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ABSTRACT

Phase-amplitude reduction is of growing interest as a strategy for the reduction and analysis of oscillatory dynamical systems. Augmentation
of the widely studied phase reduction with amplitude coordinates can be used to characterize transient behavior in directions transverse to
a limit cycle to give a richer description of the dynamical behavior. Various definitions for amplitude coordinates have been suggested, but
none are particularly well suited for implementation in experimental systems where output recordings are readily available but the underlying
equations are typically unknown. In this work, a reduction framework is developed for inferring a phase-amplitude reduced model using only
the observed model output from an arbitrarily high-dimensional system. This framework employs a proper orthogonal reduction strategy to
identify important features of the transient decay of solutions to the limit cycle. These features are explicitly related to previously developed
phase and isostable coordinates and used to define so-called data-driven phase and isostable coordinates that are valid in the entire basin of
attraction of a limit cycle. The utility of this reduction strategy is illustrated in examples related to neural physiology and is used to implement
an optimal control strategy that would otherwise be computationally intractable. The proposed data-driven phase and isostable coordinate
system and associated reduced modeling framework represent a useful tool for the study of nonlinear dynamical systems in situations where
the underlying dynamical equations are unknown and in particularly high-dimensional or complicated numerical systems for which standard
phase-amplitude reduction techniques are not computationally feasible.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5126122

Many methods exist for studying the perturbed dynamics of
a periodic oscillator in a reduced coordinate framework, but
few are well suited for implementation in experimental settings
where the underlying model dynamics are typically unknown.
In this work, a reduction framework is proposed for infer-
ring phase-amplitude reduced equations using only observed
model output. In contrast to comparable reduction strategies,
the proposed methodology yields a reduced order model that
can provide accurate predictions for observed model behav-
iors in response to exogenous inputs. Additionally, this reduc-
tion framework is amenable for control applications requiring
state feedback, allowing for the implementation of sophisti-
cated control strategies that would otherwise be infeasible. It
is envisioned that the data-driven phase and isostable reduc-
tion methodology will find use in experimental systems (where
the underlying dynamics are unknown) and in particularly
high-dimensional or complicated numerical systems for which

standard phase-amplitude reduction techniques are not compu-
tationally tractable.

I. INTRODUCTION

There are numerous difficulties that arise when working with
high-dimensional dynamical systems. For example, model identi-
fication becomes difficult as the risk of overfitting increases with
the dimension of the model considered, optimal control frameworks
often become computationally intractable in high-dimensional set-
tings, and dynamical mechanisms responsible for observed behav-
iors can become obscured by the size and complexity of high order
systems. The aforementioned examples are facets of the “curse of
dimensionality” coined by Richard Bellman,5 a colorful interpre-
tation of the fact that the amount of data needed to accurately
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represent and characterize a dynamical system grows exponentially
with its underlying dimensionality.

In an effort to mitigate some of these issues, model reduction
has become an increasingly important first step in the mathemati-
cal analysis of high-dimensional dynamical systems and subsequent
implementation of active control strategies. There are many dif-
ferent available strategies for model reduction. Proper orthogonal
decomposition (POD) is a commonly used reduction technique
that identifies an optimal set of modes (in an L2 sense) to repre-
sent a given data set.6,28,55,62 This method is particularly well suited
for extraction of dynamical features from linear systems but is
often inadequate in situations where nonlinear terms dominate.
Koopman analysis has become increasingly popular in recent years,
a strategy which can be used to represent the observables of a
nonlinear dynamical system with a linear but infinite-dimensional
operator.10,42 In practice, the utility of Koopman based methods
hinges on the ability to find an adequate set of observable func-
tions in order to find a finite-dimensional approximation to the
infinite-dimensional Koopman operator. Dynamic mode decompo-
sition (DMD)59 and extended DMD65 are often used to fit a set of
observable functions to data. Much like the POD strategy, the DMD
algorithms can be difficult to implement in systems with dominant
nonlinearities.

Other model reduction frameworks are better suited to non-
linear systems. In some cases, fast-slow analysis7,28 can be used to
partition dynamical systems into separate subsystems with differ-
ent time scales. Averaging techniques are often used to characterize
the influence of periodic perturbations that are sufficiently weak,58

slow,52 or rapid53 and are often used to study bifurcations in nonlin-
ear dynamical systems. Inertial manifolds,12,19 can be used to identify
lower dimensional manifolds to which solutions exponentially col-
lapse but are often hard to identify. Unlike POD and Koopman
analysis, these nonlinear reduction techniques require an underlying
description of the model dynamics (i.e., they cannot be imple-
mented solely from experimental data) and are difficult to employ
in high-dimensional systems.

Few reduction frameworks exist that are both well suited to
application in nonlinear systems and can be implemented using only
recorded model output in the absence of an underlying model. Phase
reduction18,30,72 is one such framework that has shown promise for
these applications. This methodology can be used to reduce a general
oscillatory model of the form

ẋ = F(x)+ U(t), (1)

where x ∈ R
N is the state vector, F represents the nominal dynamics,

and U is an external perturbation. Letting xγ (t) denote a T-periodic
limit cycle solution of (1), solutions can be represented using a scalar
equation of the form

θ̇ = ω + Z(θ)TU(t), (2)

where θ ∈ [0, 2π), ω = 2π/T, and Z(θ) is the phase response curve
(PRC), which gives the gradient of the phase coordinate evaluated
on the periodic orbit. Equation (2) is a linear approximation of the
perturbed behavior near xγ (t), but the phase can readily be extended
to the basin of attraction of the limit cycle using the notion of
isochrons.27,72 When U = 0, for any initial condition a(0) ∈ xγ (t),

the isochron associated with a(0) is defined to be the set of all b(0)
such that

lim
t→∞

||a(t)− b(t)|| = 0, (3)

where || · || can be any vector norm. Using isochrons in conjunc-
tion with isostable coordinates, which represent level sets of initial
conditions that approach the periodic orbit together,40,68,71 a phase-
amplitude reduction can be performed that explicitly accounts for
dominant nonlinearities in the underlying model.66,70

Phase reduction using (2) to describe the reduced dynam-
ics has been successfully employed in many experimental appli-
cations,2,8,46,47,75–77 (i.e., where the full model equations are
unknown). Phase reduction is particularly useful in situations where
the Floquet exponents are large in magnitude relative to the mag-
nitude of applied perturbations. As the magnitude of perturbations
becomes larger, the dynamics of the amplitude coordinates may
need to be considered. Application of the phase-amplitude reduc-
tion framework as suggested in Refs. 68 and 71 has been difficult
to implement in situations where model equations are unavailable
because of the challenge associated with finding a suitable basis of
exponentially decaying mode shapes from model output. This prob-
lem was explored in Ref. 67, but general frameworks for finding a
reduced set of phase-amplitude equations from model output have
yet to be developed.

In this work, a new coordinate system is proposed for deter-
mining a phase-amplitude reduced model from system observables.
The organization of this paper is as follows: Sec. II provides nec-
essary background information on isostable coordinates that have
been used previously in the development of phase-amplitude reduc-
tion strategies for nonlinear oscillators. Section III suggests and
investigates a phase-amplitude reduced modeling framework using
so-called data-driven phase and isostable coordinates. In contrast to
previously suggested strategies for identifying phase and isostable
reduced equations directly from model output,69,70 the strategy pre-
sented in Sec. IV can be used to identify data-driven phase and
isostable reduced equations with an arbitrary number of isostable
coordinates and gives accurate predictions for the system observ-
ables. Section V provides an illustrative example of this framework
implemented on a population of coupled neurons, and Sec. VI
illustrates an optimal control strategy made possible by the data-
driven phase and isostable reduction framework with applications
to circadian physiology and recovery from jet lag. Section VII gives
concluding remarks.

II. BACKGROUND ON ISOSTABLE COORDINATE

SYSTEMS

Phase reduction (2) is a well-established and tremendously use-
ful tool for the analysis of weakly perturbed oscillatory systems,
but it ultimately requires perturbations U(t) to be small relative to
the Floquet exponents37 so that the state remains close to the peri-
odic orbit. In order to better understand behaviors in response to
stronger perturbations, coordinates representing the transient decay
in directions transverse to the periodic orbit must be considered.

Various coordinate frameworks have been used to represent
the behavior transverse to the periodic orbit.13,21,39,61,64,71 In this work,

Chaos 30, 013121 (2020); doi: 10.1063/1.5126122 30, 013121-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

the isostable coordinate framework will be used, which character-
izes the infinite time decay of transient solutions. To define isostable
coordinates, as in Refs. 61 and 68, consider the θ = 0 isochron, 00,
and let U = 0. By definition, any initial condition that starts on 00

returns to this surface at time T allowing for the construction of a
Poincaré map,

Q : 00 → 00;

x → ν(T, x),
(4)

where ν(t, x) represents the unperturbed flow of (1). The mapping
(4) has a fixed point, x0, located at the intersection of 00 and the
periodic orbit. Consequently, in a neighborhood of x0, ν(T, x) can
be approximated by local linearization as

ν(T, x) = x0 + Jν(x − x0), (5)

where Jν is the Jacobian of ν(T, x) evaluated at x0. Supposing that
Jν is diagonalizable with eigenvalues λj for j = 1, . . . , N and corre-
sponding left eigenvectors wj, one can define associated isostable
coordinates for the components of the solution associated with some
of the largest magnitude eigenvalues λj as

ψj(x) = lim
k→∞

[

wT
j (ν(t

k
0 , x)− x0) exp(−κkt

k
0)

]

, (6)

where tk
0 is the kth return time to 00 under the action of the flow

and κk = log(λk)/T is often referred to as a Floquet exponent.32

Intuitively in the definition above, exp(−κkt
k
0) increases by a fac-

tor of 1/λj after every T time units. The left eigenvector wj selects
for a component with a matching decay rate in the limit that
k approaches infinity. Related definitions can be used to define
isostable coordinates in the neighborhood of the limit cycle.71

As illustrated in Ref. 71, isostable coordinates can be used
alongside (2) to characterize the transient behavior of perturbations
transverse to the limit cycle according to

θ̇ = ω + Z(θ)TU(t),

ψ̇j = κjψj + Ij(θ)
TU(t),

j = 1, . . . , N − 1,

(7)

where Ij(θ) is the isostable response curve (analogous to the phase
response curve) associated with the isostable coordinateψj. Efficient
numerical methods based on the adjoint method9 have been devel-
oped for numerically computing the phase response curves9 and
isostable response curves.71 To a first order approximation, the
phase dynamics are uncoupled from the isostable dynamics. In gen-
eral, this is not true for higher order accuracy phase-amplitude
reductions; these considerations were explored in detail in Refs. 66
and 68.

III. DATA-DRIVEN PHASE-AMPLITUDE COORDINATES

While strategies for the computation of the phase-amplitude
coordinate reduction (7) are fairly straightforward when the right
hand side of the underlying model Eq. (1) is known, it is signif-
icantly more difficult to implement this reduction framework in
experimental situations where the model equations are unknown.
When the model equations are unknown, the standard phase reduc-
tion (2) can be found by using the “direct method,”22,30,47 to estimate

Z(θ) by inferring the phase change in response to a set of exogenous
perturbations given at many different phases. These methods have
been applied successfully to gain understanding about the timing of
oscillations in various experimental applications.29,36,46 Conversely,
there are no well-established frameworks that can be used to deter-
mine phase-amplitude reduced equations from experimental data.
Previous authors have suggested that a model can be built by con-
sidering the timing of a distinct periodic event, for example, the
upstroke of a neural action potential. This framework has led to
the notion of higher order or residual PRCs,13,21,48,69 which charac-
terize the influence of a perturbation not only on the next cycle, but
also on all subsequent cycles. In practice, it can be difficult to infer
higher order phase response curves in the presence of noise, or when
there are multiple slowly decaying components of the transient solu-
tion. Other methods based on the isostable framework have been
suggested,69,70 but are limited to situations where one representative
isostable coordinate can be used to characterize the rate of decay of
solutions toward the limit cycle.

In the derivation to follow, a procedure is developed to deter-
mine phase-amplitude reduced coordinate framework for a general
oscillatory model with a single observable. Unlike other recently
developed strategies, this method can be used to characterize the
transient decay of multiple isostable coordinates. Additionally,
the numerical examples to follow will illustrate that the resulting
reduced equations are accurate enough so that they can be used to
implement sophisticated control strategies, even when the reduced
equations are obtained in the presence noise. The reduction strategy
will be developed for use in dynamical systems of the form

ẋ = F(x, εU(t))+ εη(t),

y = G(x),
(8)

where x ∈ R
N is the state, y ∈ R is a single system observable,

η(t) ∈ R
N is a vector with each component ηi being an independent

Gaussian white noise process with intensity Di, F gives the nomi-
nal dynamics, U is an external perturbation, G maps the state to the
output, and 0 < ε � 1. Correlations between the noise processes,
colored noise processes, and influences of measurement noise are
not considered here.

Suppose in the absence of noise and when U(t) = 0, Eq. (8)
admits a stable, T-periodic orbit xγ (t) with a corresponding out-
put yγ (t) = G(xγ (t)). Compared with (1), Eq. (8) does not explicitly
assume additive control and also assumes that individual state vari-
ables are not directly measurable. Near the periodic orbit to leading
order ε, linearization of (8) yields

1ẋ = A(t)1x + εB(t)+ εη(t)+ O(ε2),

1y = C(t)1x + O(ε2),
(9)

where1x(t) ≡ x(t)− xγ (t),1y ≡ y(t)− yγ (t), A(t) = Fx(x
γ (t), 0),

B(t) = FU(x
γ (t), 0)U(t), C(t) = Gx(x

γ (t)). The notation QR(x, U)
is used to denote ∂Q/∂R; all partial derivatives are evaluated at
x = xγ (t) and U = 0. When both U(t) and noise are absent, Eq. (9) is
T-periodic. Supposing that the fundamental matrix associated with
this linear time varying system is diagonalizable, solutions near the
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periodic orbit can be determined from Floquet theory,26,32

1x(t) =
N

∑

j=1

cje
κjtpj(t), (10)

where pj(t) are T-periodic functions with constants cj chosen so
that initial conditions are satisfied, and κj are Floquet exponents.
By convention, Floquet exponents will be sorted so that κN = 0 is
the Floquet exponent corresponding to the unity Floquet multiplier
of the periodic orbit. Using the isostable coordinate framework (7)
along with the Floquet basis of solutions (10), as shown in Refs. 66
and 68, it is possible to represent solutions to (9) using a set of
equations of the form,

θ̇ = ω + εZT(θ)(B(t)+ η(t)),

ψ̇j = κjψj + εIT
j (θ)(B(t)+ η(t)), j = 1, . . .N − 1, (11)

1x = x(θ +1θ ,ψ1, . . . ,ψN−1)− xγ (θ)

= 1θpθN(θ)+
N−1
∑

k=1

(

ψkp
θ
k(θ)

)

,

where θ +1θ is the phase of oscillation with 1θ = O(ε),
ω = 2π/T is the natural frequency,ψj is the jth isostable coordinate,
and pθk(ωt) = pk(t). xγ (0) will be defined to correspond to θ = 0 on
the periodic orbit. In many situations, some of the Floquet expo-
nents are negative and large in magnitude so that the corresponding
isostable coordinate decays rapidly to zero in response to perturba-
tion. In these instances, these isostable coordinates are often taken
to be zero (e.g., as done in Refs. 45 and 70) providing a reduction
to the overall dimensionality as compared to (8). As a final note, the
noise intensity is assumed to be small enough so that the terms from
the Ito correction23 are negligible and can be ignored in (11).

In situations where the full equation (8) is known, it is straight-
forward to calculate the transformation from (8) to (11) through
the numerical computation of Z(θ)9 and Ij(θ).71 Currently, there
are no reliable methods for inferring each Ij(θ) and κj when mul-
tiple isostable coordinates are necessary to adequately capture the
transient behavior. Additionally, there are no existing strategies to
identify the associated functions pθj that relate the reduced coor-

dinates to the model output. In the derivation to follow, proper
orthogonal decomposition is used in concert with Floquet theory
to achieve these goals from a noisy data set. This strategy does not
require any knowledge of the underlying dynamical equations.

A. Preliminary identification of modes using proper

orthogonal decomposition

To begin, consider the phase dynamics (11) in the absence of
noise and taking U(t) = 0. For this simple system with an initial
condition 9(t0) = [ψ1(t0) . . . ψN−1(t0) θ(t0)]

T, it is immediately
apparent that θ(t) = θ(t0)+ ω(t − t0) and ψj(t) = ψj(t0) exp(κj

(t − t0)). Further assuming that θ(t0) and each ψj(t0) are order ε
terms and substituting1x from (11) into the output equation of (9),

to leading order ε, one finds

yi(t)− yγ (t) = C(θ(t))1x

=
N−1
∑

k=1

[

Cθ (ωt)pθk(ωt)ψk(t)
]

+ C(ωt)pθN(ωt)1θ(t)

=
N−1
∑

k=1

[

Cθ (ωt)pθk(ωt)ψk(0) exp(κkt)
]

+ C(ωt)pθN(ωt)1θ(0), (12)

where Cθ (ωt) = C(t) and t0 is assumed to be 0 for simplicity of
notation.

With an underlying description of the output dynamics from
(12), it is possible to devise a strategy to determine a reduced order
model for the observed output. To do so, consider a collection of
α sets of data signals y1, y2, . . . , yα ∈ R

β arranged as column vec-
tors so that their first components correspond to an initial condition
for which θ = O(ε) and the remaining β − 1 elements are measure-
ments taken1t = T/(β − 1) time units apart. In other words, each
yi represents a recording over one period which starts and ends at
θ ≈ 0. Define the matrix Y ∈ R

β ,α

Y ≡
[

y1 − γ . . . yα − γ
]

, (13)

where γ ∈ R
β is a discretized version of yγ (t) with the kth element

of γ corresponding to yγ (1t(k − 1)). It will be assumed that the
columns of Y contain a good representation of the possible outputs
that can be observed from the underlying system (8).

The goal of this analysis is to find a reduced order dynami-
cal model similar to (11) to represent the information contained
in the matrix Y. As a preliminary step, the method of proper
orthogonal decomposition (POD) will be employed.6,28,55,62 This is
a well-established framework that can be used to decompose a set of
data snapshots into a minimal number of representative modes. It
will be shown that the dynamical behavior of the resulting reduced
order model is closely related to the phase and isostable coordi-
nate dynamics. To begin, POD can be used to identify represen-
tative mode shapes from (13) by solving an eigenvalue problem.
Specifically, let vj and ζj denote the eigenvectors and eigenvalues,
respectively, of the matrix YTY, with eigenvalues ordered such that
ζj > ζj+1. Individual POD modes, φj, can be found using the method
of snapshots according to28

φj =
1

√

ζj

Yvj, (14)

where the resulting basis of POD modes is orthogonal. Addition-
ally, the POD basis is arranged so that modes associated with larger
values of ζj capture more of the temporal fluctuations in the data
set. A total of m modes will be chosen such that

∑m
j=1 ζj/

∑α

j=1 ζj

≈ 1, resulting in a reduced set of modes that can be used to accu-
rately reconstruct each element of Y. Define 8 ∈ R

β×m such that
8 = [φ1 . . . φm]. Any column of the matrix Y can be projected
onto this new POD basis according to

yi − γ =
m

∑

j=1

(

φjξ
i
j

)

+ qi = 8µi + qi, (15)
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where qi is some small residual that the POD basis does not capture

and µi =
[

ξ i
1 . . . ξ i

m

]T
is a vector of POD coefficients associated

with yi that can be found according to

µi = 8T(yi − γ ) (16)

as the result of orthogonality of the POD basis. It will be assumed
that enough POD modes are included so that qi = O(ε1) for all i
with 0 < ε1 � 1. Using (12), one can also write

yi − γ = P9i, (17)

where P ∈ R
β ,N with ith row and jth column equal to Cθ (ω1t

(i − 1))pθj (ω1t(i − 1)) exp(κi1t(i − 1)) and 9i = [ψ1(ti) . . .

ψN−1(ti) 1θ(ti)]
T are the initial conditions of the transformed

phase and isostable coordinates with ti being the time associated
with the first entry of yi. It will be assumed that the columns of P
are linearly independent in the derivation to follow. For this condi-
tion to hold, it is necessary that β ≥ N and that for all j, pθj (θ) is not

in the null space of Cθ (θ) for at least some values of θ . Setting (15)
and (17) equal to each other yields

8µi + qi = P9i, (18)

which can be manipulated to provide the following relationships:

µi = 8TP9i −8Tqi, (19)

9i = P†8µi + P†qi, (20)

where † denotes the pseudoinverse. Above, Eq. (19) follows because
the POD basis is orthonormal while (20) follows from the assump-
tion that the columns of P are linearly independent so that P†P yields
the identity matrix.

Now that relationships between µi and 9i have been estab-
lished, consider the temporal evolution of these reduced coordi-
nates. Suppose two successive measurements yi and y+

i are taken
over two time intervals [ti, ti + T] and [ti + T, ti + 2T], respectively,
chosen so that θ(ti) ≈ 0. Let the set of reduced coordinates 9i

and 9+
i correspond to the phase and isostable coordinates asso-

ciated with the outputs yi − γ and y+
i − γ , respectively. In the

absence of perturbation and noise, the phase and isostable coordi-
nates change over one period according to 9+

i = 39i where 3 ∈
R

N,N = diag(exp(κ1T), . . . , exp(κN−1T), 0). Using this relationship
along with (19) and (20), one finds

µ+
i = 8TP9+

i +8Tq+
i

= 8TP39i +8Tq+
i

= 8TP3
[

P†8µi + P†qi

]

+8Tq+
i

= Aµµi + O(ε1), (21)

where Aµ ≡ 8TP3P†8 and the final line is obtained by recalling
that qi is assumed to be an O(ε1) term. Thus, the model

µ+
i = Aµµi + O(ε1),

yi = γ +8µi + O(ε1),
(22)

provides an approximation for the underlying dynamical behavior
for the outputs of initial conditions that start near θ = 0. Finally,

standard techniques can be used to write Aµ = VDV−1, where
D is in the Jordan normal form. The coordinate transformation
6i = V−1µi yields

6+
i =D6i + O(ε1), (23)

where the eigenvalues of Aµ appear on the diagonal of D. Noting the
relationships 6+

i = V−1µ+
i = V−1(8TP9+

i −8Tq+
i ), and the fact

that9+
i = 39i, it is also possible to write

6+
i =V−18TP39i + O(ε1). (24)

Using the notation 6n+
i and 9n+

i to correspond to the coordinates
6 and 9 resulting from the measurement yn+

i taken over the time
interval [ti + nT, ti + (n + 1)T], one can write

6n+
i = Dn6i + O(ε1) = V−18TP3n9i + O(ε1). (25)

Multiplying (25) by eT
j , where eT

j is the jth element of the standard

unit basis, one can write

eT
j Dn6i =

(

eT
j V−18TP

)

3n9i + O(ε1)

= Qj3
n9i + O(ε1), (26)

where QT
j ∈ R

1×n = eT
j V−18TP. Note that Eq. (26) is valid for any

initial conditions 9i. For the moment, initial conditions with mag-
nitudes that are sufficiently larger than ε1 will be considered so that
the O(ε1) terms from (26) can be neglected. Recall that 3 is diag-
onal so that the right hand side of (26) is a sum of exponentially
decaying functions. This implies that D must also be diagonal so
that, neglecting O(ε1) terms, (26) can be rewritten as

dn
j eT

j 6i = Qj3
n9i, (27)

where dj is the jth element on the diagonal of D. In order for
(27) to hold, for any isostable coordinate ψk with associated Flo-
quet multiplier λk 6= dj, the corresponding kth entry of Qj must be
zero. This implies that eT

j 6i can be written as a linear combina-

tion of all isostable coordinates that have corresponding Floquet
multipliers identical to dj. This relationship will become important
momentarily.

For a given POD basis, the matrix Aµ [as defined below (21)]
determines the dynamics of the POD coefficients. This is relatively
easy to calculate when the nominal dynamics F(x, 0) are known
(allowing 3 and P to be calculated straightforwardly using stan-
dard methods from Floquet theory). When the nominal dynamics
are not known, however, the Aµ matrix must be inferred from data,
a consideration that will be discussed in Sec. IV.

B. Definition of data-driven phase and isostable

coordinates

The relationship (23), which is valid near the limit cycle, can
be used to define a new set of coordinates that have similar proper-
ties to isostable coordinates in the basin of attraction of the limit
cycle. These will be called data-driven isostable coordinates. To
do so, first suppose that Aµ has already been found using meth-
ods described in Sec. III A. Consider some hypothetical signal

y =
[

y(t0) y(t0 +1t) . . .
]T

, which has been measured in the
absence of noise with 1t = T/(β − 1). Suppose that at time
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t0 + a1t, it is detected that θ ≈ 0 (for example, by detecting the
crossing of a voltage threshold during the upstroke of an action
potential for a periodically firing neuron). Using these data, one can
define the following vectors:

sk ∈ R
β ≡











y
(

t0 + a1t + (β − 1)k1t
)

y
(

t0 + (a + 1)1t + (β − 1)k1t
)

...
y
(

t0 + (β − 1)1t + (β − 1)k1t
)











, (28)

for k = 0, 1, . . .. Recall that Aµ can be written as Aµ = VDV−1,
where D is a diagonal matrix and let dj be the jth element on the
diagonal of D (i.e., the jth eigenvalue of Aµ) with an associated left
eigenvector wj. In Sec. III A, it was shown that each dj is a Floquet
multiplier of the underlying periodic orbit. The unity Floquet multi-
plier of the periodic orbit will receive special attention and D will be
sorted so that this eigenvalue appears in the mth row and mth col-
umn. For any dj 6= 1, an associated data-driven isostable coordinate
can be defined according to

ψD
j = wT

j 8
T(sk − γ ) exp

(

−
log(dj)(a1t + kT)

T

)

, (29)

for k ∈ N is chosen appropriately so that sk is close enough to the
limit cycle so that the linearization (9) is valid. The definition of
data-driven isostable coordinates (29) is closely related to (6) and
has a similar dynamical behavior. Intuitively, wT

j 8
T behaves like a

left eigenvector that takes (sk − γ ) and returns the jth element of
6k. Additionally, for the unity Floquet multiplier, dm = 1, a cor-
responding a data-driven phase coordinate, θD ∈ [0, 2π), can be
defined as

θD = 2π

(

1 −
a1t

T

)

+
1

c
wT

m8
T(sk − γ ), (30)

where k is chosen to be the same value used in the definition of (29)
and c is a constant to be determined shortly.

In the absence of noise and external input, it will be shown
that the dynamical behavior of data-driven isostable coordinates is
well approximated by ψ̇D

j = log(di)/T when |ψD
j | � ε1. Likewise,

by choosing c appropriately in (30), data-driven phase coordinates
have dynamics that are well approximated by θ̇D = ω, which is iden-
tical to the standard definition of phase coordinates. To show this,
recalling the relationships 6i = V−1µi and µi = 8T(si − γ ), one
can rewrite (29) as

ψD
j = eT

j 6k exp

(

−
log(dj)(a1t + kT)

T

)

. (31)

Taking the time derivative of (31) by noticing that eT
j 6k is the only

nonconstant term, one finds

ψ̇D
j =

d

dt

(

eT
j 6k

)

exp

(

−
log(dj)(a1t + kT)

T

)

. (32)

Recall that as a consequence of (27) [which neglects O(ε1) terms]
near the periodic orbit, one can show that eT

j 6k can be writ-

ten as a linear combination of the isostable coordinates that have
associated Floquet multipliers dj [and corresponding Floquet expo-
nent log(dj)/T]. Because all isostable coordinates decay at a rate

governed by their Floquet exponents, this implies that d
dt

(

eT
j 6k

)

= log(dj)

T

(

eT
j 6k

)

+ O(ε1). Substituting this into (32) yields

ψ̇D
j =

log(dj)

T
ψD

j + O(ε1). (33)

A similar strategy can be used to find θ̇D. Substituting
eT

m6k = wT
m8

T(sk − γ ) into (30) and taking the time derivative
yields

θ̇D =
1

c

d

dt

(

eT
m6k

)

. (34)

Again as a consequence of (27), near the periodic orbit, eT
m6k in the

above equation is a constant multiple of 1θ plus some O(ε1) resid-
ual, i.e., eT

m6k = cθ1θ + O(ε1), where cθ is a constant. Choosing c
from (30) to be identical to cθ and noting that θ = 1θ when θ ≈ 0,
one finds

θ̇D = ω + O(ε1) (35)

in the absence of perturbation.
Finally, in the event that none of the values of dj are equal to

zero, the data-driven phase and isostable coordinates can be used
to predict the future behavior of a system. To see this, consider an
initial condition taken at θ ≈ 0 so that a1t from (29) and (30) can
be chosen to be 0. Also, suppose that ψk are small so that the state
is close to the periodic orbit. Because the state is close to the peri-
odic orbit, the data-driven phase and isostable coordinates can be
approximated as θD ≈ 1

c
wT

m8
T(s1 − γ ) and ψD

j ≈ 1
dj

wT
j 8

T(s1 − γ ).

Written in matrix form, this gives

9D = L−1V−18T(s1 − γ ), (36)

where L = diag(d1, d2, . . . , dm−1, 1/c) is an invertible matrix because
each element on the diagonal is nonzero and9D ≡

[

ψD
1 . . . ψD

m−1

θD
]T

. Recalling the relationships from (15) and (16), Eq. (36) can be
manipulated to yield

VL9D = µ1,

8VL9D + O(ε1) = s1 − γ ,
(37)

giving a direct relationship between the isostable coordinates and
the expected model output.

IV. PRACTICAL IMPLEMENTATION OF THE

DATA-DRIVEN PHASE AND ISOSTABLE REDUCTION

STRATEGY

In Sec. III, it is assumed that the matrix Aµ from (22) (which
determines the decay rates and left eigenvectors for the data-driven
phase and isostable coordinates) can be calculated from direct com-
putation of8TP3P†8. In experimental applications, the matrix P is
generally not directly accessible since it requires a complete descrip-
tion of the underlying system dynamics (8). In this section, a strategy
for identification of Aµ directly from output data is illustrated. Con-
sequently, it will be shown how this information can be used as part
of a “direct method”30 for computation of response curves associated
with the data-driven phase and isostable coordinates in order to find
a set of reduced equations similar to (7).
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A. Inferring output dynamics from data

Consider the phase dynamics from (11) when noise is present
and U(t) is taken to be zero. The goal here is to determine a strat-
egy to numerically compute Aµ as defined in (22) using only the
output y(t). Asymptotically expanding θ(t) in powers of ε yields
θ(t) = θ0(t)+ εθ1(t)+ · · · . Substituting this into Eq. (11), one finds
that θ̇0 = ω so that θ0(t) = θ0(t0)+ ω(t − t0). With this informa-
tion, let 1θ(t) = θ(t)− θ0(t0)− ω(t − t0). The following analysis
will suppose that both θ(t0) and ψk(t0) for all k are order ε so that
θ0(t0) = 0.

Consider the behavior of the phase θ and isostable coordinate
ψj in response to noise. Starting with ψj, letting
ψj(t) = Rj(t)exp(κjt), substituting this into the isostable relations
from (11) gives

Ṙjexp(κjt)+ κj(t)Rjexp(κjt) = ψ̇j = κjRjexp(κjt)+
N

∑

i=1

εIj,i(θ)ηi(t),

Ṙj = exp(−κjt)

N
∑

i=1

εIj,i(θ)ηi(t), (38)

where Ij,i is the ith component of Ij,i. Integrating both sides yields

Rj(t) = Rj(t0)+ ε

∫ t

t0

N
∑

i=1

(

exp(−κjs)Ij,i(θ)ηi(s)
)

ds

= Rj(t0)+ ε

∫ t

t0

N
∑

i=1

(

exp(−κjs)Ij,i(ωs)ηi(s)
)

ds + O(ε2). (39)

Finally, substituting Rj(t) = ψj(t)exp(−κjt), one finds that to lead-
ing order ε,

ψj(t)=ψj(to)exp(κj(t− t0))+ε
∫ t

t0

N
∑

i=1

(

exp(κj(t− s))Ij,i(ωs)ηi(s)
)

ds.

(40)
The noise terms from the stochastic integral from (40) have a mean
of zero and hence, neglecting terms of order ε2 and higher,

E[ψj(t)] = ψj(t0) exp(κj(t − t0)). (41)

The expected value of θ(t) is much more straightforward to find.
Substituting the asymptotic expansion for θ into (11), again when

U(t) = 0, one finds that θ̇1 =
∑N

k=1 Zk(θ(t))ηk(t). Direct integration

yields θ1(t) = θ1(t0)+
∫ t

t0

∑N
k=1 Zk(θ(s))ηk(s)ds. The terms of the

stochastic integral have a mean of zero and hence E[θ1(t)] = θ1(t0).
Using information about the expected values of the random vari-
ables θ andψk, and again using t0 = 0 for simplicity, to leading order
ε, one finds that the expected value of (12) is

E[yi(t)− yγ (t)] =
N−1
∑

k=1

[

Cθ (ωt)pθk(ωt)ψk(0)exp(κkt)
]

+1θ(0)Cθ (ωt)pθN(ωt)+ O(ε2). (42)

Notice that the right hand side of (42) is the same as the right hand
side of (12), i.e., the solution when no noise is considered. Recalling

the definitions yi, y+
i , γ , P,9 , and3 from (15), (17), and (21), using

(42), one can show

E[yi − γ ] = P9i,

E[y+
i −γ ] = P39i.

(43)

Let yR
i and y+

i
R

be random variables representing measurements
taken starting at ti and ti + T, respectively, with θ(ti) ≈ θ(ti + T)
≈ 0. Noting that 8 and γ are both matrices with constant values,
the expected value of the resulting measurements of the associated
POD coefficients can be written as

E[µi] = E[8T(yR
i − γ )]

= 8TP9i

= µi + O(ε1),
(44)

E[µ+
i ] = E[8T(y+

i

R − γ )]

= 8TP39i

= 8TP3(P†8µi + O(ε1))

= Aµµi + O(ε1),

where equality in the second to last line comes from (20). It should
be emphasized that (44) is derived with the assumption that white
noise enters additively in (8) and that the noise intensity is small
enough so that terms from the Ito correction are negligible.23 Multi-
plicative noise, colored noise, and larger intensity noise will influ-
ence the behavior of the system in ways that are not explicitly
considered here. The relationships in (44) suggest a strategy to
estimate the matrix Aµ from data using the following procedure
provided that enough POD modes are taken so that ε1 is small:

Step (1) For a time series of oscillatory data, select some distinct fea-
ture to correspond to θ ≈ 0. This feature should be easily
detectable and occur robustly exactly once per cycle (e.g.,
the crossing of a voltage threshold during the upstroke of
an action potential for periodically firing neuron). Note
that the observation of this feature in the dataset does
not generally indicate θ = 0 exactly on a cycle-to-cycle
basis because the transient decay of amplitude coordinates
can influence the moment that the threshold is crossed.69

Take the average return time to this feature over multiple
cycles to correspond to the nominal period of oscillation
T. From the data, extract vectors yj ∈ R

β for j = 1, . . . ,α
that correspond to discrete measurements taken every
1t = T/(β − 1) time units with the first entry of each vec-
tor corresponding to a moment that θ ≈ 0 is detected. Take
γ (the nominal periodic orbit) to be 1

α

∑α

j=1 yj and define

the matrix Y according to (13).
Step (2) Perform POD on the elements of the matrix Y to obtain the

basis vectors defined in (14). Choose m of these vectors so
that

∑m
j=1 ζj/

∑α

j=1 ζj ≈ 1 to incorporate in a reduced POD

basis that defines the matrix8.
Step (3) For yi from k = 1, . . . ,α − 1 from step 1, extract a com-

plementary set of vectors y+
i ∈ R

β defined as follows:
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supposing that the elements of yi correspond to mea-
surements taken at ti, ti +1t, . . . , ti + (β − 1)1t, let the
elements of y+

i correspond to measurements taken at
ti + (β − 1)1T, ti + β1T, . . . , ti + (2β − 2)1t. Note that
with this definition, 8T(yi − γ ) and 8T(y+

i − γ ) corre-
spond to µi and µ+

i , respectively.
Step (4) By defining the matrix Y+ =

[

y+
1 − γ . . . y+

α − γ
]

, the
relationship AµY = Y+ can be used to estimate Aµ, which
determines the dynamics of µi. As shown in Appendix A,
Aµ = Y+Y† can be chosen to minimize ||AµY − Y+||F.

B. Reduced modeling and direct method for

measurement of phase and isostable response curves

Data-driven isostable coordinates can be used to infer
phase-amplitude reduced models from experimental systems using
a strategy similar to the direct method,22,30,47 which has been well
established for the determination of phase models of the form (2).
To do so, suppose one has a general system of the form (8) with-
out noise. Taking U(t) = qu(t) with q ∈ R

N and recalling that FU

denotes the partial of F with respect to U, using the set of data-driven
phase and isostable coordinates near the periodic orbit, one finds

dθD

dt
=
∂θD

∂x

T
dx

dt
=
∂θD

∂x

T

×
[

F(xγ (θD(t)), 0)+ εFU(x
γ (θD(t)), 0)qu(t)

]

,

dψD
j

dt
=
∂ψD

j

∂x

T
dx

dt
=
∂ψD

j

∂x

T

×
[

F(xγ (θD(t)), 0)+ εFU(x
γ (θD(t)), 0)qu(t)

]

,

(45)

where xγ (θD) gives the limit cycle solution parameterized by the
data-driven phase. The above equation can be simplified by using
(35) and (33), which mandate that in the absence of external

perturbation dθD

dt
=

(

∂θD

∂x

T
)

F(xγ (θD(t)), 0) = ω + O(ε1) and
dψD

j

dt

=
(

∂ψD
j

∂x

T)

F(xγ (θD(t)), 0) = κD
j ψ

D
j + O(ε1). Substituting this result

into (45) yields the simplification

dθD

dt
= ω + Z

D(θD)εu(t)+ O(ε1),

dψD
j

dt
= κD

j ψ
D
j + I

D
j (θ

D)εu(t)+ O(ε1),

(46)

where ZD(θD) = ∂θD

∂x

T
FU(x

γ (θD(t)), 0)q, ID
j (θ

D) =
∂ψD

j

∂x

T

FU(x
γ

(θD(t)), 0)q, and all partial derivatives are taken at xγ (θ(t)) and
U = 0. For practical purposes, it will be assumed that the O(ε1)

terms are small enough to be neglected from (46).
The unknown functions Z(θD) and Ij(θ

D) from (46) can be
found by using a strategy that mirrors the direct method for calcu-
lating phase response curves. Specifically, by first allowing transient
behavior to die out so that each ψD

j is zero (corresponding to the

state being on the periodic orbit), a perturbation with magnitude uM

lasting tL time units can be given at some known θD. The result-
ing change to each of the isostable and phase coordinates (1ψD

j

and 1θD, respectively) can then be measured from the response
using the relation given in (29) and (30), respectively. An approx-
imation for the data-driven isostable and phase response curves
can then be obtained according to ID

j (θ0) = 1ψD
j /(uMtL) and ZD

(θ0) = 1θD/(uMtL), respectively. This process can be repeated over
multiple measurements by applying perturbations at different initial
values of θD and resulting periodic curves can be fit to the data.

To summarize, once phase response curves have been identi-
fied, a reduced order model can be obtained according to

θ̇D = ω + εZD(θD)u(t),

ψ̇j
D = κD

j ψ
D
j + εID

j (θ
D)u(t), j = 1, . . . , m − 1.

(47)

Additionally, from (37), if θD ≈ 0, the output over the next cycle can
be predicted as s1 = γ +8VL9D + O(ε1).

The reduced framework (47) is particularly useful for systems
with noise and other uncertainties because direct information about
the phase and isostable coordinates can be obtained through real
time measurement of the system output. For instance, by measur-
ing the output over [t1, t1 + T] with initial conditions θD(t1) ≈ 0,
one can use k = 1 in (30) and (29) to obtain an estimate of θD(t1)

and each ψD
j (t1), i.e., the reduced coordinates at time t1. In order to

obtain an estimate of these coordinates at t1 + T, nominally θ̇D = ω

so that θD(T + t1) ≈ θD(t1). Likewise, due to the nominal exponen-
tial decay of isostable coordinates, ψD

j (T + t1) ≈ exp(κD
j T)ψD

j (t1)

can be used.

V. AN ILLUSTRATIVE EXAMPLE IN A COUPLED

POPULATION OF NEURONS

As an illustration of the proposed data-driven phase and
isostable reduction method, consider a population of coupled, noisy,
periodically firing thalamic neurons taken from56

CV̇i = −IL(Vi)− INa(Vi, hi)− IK(Vi, hi)− IT(Vi, ri)

+ ISM +
αc

N

N
∑

k=1

(Vk − Vi)+
√

2Dηi(t)+ ui(t),

ḣi = (h∞(Vi)− hi)/τh(Vi),

ṙi = (r∞(Vi)− ri)/τr(Vi), i = 1, . . . , N,

y(t) =
1

N

N
∑

j=1

Vi(t).

(48)

Here, Vi is the transmembrane voltage of neuron i, hi and ri are
corresponding gating variables, ui(t) represents direct current input
applied to neuron i, C = 1µF/cm2, ISM = 5µA/cm2 is a baseline
current so that each neuron fires periodically in the absence of exter-
nal input, noise, and coupling, αc = 0.05 mS/cm2 is the magnitude

of the electrotonic coupling strength,31
√

2Dηi(t) is an indepen-
dent and identically distributed zero-mean white noise process with
intensity D = 0.1, and all other functions and parameters are iden-
tical to those discussed in greater detail in Ref. 56. In all simulations
to follow, N = 10 neurons will be considered.

For the neural model (48), the location at which θ ≈ 0 (i.e., a
spike) is defined to occur at the moment when the transmembrane
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FIG. 1. Colored lines in panel (a) shows example outputs from (48) measured
over the course of one period and the thick black line shows yγ (t). Panel (b) shows
the same data, but with yγ (t) subtracted. The data-driven phase and isostable
framework identifies three dominant basis elements and associated decay rates
shown in panel (c).

voltage crosses −40 mV during the upstroke of an action poten-
tial. Simulation of (48) is performed for 20 000 ms of simulated data
resulting in α = 2385 interspike intervals yielding an average period
of T = 8.38 ms. Colored lines in panel (a) of Fig. 1 show examples
of the model output plotted over one period. The mean of these
outputs is taken to be yγ (t). The same data from panel (a) are shown

in panel (b) with yγ (t) subtracted. Steps 1–4 from Sec. IV A are per-
formed to identify a POD basis and associated dynamics Aµ. Here,
choosing m = 3 POD modes yields an adequate representation of

the deviation from the mean, with
∑3

j=1 ζj/
∑α

j=1 ζj = 0.987. Data-

driven phase and isostable coordinates are defined as in Sec. III B
and the resulting mode shapes [i.e., the columns of 8VL from (37)]
are shown in panel (c) along with their associated decay rates dj.

In the examples to follow which use the neural model (48),
external stimulation is chosen so that ui(t) = 0 for i > N/2 at all
times. In other words, perturbation is only applied to half of the
neurons. For other choices and distributions of ui(t), the measured
phase and isostable response curves would be different, but the
strategy for measuring response curves would not change.

Figure 2 gives an illustration of the strategy used to measure
a PRC in the data-driven isostable reduced model (47) detailed
in Sec. IV B. Over multiple trials, a short perturbation with
uM = 250µA/µF lasting tL = 0.02 ms (resulting in a 5 mV increase
in transmembrane voltage) is applied to half of the neurons at a
known phase, θD. The third full interspike interval occurring after
the perturbation is considered to calculate the resulting changes
to the phase and isostable coordinates [panels (a) and (b)]. This
delay corresponds to taking k = 3 in (29) and (30) and is cho-
sen so that rapidly decaying transient behavior is not considered
in the algorithm. The inner product of the resulting value of
yi − yγ is taken with wT

j 8
T [panels (c)–(e)] yielding associated

datapoints [panels (f)–(g)]. This process is repeated for 500 trials
and phase and isostable response curves are fit to functions of the
form

∑3
n=0

[

an sin(nθ)+ bn cos(nθ)
]

. The resulting fits are shown
as black lines in panels (f)–(h).

The expected output of the reduced model (47) is compared to
the true output from full model simulations of (48). In results shown
in panel (a) of Fig. 3, the full model (48) is integrated forward in time
allowing initial transients to decay so that bothψD

1 andψD
2 start near

zero. At phase θD = 4 rad, a perturbation of uM = 400µA/µF last-
ing tL = 0.02 ms is applied to half of the neurons and the full model
output is compared to the predicted output from the relation (37).
Good agreement is observed between the full and reduced model,
particularly in the replication of the dual peaks in model output

FIG. 2. An illustration of the direct
method for determining the response
curves from the reduced model (47). After
allowing transient dynamics to decay, per-
turbations are applied at known values
of θD [panel (a)]. For each trial, the third
full interspike interval after the perturba-
tion is extracted [panel (b)] and its inner
product with appropriately scaled vectors
wT
j 8

T [shown in panels (c)–(e)] is used

to identify the resulting changes to the
data-driven phase and isostable coordi-
nates. Individual dots in panels (f)–(h)
represent calculated values of1θD/uM tL
and 1ψD

j /uM tL on individual trials and

solid lines are fit to the datapoints.
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FIG. 3. Comparisons between outputs of the full and reduced model. Panel
(a) shows model output for perturbation of uM = 400µA/µF lasting tL = 0.02
applied to half of the neurons and given at a phase of θD = 4 rad. Good agree-
ment is observed between the full and predicted model outputs shown as black
and red lines, respectively. The dashed line illustrates the predicted behavior
had the perturbation not been given. In the bottom panels, the noisy full model
(48) is simulated until initial transients die out, after which a perturbation of
uM = 250µA/µF lasting tL = 0.02ms is applied to half of the neurons when
the phase reaches θD = 4 rad. Coordinates ψD

1 and ψD
2 are calculated accord-

ing to (29) for individual trials (grey dots) using model output from the previous
spike (i.e., with k = 1) and the process is repeated for 100 trials. Red crosses
show the predicted values from the reduced model.

observed immediately after perturbation is applied that gradually
disappear during recovery toward steady state. Panels (b) and (c)
illustrate predicted and measured values of ψD

1 and ψD
2 after per-

turbation is applied indicating good agreement between the reduced
and full models. Note that because the full model includes additive
white noise, there is a spread in the values of the reduced coordinates
over multiple simulations.

VI. OPTIMAL CONTROL OF A LARGE MODEL OF

COUPLED CIRCADIAN OSCILLATORS WITH

APPLICATIONS TO RECOVERY FROM JET LAG

In this section, a more involved application with relevance
to circadian physiology will be considered to showcase the poten-
tial for the proposed phase-amplitude reduction to be used in
feedback control applications. Circadian rhythms are evolutionar-
ily advantageous for humans and other organisms to anticipate
environmental changes to external lighting and temperature and
respond accordingly.51,74 In humans, circadian rhythms are gov-
erned by the suprachiasmatic nucleus (SCN),54 a master pacemaker
comprised of approximately 10 000 coupled neurons that maintains
a free-running period of the circadian rhythm close to 24 h so that
the circadian cycle can be stably entrained to a 24-h light-dark
cycle.14,24,73 Circadian misalignment (most commonly due to jet lag)
represents a disruption to this steady entrainment and is caused by
a mismatch between the environmental time and one’s internal cir-
cadian clock.1,57 Without treatment, recovery times from jet lag have

been measured to be approximately 1 and 1.5 time zones per day
for eastward and westward travel, respectively. Recent years have
seen a growing interest in the development of specific treatments
to accelerate reentrainment to limit the negative effects of jet lag.

One useful approach for developing treatments relies on the
circadian pacemaker’s phase response curve (PRC) to perturbations
such as bright light.33,43 For instance, bright light given in the evening
before bedtime has the tendency to delay the onset of sleep while
the same bright light tends to advance one’s circadian phase when
applied in the morning. Information about human PRCs has proven
invaluable in the development of simple and practical jet-lag recov-
ery treatments that incorporate carefully timed combinations of
light exposure and light avoidance.11,63

In addition to information gathered directly from human sub-
jects, quantitative and qualitative numerical models detailing cir-
cadian oscillations have also been useful in the development and
understanding of new jet-lag treatment strategies.20,25,34,38 These and
related models can be used to find mathematically optimal sched-
ules of light avoidance and exposure for rapidly acclimating to a
new time zone,3,15,60 some of which have been implemented success-
fully in real-time using smartphones.49 While these computational
models can be used to identify general principles that result in rapid
recovery from circadian misalignment, they cannot be tailored to an
individual without a personalized model. Additionally, it is not obvi-
ous how to incorporate state feedback into these control algorithms,
necessitating a trade-off between optimality of the control strategy
and robustness to noise and other uncertainties. As illustrated in the
example to follow, provided a single output signal can be measured
from a circadian model, using the data-driven phase and isostable
reduction strategy detailed in Sec. IV, it is possible to infer a model
of the form (47), which can subsequently be used to determine
time-optimal strategies for recovery from circadian misalignment.
Additionally, in contrast to other recently proposed circadian mis-
alignment recovery strategies, model output can be used to provide
a real-time estimate of the data-driven phase and isostable coordi-
nates resulting in a feedback control strategy that is robust to noise
and modeling uncertainty.

To begin, a model describing the entrained behavior of N
coupled SCN cells25 will be considered

ȧi = h1

Kn
1

Kn
1 + cn

i

− h2

ai

K2 + ai

+ hc

KF(t)

Kc + KF(t)

+ Si [L(ts)+1L(t)] +
√

2Dηi,

ḃi = h3ai − h4

bi

K4 + bi

,

ċi = h5bi − h6

ci

K6 + ci

,

ḋi = h7ai − h8

di

K8 + di

, i = 1, . . . , N,

ṫs = 1,

y(t) = F(t) ≡ (1/N)

N
∑

j=1

di(t).

(49)
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Above, for the ith cell, the variable ai represents concentrations of an
mRNA clock gene, bi and ci are the associated protein and nuclear
form of the protein, respectively, di is a neurotransmitter with F(t)
being its population average value, L(ts) is the external light input,
ts ∈ S

1 is a time-like variable that takes values in the range of [0, 24)
and determines the nominal external light magnitude, N = 3000,
and Si = max(0.5 + 0.4N (0, 1), 0) is an individual cell’s sensitivity
to light where N (0, 1) is a standard normal distribution. A light
exposure or avoidance strategy can be implemented with 1L(t) in
order to promote reentrainment. Noise with intensity D = 5 × 10−4

is added to the ai variable of each oscillator. Nominal parameters
are taken to be identical to those given in Fig. 1 of Ref. 25 with the
exception of h2 = 0.503 and hc = 1.2. Heterogeneity is incorporated
by drawing h1, h2, h3, h4, h5, and h6 from a normal distribution with a
standard deviation of 0.03 with the mean value equal to the nominal
parameter value.

In simulations of (49), the external light is taken to be

L(ts) = 0.015

[

1

1 + exp(−4(ts − 6))
−

1

1 + exp(−4(ts − 18))

]

,

(50)

where 1L(t) can be used to implement a light exposure or avoid-
ance strategy in order to promote reentrainment. Additionally, the
constraint 0 ≤ L(ts)+1L(t) ≤ 0.015 is required to limit the magni-
tude of total light input and to prevent the application of a negative
value of light. When 1L(t) = 0, the model (49) stably entrains to
the 24-h light-dark cycle as shown in panels (a) and (b) of Fig. 4.
Note that because ts is explicitly included as a state, the model
(49) is autonomous. From this perspective, using the definition
of isochrons from (6), one can show that the asymptotic phase
θ = 2π ts/24. This point was illustrated for a different periodi-
cally forced model in Ref. 66. Because the asymptotic phase, θ , is
known exactly, it is not necessary to use a data-driven phase, θD,
in a reduced order model. However, data-driven isostable coordi-
nates will still be used to determine a reduced order model for the
amplitude dynamics.

While the coupled oscillator model (49) contains thousands
of states, it is possible to use the output from (49) to determine
a reduced order model based on data-driven isostable coordinates
using the strategy detailed in Sec. III. This is done by taking α = 968
measurements over ts ranging from 0 to 24. Individual trials are
plotted in panel (c) of Fig. 4 as colored lines; the periodic orbit
yγ (t) is taken to be the average value of these outputs and plot-
ted as a black line. Next POD analysis is implemented on the data
set where it is found that m = 5 modes provides a good repre-

sentation of the data with
∑5

j=1 ζj/
∑α

j=1 ζj = 0.987. Subsequently,

Aµ is fit to the data using the strategy detailed in Sec. IV A and
the resulting matrix is used to determine the data-driven isostable
coordinates for this model. The resulting numerically determined
decay rates are d1 = 0.23 + 0.77i, d2 = 0.23 − 0.77i, d3 = 0.07,
d4 = −0.06, and d5 = 0.02. The corresponding modes for the com-
plex conjugate eigenvalues are shown in panel (d) of Fig. 4, and the
other modes are ignored in the reduction to follow because the decay
rates are so rapid.

A reduced set of three differential equations will be used to
characterize the amplitude dynamics of perturbations to the limit

FIG. 4. Panel (a) shows a representative output from the SCN model (49) with
the 24-h light-dark cycle shown in panel (b). In panel (c), representative measure-
ments are shown as colored lines over ts ranging from 0 to 24 and the average
of these outputs is plotted as a black line. In panel (d), grey lines show individual
measurements corresponding to y(ts)− yγ (ts) with real and imaginary compo-
nents of the modes corresponding to data-driven isostable coordinates shown as
solid and dashed lines, respectively.

cycle of (49),

ṫs = 1,

ψ̇D
1 = κD

1 ψ
D
1 + I

D
1 (2π ts/24)1L(t),

ψ̇D
2 = κD

2 ψ
D
2 + I

D
2 (2π ts/24)1L(t).

(51)

Here, ts is a phase-like variable and is required to implement the
external forcing from the 24-h light-dark cycle. It is assumed that
there is no direct control over ts and hence no associated response
curve for the variable ts; it can only increase at a constant rate. In this
example, because d1 and d2 are complex conjugate, the data-driven
isostable coordinatesψD

1 andψD
2 and the response curves ID

1 and ID
2

must also be complex conjugates. This point is discussed in greater
detail in Ref. 66.

The direct method as described in Sec. IV B is used to deter-
mine isostable response curves. For each trial, any initial transients
in the model (49) are allowed sufficient time to decay so that ψD

1

and ψD
2 are close to zero. In each trial, for a given initial value

of ts the external light is set to either its maximum or minimum
value (0.015 or 0, respectively) for a duration of tL = 1 h. The value
1L is determined and the resulting shifts in the isostable coor-
dinates are determined directly from (29) using k = 2. Resulting
estimates for the isostable response curves are shown in panels
(a) and (b) of Fig. 5. Dots and open circles indicate trials for
which 1L is positive and negative, respectively. A basis of the form
∑2

n=0

[

an sin(nθ)+ bn cos(nθ)
]

is fit to the datapoints and taken to
be the response curves.
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FIG. 5. Panels (a) and (b) illustrate
results from using the direct method to
infer the necessary parameters of the
response curves from (47). Dots and
open circles indicate values obtained
using positive and negative values of1L,
respectively, and colored lines show fits
to the resulting data. Panel (c) illustrates
the effect on ψD

1 of suddenly shifting ts
by 1ts hours. Panels (d) and (e) illus-
trate the recovery from a time shift of
1ts = 12 h. Solid and dashed lines in
panel (d) show the perturbed output
y(t) and the nominal entrained output
yγ (t), respectively. White and grey bands
correspond the nominal light-dark cycle
indicating environmental day and night,
respectively. Panel (e) shows the differ-
ence between the solid and dashed lines
from panel (d), illustrating the expected
exponential decay during reentrainment.

In the context of the reduced model (51), full entrainment
corresponds to a state for which ψD

1 = ψD
2 = 0. Circadian misalign-

ment can be caused by sudden shifts in the time ts, which reflect
changes in the environmental time occurring after rapid travel
across multiple time zones. Panel (c) shows the changes inψ1 result-
ing from advancing or delaying ts by 1ts hours starting from an
initial time of ts = 0. The shifts in isostable coordinates are calcu-
lated from (29) taking k = 1, i.e., using output from the first full
period occurring after the shift. Dots show the results from indi-
vidual trials and solid lines show the average for a given value of
1ts. In general, choosing 1ts closer to ±12 yields larger values of
|ψ1| and will take longer to recover to the nominal entrained solu-
tion. Note that starting the simulation at values of ts other than zero
does not qualitatively change the results. Panels (d) and (e) show
output resulting from taking 1ts = 12 h illustrating the expected
exponential decay toward the nominal entrained solution.

In the control examples to follow, the transformation
ρ1 ≡ ψD

1 + ψD
2 = 2 real(ψD

1 ) and ρ2 ≡ −i(ψD
1 − ψD

2 ) = 2 imag(ψD
1 )

will be used in order to avoid the use of complex numbers. This
change of coordinates transforms (49) to

ṫs = 1,

ρ̇1 = real(κD
1 )ρ1 − imag(κD

1 )ρ2 + 2 real(ID
1 (2π ts/24))1L(t),

ρ̇2 = imag(κD
1 )ρ1 + real(κD

1 )ρ2 + 2 imag(ID
1 (2π ts/24))1L(t),

(52)

Equation (52) is in the general form

ẋ = R(x)+ B(x)u(t), (53)

where x = [ts ρ1 ρ2]
T, B(x) =

[

0 2 real(ID
1 (2π ts/24)) 2imag

(ID
1 (2π ts/24))

]T
, and u(t) = 1L(t). Note here that ts ∈ S

1 dictates
the nominal input from the external light source and t ∈ R is the
overall time variable. Recalling that ρ1 = ρ2 = 0 corresponds to the
entrained solution, an optimal jet-lag mitigation control strategy can
be formulated as a minimum time to reach problem and solved using
a Hamilton-Jacobi-Bellman approach.35 This is described in detail in
Appendix B, but the general goal is to find an allowable control u∗(t)

that takes an initial state x to a prespecified target set T (with a small
value of ρ1 and ρ2) in the minimum time possible. Practically, this
can be done by first defining a cost functional

J(x, u(t)) =
∫ ttarg

0

1dt = ttarg(x, u(t)), (54)

where ttarg is the time required to reach T starting from x under the
application of u(t). Next, one can define a value function (sometimes
referred to a cost-to-go function) as the minimum possible value of
ttarg for a given x

V(x) = inf
umin≤u≤umax

J(x, u(t)) = inf
umin≤u≤umax

ttarg(x, u(t)). (55)

One can numerically solve forV(x) by defining an auxiliary function
ϒ(x, t), which evolves according to

0 = ϒt(x, t)+ ∇ϒ(x, t)TR(x)+ min
umin≤u≤umax

[

∇ϒ(x, t)TB(x)u(t)
]

.

(56)

For appropriately chosen initial conditions of ϒ(x, 0) (as explained
in Appendix B), the value function is determined by V(x) =
{t|ϒ(x, t) = 0}. Once V(x) is known, the control policy

L(t)+1L(t) =
{

0.015 if ∇VT(x(t))B(x(t)) < 0,

0 otherwise,
(57)

provides the optimal control input that reaches T in the minimum
time possible. Control policies of the form (57) are often called bang-
bang control35 because the minimum or maximum possible control
is always applied. Finally, as a matter of practical implementation,
switching from maximum to minimum allowable control will only
be allowed once per hour of simulated time in order to avoid solu-
tions that switch rapidly back and forth. A target set that is close to
ρ1 = ρ2 = 0 will be chosen. In simulations of (49) when the model is
fully entrained, the value of ||ρ|| ≡

√

ρ2
1 + ρ2

2 stays near 0.015 due to
noise in the system and occasionally is driven close to 0.05. Because
of this nominal behavior, the target set T is chosen to be the set of all
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FIG. 6. The optimal control policy (57)
is shown in panel (a) for various val-
ues of ts. Red and blue regions indicate
that the control policy calls for the maxi-
mum and minimum light, respectively. The
white regions show locations inside the
target set for which the controller is turned
off. The black line shows an example of
an optimally controlled trajectory of (52);
black dots correspond to the intersection
of the trajectory with each cross section.
A cross section of the value functionV(x)
at ts = 0 is shown in panel (b). The black
line in panel (c) shows ||ρ|| for the tra-
jectory from panel (a) with the dashed
line showing the decay in the uncontrolled
case. Panel (d) shows the associated opti-
mal light input as a black line along with
the nominal light-dark cycle in grey.

FIG. 7. Results from implementing the optimal reentrainment strategy (57) on the full, noisy model (49). Panel (a) compares the uncontrolled recovery from a 1ts = 12 h
shift (red line) to the recovery under the application of control (blue line). For reference, the black dashed line shows the fully entrained solution output yγ (t). This solution
becomes indistinguishable from the blue line at t ≈ 30 h. Panel (b) shows y(t)− yγ (t) for the same simulation. In panel (c), the uncontrolled light input is shown in red
and the controlled light input is given in blue. Panel (d) gives the value of ||ρ||; solid lines show the value used as an estimate by the controller and dots indicate states
updated every 24 h directly from the model output in order to account for the influence of noise and uncertainty. The black line shows the boundary of the target set. After the
state reaches the target set, the control is turned off. Simulations are repeated for 50 trials for each value of1ts to measure the recovery time with and without control. The
averaged values are shown in panel (e).
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states for which ||ρ|| ≤ 0.05. The partial differential equation (56)
is computed using a freely available Matlab toolbox44 and used to
determine the value function V(x). Panel (a) of Fig. 6 shows cross
sections of the resulting control policy with red and blue colors pre-
scribing the maximum and minimum possible control application,
i.e., full brightness or total darkness, respectively. Inside the target
set, 1L is taken to be zero. Panel (b) shows the value function for
ts = 0. In general, values that are a large distance from ρ1 = ρ2 = 0
have larger corresponding values ofV(x). Panel (a) also shows a con-
trolled trajectory of (52) starting at (ρ1, ρ2, ts) = (−0.2, 0.2, 0) as a
thick black line with black dots to help identify the intersections with
the individual planes. Panel (c) shows values of ||ρ|| plotted over
time for this optimally controlled trajectory and panel (d) shows the
optimal value of L(t)+1L(t).

The optimal control strategy obtained for the reduced model is
applied to the full model Eq. (49). In order to apply the optimal con-
trol policy (57), the values of ρ1 and ρ2 are estimated from the model
output. This can be done by periodically obtaining an estimate for
the isostable coordinates (and hence ρ1 and ρ2) according to (29)
using k = 1 and using the reduced model equations (52) to estimate
the state in between measurements. In the illustrations to follow,
state updates obtained directly from model output are taken every
24 h. In the simulations shown in Fig. 7, ts is shifted by an amount
1ts and the control strategy is implemented to recover from the mis-
alignment as quickly as possible. In each simulation, initial values of
ρ1 and ρ2 are calculated from the average values ofψD

1 shown for the
applied1ts. Panels (a)–(d) show an example of the observed recov-
ery using 1ts = 12 h. Results using the optimal control strategy are
shown in blue, and red lines illustrate the recovery in the absence of
control. For each value of1ts, the simulation is run for 50 trials and
the recovery times, defined to be the time it takes to reach the target
set, are computed. The results are then averaged for each 1ts and
shown in panel (e) of Fig. 7. When implementing the optimal con-
trol strategy, recovery is sped up by a factor of 3–6 with the largest
differences seen for the largest values of1ts.

As a final note, the magnitude of the external forcing is large
enough that standard phase-only reduction methods using equa-
tions of form (2) cannot be used to understand the dynamical
behavior of this model. As explained in Appendix C, the entrained
periodic orbit is far enough away from the unperturbed periodic
orbit so that the phase dynamics are not well-captured by a single
phase response curve. This issue is also considered in applications
motivated by circadian physiology in Refs. 16 and 17. For model
(49), attempts at using the information from Fig. 8 lead to incor-
rect light avoidance and exposure strategies that inadvertently delay
reentrainment. It is imperative to incorporate information about
the amplitude coordinates for this example in order to find a viable
control strategy.

VII. DISCUSSION AND CONCLUSION

This work suggests and investigates a framework for phase-
amplitude reduction using so-called data-driven phase and isostable
coordinates. This strategy uses well-established POD algorithms to
identify a modal basis from output data from a limit cycle oscillator
and subsequently draws on the recently developed theory of phase
and isostable coordinates to define a new data-driven phase and

isostable coordinate framework. Similar to standard phase coordi-
nates, the data-driven phase coordinates (30) explored here increase
at a constant rate in the absence of perturbation. Likewise, data-
driven isostable coordinates (29) decay exponentially in the absence
of perturbation. Techniques are developed to infer the phase and
isostable response curves in a reduced order model (47) from output
data in order to characterize the influence of external perturbations.
The resulting reduction is particularly well suited for application in
dynamical systems with dominant nonlinearities.

While the proposed reduction strategy is developed with exper-
imental systems in mind, it may be a useful alternative to standard
phase and isostable reduction strategies as illustrated in Refs. 66,
68, and 71 for particularly high-dimensional numerical systems.
Isostable response curves, Ij(θ) from (7), generally require the iden-
tification of periodic, dynamically unstable solutions of a generalized
adjoint equation, a nontrivial computation in high-dimensional sys-
tems. Even when working with numerical simulations where the
full dynamical equations are explicitly known, reduction using data-
driven phase and isostable coordinates may be more feasible in
particularly high-dimensional or complicated systems.

The efficacy of the data-driven phase and isostable reduction
framework is illustrated on a 30 dimensional model of coupled,
periodically firing neurons56 and on a 12 000 dimensional model
describing circadian oscillations (49). In the former application, the
reduction framework is used to accurately predict model output in
response to exogenous perturbation over the span of multiple peri-
ods. In the circadian example, an optimal control strategy is imple-
mented that would be computationally prohibitive without first
implementing the proposed reduction framework. The resulting
control strategy decreases recovery times from circadian misalign-
ment by a factor of 3–6 depending on the initial time shift with the
largest improvements observed for the largest time shifts. Despite
the high-dimension of the underlying equation in both applica-
tions considered here, the output behaviors are well-characterized
by significantly lower order reduced models.

Much like existing POD and DMD algorithms, the reduction
technique presented here can be implemented using only measured
model output, making it amenable for the analysis of experimen-
tal systems. While standard implementations of POD and DMD
do not make assumptions about the underlying system behavior,
the data-driven phase and isostable reduction explicitly assumes
that an underlying periodic orbit exists and that Floquet theory can
be applied to characterize its dynamics for small perturbations. As
a preliminary step in the data-driven reduction strategy, a POD
algorithm is used to identify features of the transient decay of solu-
tions toward the limit cycle. A central requirement of the reduction
strategy is that enough POD modes are kept so that any residuals
from (16) are small enough so that the underlying dynamics can be
adequately captured. In the examples shown here, this was accom-
plished by choosing m so that

∑m
j=1 ζj/

∑

j ζj ≈ 0.99. In principle,

using more POD modes will increase this ratio and provide a better
reduced model, but this will also require a larger matrix Aµ to be
used when fitting the data to the model behavior. In practice, a good
balance needs to be achieved between the number of POD modes
kept and the accuracy of the resulting basis.

There are numerous limitations and opportunities for exten-
sion of the proposed data-driven phase and isostable coordinate
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reduction strategy. First, while the data-driven phase and isostable
coordinates can be defined in the basin of attraction of a limit
cycle, the reduced equations used here (47) only use a linearized
approximation of the phase and isostable coordinates with respect
to the limit cycle. Previous work has focused on obtaining higher
order accuracy reduced models using standard phase and isostable
coordinates.66,68 It is likely that the associated reduction framework
can be extended in a similar manner. Additionally, while the data-
driven phase and isostable reduction strategy can be used to accu-
rately predict outputs in response to perturbation, specific estimates
for the errors caused by the truncated residual terms from (15) have
not been obtained. Other frameworks such as POD come with an
explicit energy estimate that gives a sense of the energy contained by
each mode and hence its relative importance. It would be of interest
to develop similar estimates for accuracy of the proposed reduction
technique in relation to the number of modes used. Also, the cur-
rent reduced framework is designed for replicating the model output
when only one temporal measurement is taken, but it may be possi-
ble to extend the current framework for applicability in situations
where data are measured from multiple channels simultaneously.
All examples presented in this study are implemented in numer-
ical systems. An experimental implementation would likely need
to extend the proposed framework to account for the possibility
of drifting parameters that would cause the phase and amplitude
response properties of a given system to change over time. Fur-
thermore, the illustrative examples given in this manuscript use a
large number of trials to fit the underlying reduced model. Quanti-
tative investigations into how many trials are necessary to obtain an
accurate reduced model would be useful, especially in experimental
scenarios where data may be limited. These and other experimen-
tal concerns would likely need to be addressed on an application
specific basis.
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APPENDIX A: ESTIMATION OF THE DYNAMICS OF

POD COEFFICIENTS FROM DATA

Consider the problem of finding an estimate for the matrix
X ∈ R

n×n as part of the relationship XA = B where the matrices
A and B ∈ R

n×m are known. Letting || · ||F denote the Frobenius
norm and † denote the pseudoinverse, here it will be shown that
X = BA† provides an estimate that minimizes the Frobenius norm
of the residual, i.e., ||BA†A − B||F ≤ ||YA − B||F for any choice of
Y. To begin, the relationship XA = B can be rewritten as a matrix
equation of the form







AT

. . .

AT













x1

...
xn






=







b1

...
bn






, (A1)

where xj and bj are the jth columns of XT and BT, respectively. As
explained in Ref. 41, a least squares estimate for the unknown vector
(comprised of elements of X) can be obtained by taking the pseu-
doinverse of the large matrix. Since the only nonzero entries of the

large matrix are on the diagonal, this can be written as







xLS
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...
xLS

n






=









AT†

. . .

AT†















b1

...
bn






, (A2)

where
[

(

xLS
1

)T
. . .

(

xLS
n

)T
]T

is the solution to (A1) which mini-

mizes the error of the squared residuals. The relationship (A2) can
be rewritten in terms of the original matrices as

(XLS)
T = AT†

BT

= A†T
BT, (A3)

and finally

XLS = BA†, (A4)

where XLS is the matrix that minimizes the Frobenius norm of the
residual as desired.

APPENDIX B: MINIMUM TIME CONTROL OF

PHASE-AMPLITUDE REDUCED EQUATIONS

Consider a nonlinear model of the form

ẋ = R(x)+ B(x)u(t), (B1)

with x ∈ R
n, u(t) ∈ R is a control input with constraints umin(x) ≤

u(t) ≤ umax(x), B(x) ∈ R
n determines the influence of the control

stimulus, and R(x) ∈ R
n gives the unperturbed dynamics. Suppose

the control objective is to find a control input that will bring the
state to some target set T as quickly as possible. To formulate this
as an optimal control problem, one can define tmin(x, u(t)) to be
the minimum time required for an initial state to reach T under
the application of the control signal u(t). For any initial state, x, a
minimum-time stimulus, u∗(t), must minimize the cost functional

J(x, u(t)) =
∫ ttarg

0

1 dt = ttarg(x, u(t)), (B2)

subject to the constraints on u(t). Above, ttarg is the time required
to reach the target set under the application of u(t). The minimum
value of ttarg can be found by identifying the control policy that yields
u∗(t). This can be accomplished by first defining a value function
(sometimes referred to a cost-to-go function)

V(x) = inf
umin≤u≤umax

J(x, u(t)) = inf
umin≤u≤umax

ttarg(x, u(t)). (B3)

Using a Hamilton-Jacobi-Bellman framework, the value function
V(x) is the solution to4

0 = min
umin≤u≤umax

[

1 + ∇V
T(x)(R(x)+ B(x)u(t))

]

= 1 + ∇V
T(x)R(x)+ min

umin≤u≤umax

[

∇V
T(x)B(x)u(t)

]

, (B4)

where ∇ denotes the gradient. By solving for V(x), the optimal
control u∗(t) can be found according to the control policy

u∗(t) = arg min
umin≤u≤umax

(

∇V
T(x)B(x)u

)

, (B5)
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which simplifies to

u∗(t) =
{

umax if ∇VT(x(t))B(x(t)) < 0,

umin otherwise.
(B6)

Numerical solutions of (B4) can be obtained using a numerical pack-
age for solving time dependent partial differential equations.44 Even
though (B4) itself is not time dependent, it can be transformed
to a suitable form using the following strategy detailed in Ref. 50
and summarized in Ref. 44. First, one can define an intermediate
function

ξ(x, ∇V(x)) = 1 + ∇V
T(x)R(x)+ min

umin≤u≤umax

[

V
T(x)B(x)u(t)

]

,

(B7)
so that (B4) can be rewritten as

ξ(x, ∇V(x)) = 0 on D,

V(x) = 0 on D\δT ,
(B8)

where δT is the boundary of the target set and D is the domain
of interest. Provided the boundary conditions are noncharacteris-
tic, the value function can be found by introducing a new function
ϒ(x, t) and solving the equation

0 = ϒt(x, t)+ ∇ϒ(x, t)TR(x)+ min
umin≤u≤umax

[

∇ϒ(x, t)TB(x)u(t)
]

,

(B9)

using an initial condition

ϒ(x, 0) = 0 ∈ δT ,

ϒ(x, 0) < 0 ∈ T \δT ,

ϒ(x, 0) > 0 ∈ D\T .

(B10)

The initial condition ϒ(x, 0) is usually taken to be a signed function
of distance to the boundary of δT . Upon solving forϒ(x, t) the value
function can be found by taking

V(x) = {t|ϒ(x, t) = 0}. (B11)

Once V(x) is known, it is straightforward to determine the optimal
control according to (B6).

APPENDIX C: FAILURE OF STANDARD PHASE-ONLY

REDUCTION METHODS FOR LARGE MAGNITUDE

PERTURBATIONS

Standard phase reduction using (2) fails for the circadian model
(49) used in Sec. VI. When attempting to use the reduction θ̇ = ω

+ Z(θ)TU(t) to represent the dynamics of (49), recall that Z(θ)
≡ ∂θ

∂x
, where x is the overall state of the system and partial deriva-

tives are evaluated on the limit cycle xγ (θ). Intuitively, Z(θ) provides
a linear approximation of the gradient of the phase coordinate
evaluated on the periodic orbit.

Toward a standard implementation of a phase-only reduction
on (49), one can nominally take Ltot ≡ L(ts)+1L(t) = 0 and treat
Ltot as a parameter perturbation. From this perspective, one can
write a phase reduced version of this model as

θ̇ = ω + Zxγ

L (θ)(L(ts)+1L(t)), (C1)

where

Zxγ

L (θ) ≡
N

∑

i=1

(

∂θ

∂ai

Si

)

∣

∣

∣

∣

∣

xγ (θ)

, (C2)

where xγ (θ) is the limit cycle that results when taking L(ts)+1L(t)
= 0. Recall that Si in (C2) is the sensitivity of oscillator i to light. As
illustrated in Fig. 8, the phase reduction (C1) breaks down for the
magnitudes of light perturbations used in this model.

Panel (a) of Fig. 8 shows Zxγ

L (θ) estimated using the direct
method.22,30,47 Briefly, (49) is simulated in the absence of light (i.e.,
taking L(ts)+1L(t) = 0) until initial transients die out so that the
state is close to the limit cycle. At a known phase,1L(t) is set to 0.015
for a duration of 1 h, the resulting shift in phase 1θ is measured,
and the phase response curve Zxγ

L (θ) is taken to be 1θ/0.015. This
process is repeated 450 times with each red dot in panel (a) repre-
senting the result of a single trial. The red line shows a least square fit

to a basis of the form
∑2

n=0

[

an sin(nθ)+ bn cos(nθ)
]

. This fit rep-
resents an approximation of the phase response curve that would be
used in (2). A second set of simulations is also performed to measure

Zxent

L (θ), that is, the effective phase response curve for an initial con-
dition on the orbit that results when (49) is fully entrained to L(ts)

as defined by (50). Equation (49) is once again simulated with this

FIG. 8. Panels (a) and (b) show results when using the direct method to estimate the influence of light perturbations on the asymptotic phase. Panel (a) shows the phase
response curve as would be used in the phase reduction from (C1). Panel (b) shows the effective response for initial conditions taken on the entrained orbit. Panel (c) gives
a direct comparison between the two curves. The phase reduction (C1) does not accurately reflect the phase dynamics on the entrained orbit and hence does not provide a
viable reduction strategy to study entrainment for this model.
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light-dark cycle taking1L = 0. Once all transients have died out so
that the system is fully entrained to the light-dark cycle, the state
at a randomly chosen value of ts is saved in memory. The applied
light L(ts)+1L(t) is set to zero and the system is simulated long
enough so that it can approach the limit cycle. The phase θ at the
moment the light-dark cycle was eliminated can then be inferred.
Performing an associated simulation using the state that was stored
in memory as an initial condition, L(ts) is set to zero and1L(t) is set
to 0.015 for 1 h and then set to zero for the remainder of the simu-
lation. These data are used to infer the change in phase 1θ caused

by the 1 h perturbation and Zxent

L (θ) is taken to be 1θ/0.015. This
process is repeated 450 times with each black dot representing the
result from a single trial. The black line is fit to the same basis as
before. This curve gives a local approximation of the gradient of the
phase on the periodic orbit that is entrained to the light-dark cycle.
Panel (c) shows the two curves plotted on the same axis; the differ-
ence is stark with the phase response curve severely overestimating
the effect of light perturbation for a state on the entrained periodic
orbit.

As explained in the text, the control strategy presented in
Sec. VI avoids the above limitation by treating ts as a state vari-
able so that the system is viewed as an autonomous differential
equation. From this perspective, the entrained periodic orbit itself is
the limit cycle and subsequent perturbations1L(t) are small enough
so that the dynamics stay close enough to the limit cycle. Note that
using this formulation, the asymptotic phase is identically equal to
2π ts/24. Subsequently,1L(t) cannot be used to influence the phase.
Instead, the magnitude of the isostable coordinates corresponds to
the degree of circadian misalignment. These coordinates can be
influenced by1L(t).
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