk),
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Fig. 3 Results are illustrated for the proposed model identification strategy when a sinusoidal input shown
in panel (C) is applied to the radial isochron clock model from Eq. (22). The obtained outputs for first to
third-order accuracy phase-isostable reduced models are compared with the full model output in panel (A)
and the reduced model errors are shown in panel (B). The results follow the same trend as shown in Fig. 2

y(t) = 1

N

N∑
j=1

(Vj (t)). (24)

For the model above, N = 10 total neurons are considered in the population while Vk ,
hk and rk represent the transmembrane voltage and two gating variables, respectively,
that determine the ionic currents for neuron k. Cm = 1 µF/cm2 and ik(t) = υku(t)
where υk is a sensitivity parameter for the model incorporated through the input
given by υk = 1 + 0.05k for k = 1, . . . , N . The baseline current of the kth neuron,
I bk , is defined by using I bk = 5 + 0.35k for k = 1, . . . , N . Finally, u(t) represents
a transmembrane current applied identically to each neuron. Reference (Rubin and
Terman 2004) contains a full description of the remaining ionic currents and gating
variables. For the neural model, we consider the mean of the transmembrane voltage
of all the ten neurons as the observable; this is represented by y(t) in (24).

In the limit as time approaches infinity, taking u = 0, the system observable
exhibits dynamics that settle to a nearly periodic orbit. We apply our proposed model
identification strategy using multiple isostable coordinates to derive a reduced phase-
amplitude model of the form (8). This reduced model is identical to the one obtained
in Sect. 4.1 except that we consider multiple isostable coordinates up to first-order
accuracy for model identification. The network is based upon the architecture repre-
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Fig. 4 The proposed model identification algorithm is applied to the neural model from Eq. (24). Models of
the form (8) are obtained for one, two and three isostable coordinates that are valid to first order of accuracy
in the expansion in the phase-amplitude coordinates. Panel (A) shows the response to the applied input from
panel (C). Panel (B) shows the corresponding error between the full- and reduced-order models

sented in Fig. 1. To generate the training dataset, a set of hundred inputs of the form
u(t) = ε(1− ξ(t − ts)) for t ∈ [0, 50] are considered where ξ(t) is the Heaviside step
function, ε represents the input magnitude, and ts defines the input duration. For our
set of one hundred trials, both the input magnitude and duration are chosen randomly
according to ε = a2 + (b2 − a2)rand(0, 1) and ts = a3 + (b3 − a3)rand(0, 1) with
a2 = −0.6, b2 = 0.6, a3 = 2 and b3 = 8. Once the resulting outputs have been
extracted, the ADAM optimizer is used for training with MSE loss function from (21)
and taking the learning rate to be 0.001. Also, the timestep for the update rule from
Eq. (13) is taken to be �t = 0.05 ms. The training follows the same implementation
as described in Sect. 3.4.

The results for the neural model are illustrated through two different setups. In the
first setup, the number of isostable coordinates is varied from one to three and the
Fourier series expansion of the periodic functions is taken to first order. Meanwhile,
the second setup employs a single isostable coordinate with the order of the Fourier
expansions of the periodic functions varying from 1st to third order. For both setups,
coefficients for one isostable taken to first-order Fourier expansion are obtained first
and subsequently used for initialization when training models for subsequent Fourier
expansions and isostable coordinates. As observed for the model in Sect. 4.1, training
times gradually increase as the number of isostables employed for the model increases
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Fig. 5 The proposed model identification algorithm is applied to the neural model from Eq. (24). One
isostable coordinate valid to first order of accuracy expansion is considered and models of the form (8) are
obtained when considering first-, second- and third-order Fourier expansions for the reduced-order model
terms. Panel (A) shows the response to the applied input from panel (C). Panel (B) shows the corresponding
error

or higher Fourier series expansions are considered. For example, using a midgrade
processor on a desktop computer, training reduced models with one, two and three
isostable coordinates took 154, 190 and 227s, respectively, to achieve convergence.

Figures 4 and 5 show the obtained results. All the learned models are validated
using a test stimulus u(t) = 1.7(1− ξ(t − 5.8)); note that the magnitude of the input
used for validation is outside the magnitude range of the training inputs. In Fig. 4,
Panel A shows the one, two and three isostable coordinate-based reduced-order model
outputs compared to the full-order model output in response to the input from panel
C. Panel B shows the associated error. The one isostable-based model has a MSE
value of 48.9; considering two isostables subsequently reduces the MSE to 31.8 with
three isostables giving the lowest error value of 3.8. Similarly, in Fig. 5, outputs from
a single isostable coordinate-based reduced-order model valid to first-, second- and
third-order Fourier series expansion are compared to the full-order model output when
input from panel C is applied. Panel B shows the resulting error. The model with first-
order Fourier expansion has a MSE value of 48.9; considering a second-order Fourier
series expansion subsequently reduces theMSE to 38.5 with third-order Fourier series
based model giving the lowest error value of 4.2.
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Fig. 6 Two sawtooth inputs applied for different durations to both the neural model from Eq. (24) and the
reduced models are shown in panel (E) and (F). Varying number of isostable coordinates from one to three
are considered for the reducedmodels through the proposedmodel identification algorithm and the resulting
outputs are compared with the full model output in panels (A) and (B). To illustrate how effectively the
reduced models can approximate the full model dynamics, error between the full model and the reduced
model outputs is presented in panels (C) and (D)

To show that the proposed approach is valid for test inputs significantly dif-
ferent from the ones used for training, a saw tooth input of the form u(t) =
−2

( t
2π − [ 1

2 + t
2π

])
and varying between −1 and 1 is applied for two different dura-

tions of ts = 5.85 and ts = 23.85 before being turned off as shown in Fig. 6. For the
smaller duration test input in panel E, the reduced models are able to approximate the
full model output as evident from panel A and the error shown in panel C. However,
the difference in the reduced models for different number of isostable coordinates
becomes more apparent when the longer duration input from panel F is applied. As
seen in panels B and D, the one (resp., three) isostable reduced model has the highest
(resp., lowest) error.

4.3 Model Reduction of Spike Rates of Neural Populations Using Adaptive
Phase-Isostable Reduction

For thefinal illustration, the neuralmodel fromEq. (24) is consideredwith the proposed
model identification strategy in conjunction with the adaptive phase-amplitude reduc-
tion discussed in “Appendix 1.” The only difference in the model is in ik(t) = υku(t)

123



Journal of Nonlinear Science            (2024) 34:15 Page 21 of 28    15 

Fig. 7 The proposed model identification algorithm is combined with adaptive phase-amplitude reduction
before being applied to the neural model from Sect. 4.2. Three isostable coordinates valid to first order of
accuracy expansion are considered for the adaptive phase-amplitude reduction and then compared with the
standard phase reduction as well as output from the proposed strategy alone. Panel (A) shows the respective
responses to the applied input from panel (C). Panel (B) shows the corresponding error

for υk = 1 + 0.05k and k = 1, . . . , N where the adaptive parameter is now incor-
porated into the model though the applied input from a range of allowable values
u ∈ [−3, 0] in order to ultimately generate data for adaptive phase-amplitude reduc-
tion. When implementing the proposed model inference strategy, we consider three
discrete, constant values of p = {−3,−1.5, 0} and learn the corresponding phase and
isostable response curves with the neural network following the same procedure as
detailed in Sect. 3.4 for each discrete value of p. The terms D(θ, p) and Q(θ, p) are
computed through the process described in “Appendix 1.” Once training is finished,
the terms of the resulting reduced-order model (A4) are interpolated for p ∈ [0, 3]
using the information inferred for the discrete values p = {−3,−1.5, 0}. We use the
update rule

Gp = V †(−R(u − p)) − ζV ∗�, (25)

where � = [
ψ1 ψ2 ψ3

]T , R = [
I1 I2 I3

]T , V = [
Q1 Q2 Q3

]T , and † represents the
pseudoinverse. This update rule is similar to one used previously in Wilson (2022b)
and is chosen to keep the amplitude coordinates small as discussed in “Appendix 1.”
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The derived update rule can then be used in conjunctionwith the rest of the equations
from (A4) to obtain the adaptive phase-amplitude reduced model representation. The
resultingmodel is validated by applying a step input of the form u(t) = −2.5(1−ξ(t−
30)) for t ∈ [0, 50] where ξ is the Heaviside function. To evaluate the performance
of the proposed strategy combined with the adaptive reduction in approximating the
full model dynamics, the output from the adaptive phase-amplitude reduced model is
compared against standard phase reduction of the form shown in (6) where only phase
information is used to approximate the full model output and also, with the standalone
proposed strategy output which considers three isostable coordinates, valid to first
order of accuracy around the limit cycle and expanded to fifth order of Fourier series
expansion, without combining it with the adaptive reduction.

Figure7 illustrates the results obtainedwhen the input from Panel C is applied to the
models. Looking at Panel A, the proposed strategy plus adaptive reduction performs
far better than the other two strategies. Meanwhile, the standard phase reduction is
limited to considering only small inputs and does not perform well. The proposed
strategywithout adaptive reduction performsmoderately better than the standard phase
reduction but fails as well due to the fact that it only considers the nominal periodic
orbit which makes it unable to replicate the full model output effectively. Also, the
magnitude of the applied input is much larger than what the proposed approach’s
reducedmodel form, shown in (8), canhandle. Standard phase reductionhas the highest
MSE value of 142.1 followed by the proposed strategywithout adaptive reductionwith
a MSE value of 126.4. The lowest MSE value of 17.6 is generated by the combination
of proposed strategy and adaptive reduction.

5 Discussion and Conclusion

In this work, we propose a data-driven reduced-order model identification strategy for
limit cycle oscillators using phase and isostable coordinates. We start by considering
a phase-amplitude coordinate-based reduced model, shown in Eq. (8), to represent
the full model dynamics in a low order basis. Equations (9), (10) and (11) show how
the unknown terms are then Taylor expanded in the basis of isostable coordinates and
then transformed into a lifted basis comprised of Fourier series coefficients that need
to be learned. To facilitate learning, these equations are then written as a composition
of known nonlinear functions and unknown linear functions containing the Fourier
coefficients. Based upon this reframing, one can utilize an artificial neural network by
using the training data to learn and identify an accurate approximation for the unknown
weights of the linear relationships. The proposed model identification strategy is illus-
trated through a collection of nonlinear models and also utilized in conjunction with
adaptive phase reduction while considering the dynamics of a synaptically coupled
neuronal population.

Previous work Ahmed et al. (2022) presented a relatedmodel identification strategy
for nonlinear dynamical systems with a stable fixed point. Our proposed strategy is an
extension of the work from Ahmed et al. (2022) in that it is specifically developed for
systemswith oscillatory dynamics. To accomplish this, our proposed strategymust find
unknown Fourier series coefficients comprising the terms from Eqs. (9), (10) and (11)
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greatly increasing the number of coefficients needed to be learned as compared to the
approach inAhmed et al. (2022) for the same order of accuracy. Comparing themethod
from the current workwith the strategy frompriorwork (Ahmed et al. 2022), the neural
network for this proposed work requires more layers to account for the non-static
phase coordinate including the nontrainable layer for the functional approximation
of the periodic orbit. To account for this added complexity, Fourier expansion of
the unknown model reduction coefficients is considered through deriving a non-trivial
lifted basis involving the phase and isostable coordinates with the inputU (t) as shown
in Eqs. (16), (18) and (20). The proposed strategy provides a reduced-order model for
capturing the full model oscillatory dynamics while requiring relatively small amounts
of training data. All the models considered as examples were trained using only a
set of hundred random inputs and then tested using an input that was qualitatively
different from the training set. This showcases the proposed strategy’s ability to learn
a generalized reduced-order model representation despite limited availability of data.
Furthermore, both the phase and isostable coordinates embedded within the neural
network as functions of state space do not require prior estimates.

To improve the effectiveness and accuracy of the proposed strategy, a number of
extensions could be considered. For example, during training when the inner loop
is implemented where ŷ(t) is obtained by evaluating the relation (13) in a recursive
manner, any initial errors arising at early timesteps are propagated and potentially
amplified as training proceeds toward later timesteps. To limit this error propagation,
it could be worthwhile to consider modifying the loss function in such a way that it
gives more importance to initial solutions. This can be done by, for example, adding
an additional weighting term of the form

∑η
i=1 ϑ(i)(y(t0 + i�t) − ŷ(t0 + i�t))2

where ϑ(i) is the weighting factor. Furthermore, although the MSE loss as defined in
Eq. (21) provides adequate performance for the presented examples, it still has a few
notable shortcomings. For instance, when the natural frequencyω is not approximated
accurately, theMSE loss is unable to account for any discrepancy in the frequency and
hence, the predicted reduced model output does not match the frequency of the full
model output. Tomitigate this issue, itmight beworthwhile to investigate loss functions
that take the frequency of the oscillations into account. Another improvement could
be realized by devising a method to infer both phase and isostable coordinates directly
from the observable which could then be used for learning the coefficients through
training the neural network. This might also help mitigate the error propagation issue
caused by generating the phase and isostable coordinates from the network itself as
indicated in Step 5 in Sect. 3.4. A similar idea was used in strategies presented in
Wilson (2020a), Ahmed andWilson (2021) for extracting both the phase and isostable
coordinates utilizing time-delay embeddings of observables.

Considering improvements fromadeep learningperspective, itmight beworthwhile
to consider a more generalized training dataset with more samples containing inputs
of different types, especially when training high-dimensional models. Additionally,
for all the dynamical systems considered in this work, systematic weight initialization
is not considered for the neural networks. Various works have shown that appropri-
ate weight initialization improves the neural network’s convergence rate significantly
(Kumar 2017; Yam and Chow 2000). This can have a significant impact, especially
when a large number of coefficients need to be learned for the reduced model. Batch
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normalization could also be usedwhichmakes the networkmore stable during training
and converge faster as shown in Santurkar et al. (2018), Ioffe and Szegedy (2015). To
incorporate normalization into the current implementation, a workaround would need
to be devised in such a way that the phase-isostable-based network structure is not
altered. Using the previous timestep’s output as an input for the next timestep, as done
in our proposed approach, is one of the key ideas in recurrent neural networks which
are primarily used in deep learning for time series forecasting and natural language
processing. Error accumulation as training proceeds from one timestep to the next is
quite common in these neural networks and can contribute to issues with either explod-
ing or vanishing gradients (Pascanu et al. 2013). This gradient issue can potentially
cause the network to stop learning in case of vanishing gradients; in case of exploding
gradients, it poses a serious memory bottleneck. Traditional approaches to solve this
gradient problem use weight regularization by introducing a penalty term within the
loss function or by doing proper neural network initialization at the start of training.
Such techniques from deep learning literature can be adapted to improve our proposed
approach for future works.

This material is based upon work supported by the National Science Foundation
Grant No. CMMI-2140527.

Appendix A Adaptive Phase-Isostable Reduction

Adaptive phase-amplitude reduction is able to provide reduced model representations
that are valid far beyond the weakly perturbed limit by considering a collection of peri-
odic orbits that results from a change in a given parameter. Following the formulation
inWilson (2022a), start by considering a set of additional variables to those in Eq. (1),
represented by p ∈ R. Assume that the system’s differential equation ẋ = F(x, p) has
a stable periodic orbit xγ (θ, p) if the value of p is held constant and chosen from a set
of allowable p. A set of isostable coordinates denoted by ψ1(x, p), . . . , ψβ(x, p) and
corresponding phase θ(x, p) is also defined for each periodic orbit xγ (θ, p). For each
xγ (θ, p), the associated phase coordinates are unique up to a constant shift. To define
the set of equations for adaptive reduction, one can rewrite the dynamics ẋ = F(x, u)

as

ẋ = F(x, p) +Ue(x, u, p), (A1)

where

Ue(x, u, p) = F(x, u) − F(x, p)

= ∂F

∂u
(u − p) + O(||u − p||2), (A2)

where all partial derivatives above are evaluated at x where u = p. Above, F(x, p)
from (A1) represents the nominal behavior of the system when u is held at p. The
term Ue(x, u, p) can be thought of as an effective input. Letting p be non-static and
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changing the variables to phase and isostable coordinates yields

d

dt
θ(x, p) = ∂θ

∂x
· dx
dt

+ ∂θ

∂ p
· dp
dt

,

d

dt
ψ j (x, p) = ∂ψ j

∂x
· dx
dt

+ ∂ψ j

∂ p
· dp
dt

,

j = 1, . . . , β,

dp

dt
= Gp(p, θ, ψ1, . . . , ψβ), (A3)

where Gp determines how p changes in time. As described in Wilson (2022a), to
consider both phase and amplitude dynamics simultaneously like in (A3), limits must
be placed on how the magnitude of the input changes especially when considering
large magnitude inputs which can take the state far from the nominal periodic limit
cycle. The equation for the parameter p in (A3) allows the user to keep the state close
to the periodic orbit by updating and choosing the adaptive parameter p along with the
corresponding nominal periodic orbit from the set defined by the allowable values of p
while keeping the amplitude dynamics, i.e., the isostable coordinates small. To simplify
Eq. (A3) further, one can note that ∂θ

∂x · ∂x
∂t and each

∂ψ j
∂x · ∂x

∂t capture the phase and
isostable dynamics, respectively, when p is kept constant and hence, can be replaced
with the terms from standard phase-amplitude reduction, i.e., ω(p)+ Z(θ, p)(u − p)
for phase and κ j (p)ψ j + I j (θ, p)(u − p) for isostable coordinates. Similarly, the
remaining terms can be identified as in Wilson (2022a) to yield the set of equations
for the adaptive phase-isostable reduction

θ̇ = ω(p) + Z(θ, p)(u − p) + D(θ, p) ṗ,

ψ̇ j = κ j (p)ψ j + I j (θ, p)(u − p) + Q j (θ, p) ṗ,

j = 1, . . . , β,

ṗ = Gp(p, θ, ψ1, . . . , ψβ). (A4)

As shown in Wilson (2022a), for a given value of p held constant, the D(θ, p) ∈ R

term is given by − ∂xγ

∂ p · ∂θ
∂x where ∂xγ

∂ p |θ0,p ≡ lima→0(xγ (θ0, p + a) − xγ (θ0, p))/a

and ∂θ
∂x is evaluated in reference to x

γ
p . Similarly, Q j (θ, p) ∈ R is given by− ∂xγ

∂ p · ∂ψ j
∂x

where
∂ψ j
∂x is evaluated with reference to xγ (θ, p). As described in Wilson (2023),

one can rewrite D(θ, p) as

D(θ, p) = −H(θ, p) − c1(p), (A5)

where c1(p) is a constant. As discussed in Wilson (2023), the term H(θ, p) can be
found by substituting θ = ωt along the limit cycle according to

H(ωt, p) =
∫ T

0
M̄(ωs, p)ds, (A6)
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where M̄(ωt, p) = Z(ωt, p)− Z̄(p) and Z̄(p) = 1
T

∫ T
0 Z(ωs, p)ds. Note that above,

the period T depends on p, which is constant in the integration. Similarly, for the Q j

term, as shown in Wilson (2023)

Q j (θ, p) = −ψ j,ss(θ, p), (A7)

where ψ j,ss(θ, p) is given by

ψ j,ss(θ, p) = −b0
κ j

+
∞∑
i=1

[
−aiκ j sin(iθ)

κ2
j + ω2i2

− ai iω cos(iθ)

κ2
j + ω2i2

− bi iω sin(iθ)

κ2
j + ω2i2

− biκ j cos(iθ)

κ2
j + ω2i2

]
,

(A8)

where b0, ai and bi are the Fourier coefficients of the isostable response curve I j (θ, p).
Additionally, κ j is the Floquet exponent and ω is the frequency from Eq. (A4), both
of which are functions of p. A more detailed derivation is found in Wilson (2023).
It is important to mention that the adaptive reduction model, shown in Eq. (A4),
is specified by using the first-order terms of the standard phase-isostable reduction.
Finally, in order to approximate the state when using reduced-order dynamics from
Eq. (A4), one can write

x = xγ (θ, p) +
N−1∑
j=1

ψ j g
j (θ, p), (A9)

where g j (θ, p) is the Floquet eigenfunction associated with the periodic orbit
xγ (θ, p).

References

Ahmed, T., Wilson, D.: Exploiting circadian memory to hasten recovery from circadian misalignment.
Chaos Interdiscip. J. Nonlinear Sci. 31(7), 073130 (2021)

Ahmed,T., Sadovnik,A.,Wilson,D.:Data-driven inference of low-order isostable-coordinate-based dynam-
ical models using neural networks. Nonlinear Dyn. 111, 2501–2519 (2022)

Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent
flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems,
and Control. Cambridge University Press, New York (2019)

Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification
of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)
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