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a b s t r a c t

Phase–amplitude reduction techniques have shown great promise for identifying analytically tractable
reduced order models in applications involving strongly perturbed and strongly coupled oscillatory
dynamical systems. However, efficient methods for inference of these reduced order models from data
are still needed. In this work, a data-driven strategy for inference of the necessary terms comprising
an adaptive phase-isostable reduced order model is proposed. This strategy requires no more data
than the well-established direct method used for obtaining standard phase reduced models, i.e., the
application of a series of pulse inputs and the subsequent examination of the relaxation to the
underlying limit cycle. Illustrative examples are provided for a collection of numerical models where
the resulting adaptive phase-isostable reduced order equations are substantially more accurate than
models obtained using standard phase reduction.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Phase reduction is a well-established strategy for reducing
he complexity and dimensionality of oscillatory dynamical sys-
ems [1–4]. Using this strategy, a system with a stable limit cycle
f the general form

˙ = F (x, u), (1)

where F determines the system dynamics, x ∈ RN denotes
the system state, and u ∈ RM corresponds to an input can be
represented according to

θ̇ = ω + Z(θ )u(t). (2)

Above, θ ∈ [0, 2π ) encodes for oscillation timing, ω is the
nperturbed natural frequency that results when taking u(t) = 0,
nd Z(θ ) is a row vector, often referred to as the infinitesimal
hase response curve, that characterizes the phase shifts in re-
ponse to small inputs. The phase reduction strategy considers
scillatory dynamics not in terms of the N-dimensional state,
ut rather, in terms of the (one dimensional) oscillation timing
ielding a tremendous reduction in dimensionality. Indeed, this
pproach has been used successfully in many applications where
he analysis would otherwise be intractable [4–8].

In situations where the underlying model equations are un-
nown, Z(θ ) from Eq. (2) can be approximated from data using
he direct method [2,9,10]. As a brief description, consider the
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application of a short pulse of input u(t) = mei at a known phase
θ0 lasting t0 time units where ei ∈ RM is the ith component of the
standard unit basis and m ∈ R sets the magnitude of the pulse
input. By inferring the change in phase ∆θ in response to this
input, a pointwise estimate of the infinitesimal phase response
curve can be estimated according to

Z(θ0)ei ≈
∆θ

mt0
, (3)

By repeating this procedure for multiple choices of θ0 and for
each dimension of the input, Z(θ ) can be inferred by fitting a
curve to the resulting data. As a concrete example, consider a
conductance-based model neuron of the form (A.1) from Ap-
pendix A taking the baseline current ib = 8 µA/cm2 with an
additional transmembrane current input u(t) ∈ R added to the
transmembrane voltage variable. Fig. 1 illustrates an application
of the direct method for inputs of varying magnitudes. Panel A
shows the response to the example pulse from Panel B which
results in the phase shift ∆θ . Panel C shows the inferred phase
response curve with measurements taken according to (3) for
inputs of various magnitudes.

Fig. 1 illustrates the primary shortcoming of standard phase
reduction — its limited accuracy beyond the weakly perturbed
limit. In many practical applications, the applied inputs are far
larger than the weakly perturbed limit rendering the phase re-
duction unusable. A variety of methods have been proposed to
better characterize the phase dynamics when larger magnitude
inputs are used. For instance, the notion of a residual phase

response curve [11–13] has been suggested to characterize how
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Fig. 1. The direct method is applied to infer the infinitesimal phase response curve from Eq. (2) for a conductance-based model neuron of the form (A.1) from
Appendix A with an additional transmembrane current input u(t) ∈ R added to the transmembrane voltage variable. Panel A illustrates the response to the pulse
nput shown in panel B. The red line shows the perturbed response and the dashed line shows the voltage output that would have resulted if the pulse input had
ot been applied. Panel C shows the effective infinitesimal phase response curve inferred according to Eq. (3) using pulses of various magnitudes m (in µA/cm2). For
mall magnitude inputs, the resulting Z(θ ) is close to the infinitesimal phase response curve (i.e., ∂θ/∂V which is shown as a dashed line). As the pulse magnitude
ecomes larger, the effective change in phase deviates unpredictably from the true infinitesimal phase response curve.
a
n
i
u
d
a
d
p
s
o
s
i
v
b
t
i
u

v
p
S
a
i
o
i
w
e
r
e
p
c

2

2

(

nputs influence the oscillation timing over multiple periods.
ther methods have been developed to understand the phase
esponse to arbitrarily large but slowly [14,15] or rapidly [16]
arying inputs. Iterated mapping techniques have also been pro-
osed to consider entrainment of strongly perturbed oscillators
o periodic inputs [17,18].

Generally, the phase reduction (2) begins to break down when
he magnitude of the applied input is large relative to the size
f the smallest magnitude Floquet exponent (which sets the
elaxation rate of perturbed solutions back to the limit cycle [19]).
arge inputs can drive the state far from the underlying limit cycle
o that the infinitesimal phase response curve, which depends
n the gradient of the phase with respect to the state evaluated
n the limit cycle, no longer provides an accurate approximation
f the true response to input. In these situations, amplitude-
ased effects must be considered in conjunction with the phase
ynamics. A variety of phase–amplitude coordinate systems have
een suggested in recent years [14,20–25]. The amplitude co-
rdinates can be used to characterize how the phase dynamics
hange as the state is perturbed from the limit cycle [26]. Ad-
itionally, asymptotic expansions of the phase dynamics in a
asis of amplitude coordinates can be helpful for obtaining re-
uced order equations that are valid for large magnitude inputs
27,28] and for considering phase locking between strongly cou-
led oscillators [25,29,30]. Phase–amplitude reduction techniques
ave shown great promise for identifying analytically tractable,
educed order models that are valid in the strongly perturbed
egime, however, implementation typically requires knowledge
f the underlying dynamical equations. Data-driven methods for
nference of phase–amplitude-based models are often numeri-
ally sensitive to measurement noise, especially when consider-
ng asymptotic expansions to high orders of accuracy, limiting
mplementation in many practical applications.

In this work, data-driven strategies for inference of the nec-
ssary terms comprising an adaptive phase–amplitude reduction
re considered. Introduced in [31], the adaptive phase–amplitude
eduction considers a collection of periodic orbits that results as
given parameter set changes. By actively updating the effective
ystem parameters in order to keep the amplitude coordinates
mall, a resulting reduced order model can be obtained that is
alid far beyond the weakly perturbed limit. In the implementa-
ion of this strategy, it is often useful to use isostable coordinates,
hich are formally defined as level sets of the slowest decaying
igenfunctions of the Koopman operator [32,33], to encode for
mplitude-based effects.
2

Through direct analysis of the equations that underlie the
daptive phase-isostable reduction, this work illustrates that all
ecessary terms can be inferred by simply measuring a set of
nfinitesimal phase and isostable response curves (for instance
sing the direct method or other previously established data-
riven strategies [23,34]). In other words, if infinitesimal phase
nd isostable response curves can be inferred accurately from
ata, the adaptive phase-isostable reduction can be readily im-
lemented which is generally substantially more accurate than
tandard phase reduction (2). Furthermore, all necessary terms
f the adaptive phase-isostable reduction can also be inferred
olely from a series of step function inputs, as opposed to pulsatile
nputs typically used for the direct method. By contrast, a pre-
iously proposed strategy from [35] required the application of
oth pulse and step function inputs to infer the necessary terms of
he phase-isostable reduction. The analysis provided in this work
llustrates that either step function inputs or pulse inputs can be
sed, and that they ultimately provide redundant information.
The organization of this paper is as follows: Section 2 pro-

ides necessary background on the phase, isostable, and adaptive
hase-isostable coordinate systems used throughout this work.
ection 3 gives a detailed analysis of the terms that comprise the
daptive phase-isostable coordinate reduction, ultimately show-
ng that all necessary terms can be determined with knowledge
f the infinitesimal phase response curve along with the infinites-
mal isostable response curve and Floquet exponent associated
ith each isostable coordinate. These relationships suggest an
fficient method for inference of the adaptive phase-isostable
educed order equations that require the same data as the well-
stablished direct method. Section 4 provides illustrative exam-
les for a collection of numerical models and Section 5 provides
oncluding remarks.

. Background

.1. Phase coordinates and phase reduction

Consider a general ordinary differential equation of the form
1). Suppose that for a constant choice of u = u0, Eq. (1) has a
stable T -periodic orbit xγu0 . Isochrons [2,36], which represent sets
of initial conditions that have the same asymptotic convergence
to the limit cycle, can be used to define phase for all states in
the basin of attraction of the limit cycle. More precisely, letting
θ be the phase corresponding to an arbitrary initial condition
1
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(0) ∈ xγu0 , the θ1 isochron, Γθ1 corresponds to the set of all b(0)
such that

lim
t→∞

∥a(t) − b(t)∥ = 0, (4)

where ∥ · ∥ can be any vector norm. Using isochrons defined
according to Eq. (4) allows for the definition of a phase θ (x, u0) ∈

[0, 2π ) for all states x ∈ xγu0 scaled so that dθ/dt = 2π/T = ω
under the flow of (1) when taking u = u0. Restricting one’s atten-
tion to a close neighborhood of the limit cycle, changing variables
yields the phase reduction that captures the phase dynamics for
inputs that differ from u0

dθ
dt

=
∂θ

∂x
·
dx
dt

=
∂θ

∂x
·

(
F (x, u0) +

∂F
∂u

(u − u0) + O(∥u − u0∥
2)

)
= ω(u0) + Z(θ, u0)(u − u0) + O(∥u − u0∥

2)

+ O(∥x − xγu0 (θ )∥
2), (5)

where Z(θ, u0) =
(
∂θ
∂x

)T ∂F
∂u with all partial derivatives evaluated

t x = xγu0 (θ ) and u = u0, the ‘dot’ denotes the dot product,
nd T indicates the vector transpose. In the final line of the
quation above, ∂θ

∂x · F (x, u0) = ω(u0) because θ̇ = ω(u0) when
u(t) = u0. Eq. (5) can be used to analyze the N-dimensional
Eq. (1) in terms of a 1-dimensional phase. However, note that the
truncation errors grow as both u − u0 and the distance from the
limit cycle increase. As such, Eq. (5) is only valid in the weakly
perturbed limit [1,2,4], i.e., when u−u0 = O(ϵ) where 0 < ϵ ≪ 1.
It can still be applied for systems with noninfinitesimal inputs,
but it is not guaranteed to match the behavior of the underlying
dynamical system (1) in this case. This point is highlighted in
Fig. 1.

2.2. Isostable coordinates and phase-isostable reduction

In order to improve the accuracy of the standard phase re-
duction from Eq. (5), information about the amplitude dynamics
must be considered. These amplitude dynamics generally re-
fer to the transient behavior in directions transverse to the
limit cycle. A variety of coordinate systems have been proposed
[21–23,25,28] that consider the amplitude dynamics. The isostable
coordinate framework, which encodes for level sets of the slow-
est decaying modes of the Koopman operator [32,37], will be
considered in this work. When restricting one’s attention to a
close neighborhood of the limit cycle, isostable coordinates have
a direct relationship with Floquet coordinates. Defining taking
u = u0 and defining ∆x = x − xγu0 (θ ), to a linear approximation

∆ẋ = J∆x, (6)

where J is the Jacobian evaluated at xγu0 (θ (t)). Let Φ denote the
monodromy matrix, i.e., with the relationship ∆x(T ) = Φ∆x(0).
If Φ is diagonalizable, near xγu0 solutions of (1) follow [28]

x − xγu0 (θ ) =

N−1∑
j=1

ψjg j(θ, u0) + O(ψ2
1 ) + · · · + O(ψ2

N−1). (7)

Above, each g j(θ, u0) is a Floquet eigenfunction associated with
the time varying linear Eq. (6), and ψ1, . . . , ψN−1 are isostable
coordinates associated with the periodic orbit xγu0 . For linear
time-varying systems, isostable coordinates are often referred
to as Floquet coordinates. In contrast to Floquet coordinates,
however, isostable coordinates can be defined in the entire basin
of attraction of the limit cycle as level sets of the most slowly
decaying eigenfunctions of the Koopman operator [32,38]; when
taking u = u to be constant, these isostable coordinates have
0

3

dynamics ψ̇j = κj(u0)ψj so that they decay exponentially. Above,
κj(u0) is the Floquet exponent associated with the jth isostable
coordinate for the periodic orbit xγu0 . Similar to Eq. (5), through
a change of variables one can consider the dynamics of any
isostable coordinate for inputs that differ from u0:
dψj

dt
=
∂ψj

∂x
·
dx
dt

=
∂ψj

∂x
·

(
F (x, u0) +

∂F
∂u

(u − u0) + O(∥u − u0∥
2)

)
= κj(u0)ψj + Ij(θ, u0)(u − u0) + O(∥u − u0∥

2)

+ O(∥x − xγu0 (θ )∥
2), (8)

or j = 1, . . . ,N − 1 where Ij(θ, u0) =
( ∂ψj
∂x

)T ∂F
∂u with all partial

derivatives evaluated at x = xγu0 (θ ) and u = u0. In the final line
above, ∂ψj

∂x ·F (x, u0) = κj(u0)ψj because ψ̇j = κj(u0)ψj when u(t) =

0. Truncating the higher order terms from Eq. (8), the phase
eduction from (5) can be augmented with isostable coordinates:

θ̇ = ω(u0) + Z(θ, u0)(u − u0),
˙ j = κj(u0)ψj + Ij(θ, u0)(u − u0),

j = 1, . . . ,N − 1. (9)

n many cases, a subset of the Floquet exponents will have large
agnitude real components so that the associated isostable co-
rdinates decay rapidly. Ignoring these rapidly decaying isostable
oordinates (assuming they are zero), β < N − 1 isostable coor-
inates can be considered in (9) yielding a reduced order set of
quations. Note that while Eq. (9) does take amplitude dynamics
nto account, it is still only valid in the weakly perturbed limit
nd generally breaks down when using large magnitude inputs.
he adaptive phase-isostable reduction strategy described in the
ollowing section can be used to overcome this limitation by
onsidering the dynamics in reference to a continuous family of
imit cycles.

.3. Adaptive phase-isostable reduction

Following the adaptive phase-isostable reduction formulation
onsidered in [31,35], one can consider an additional set of vari-
bles p ∈ RM in the same space as the inputs with dynamics
hat will be described momentarily. It will be assumed that when
is held constant, for some set of allowable p, the differential
quation ẋ = F (x, p) has a stable periodic orbit xγp . For each xγp ,
corresponding phase θ (x, p) and set of isostable coordinates
1(x, p), . . . , ψβ (x, p) can be defined. As discussed in [31], the
hase coordinates associated with each xγp (θ ) are unique up to a
onstant shift. These shifts can be explicitly defined, for instance,
sing a Poincaré section to correspond to a level set of the phases
etween limit cycles.
To proceed, one can rewrite Eq. (1) as

˙ = F (x, p) + Ue(x, u, p), (10)

here

e(x, u, p) = F (x, u) − F (x, p)

=
∂F
∂u

(u − p) + O(∥u − p∥2), (11)

here all partial derivatives are evaluated at x taking u = p.
n Eq. (10), F (x, p) represents the nominal behavior of the system
(1) when taking u = p. The term Ue(x, u, p) can be thought of
as an effective input. Using this formulation, let p be nonstatic.
Changing variables to work in a basis of phase and isostable
coordinates yields
d
θ (x, p) =

∂θ
·
dx

+
∂θ

·
dp
,

dt ∂x dt ∂p dt
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dt
ψj(x, p) =

∂ψj

∂x
·
dx
dt

+
∂ψj

∂p
·
dp
dt
,

j = 1, . . . , β,
dp
dt

= Gp(p, θ, ψ1, . . . , ψβ ), (12)

here Gp determines how p changes in time which will be con-
sidered more carefully momentarily. Eq. (12) can be simplified
by noting that ∂θ

∂x ·
dx
dt and each ∂ψj

∂x ·
dx
dt capture the phase and

sostable coordinate dynamics when p is held constant. As such,
hese terms are identical to those from Eq. (9). The remaining
erms can also be identified as described in [31] yielding the
daptive phase-isostable reduction

θ̇ = ω(p) + Z(θ, p)(u − p) + D(θ, p) · ṗ,
ψ̇j = κj(p)ψj + Ij(θ, p)(u − p) + Qj(θ, p) · ṗ,
j = 1, . . . , β,

ṗ = Gp(p, θ, ψ1, . . . , ψβ ). (13)

Above, D(θ, p) ∈ RM with the ith element is given by −
∂xγ
∂pi

·
∂θ
∂x

where ∂xγ
∂pi

|θ0,p ≡ lima→0(x
γ
p+eia(θ0) − xγp (θ0))/a, ∂θ∂x is evaluated

n reference to xγp , and ei is the ith component of the standard
nit basis. Likewise Qj(θ, p) ∈ CM with the ith element given by
∂xγ
∂pi

·
∂ψj
∂x where ∂ψj

∂x is evaluated in reference to xγp . Note that each
ψj can potentially take complex values so that Qj can also take
complex values. When using Eq. (13) to represent the phase and
isostable coordinate dynamics, Eq. (7) can be used to approximate
the state. More details about this derivation are provided in [31].

The primary sources of error in the standard phase reduction
(5) are associated with large deviations from the limit cycle and
the application of large inputs relative to the baseline value. The
variable p in Eq. (13) adds additional degrees of freedom that
can mitigate these errors. For instance, provided Gp from Eq. (13)
can be found so that ψ1(x, p), . . . , ψβ (x, p) remain small, x − xγp
will remain small, thereby limiting truncation errors that are
associated with being perturbed far from an underlying limit
cycle. General heuristics for the design of Gp are discussed in
[31]. In a specific situation where only one isostable coordinate
is necessary, p ∈ R1, and Qj(θ, p) is bounded away from 0 for all
θ and all allowable p, one can take

Gp = −
I1(θ, p)
Q1(θ, p)

(u − p), (14)

so that the isostable coordinate dynamics follow ψ̇1 = κ1(p)ψ1
nd hence can be ignored. This yields the resulting 2-dimensional
eduction

˙ = ω(p) + Z(θ, p)(u − p) −
D(θ, p)I1(θ, p)

Q1(θ, p)
(u − p),

ṗ = −
I1(θ, p)
Q1(θ, p)

(u − p). (15)

ore generally, one can also use

p = −νψ1Q (θ, p), (16)

here ν > 0 so that the isostable coordinate dynamics become
˙ 1 = (κ1(p) − νQ 2(θ, p))ψ1 + I1(θ, p)(u − p). In this case, Gp
effectively increases the decay rate of transients. Importantly, as
explained in [31], the adaptive phase-isostable reduction strat-
egy can be used to analyze the dynamics of (1) in a reduced
order setting without placing limitations on the magnitude of the
allowable inputs.

2.4. Operational phase coordinates

In much of this work, numerical approximations of infinites-
imal phase and isostable response curves will be obtained using
4

strategies similar to the direct method [2,9,10]. These strategies
are implemented by applying a small input at a known initial
phase and measuring the resulting changes in the phase and
isostable coordinates. The asymptotic phase is relatively straight-
forward to measure by allowing the state to relax back to the limit
cycle after the perturbation. Inference of isostable coordinates
(that capture transient behavior) is more difficult necessitating
the consideration of the operational phase described in [23]. This
coordinate system distinguishes between asymptotic phase, θ ,
defined according to the isochrons (4) and an operational phase,
θ∗, defined so that θ∗(x) = 0 every time the state crosses a
predefined Poincaré section.

The distinction between operational and asymptotic phase
coordinates is necessary because it is generally not possible to
precisely measure the asymptotic phase θ (x, p) for any x ̸∈ xγp . By
contrast, the precise timing of the crossing of the θ∗

= 0 level set
(i.e., Poincaré section) can always be determined once per cycle.
As discussed in Appendix D, a number of relations are available
that connect the operational phase to the asymptotic phase. For
instance, the reduced order dynamics can be accurately captured
using a single isostable coordinate ψ1, to linear orders of accuracy

t∗k = tk −
ψ1(tk)α1

ω(p)κ1(p)
, (17)

here t∗k is the timing of the kth crossing of the θ∗(x, p) = 0
level set, tk is the timing of the kth crossing of the θ (x, p) = 0
isochron, and α1 is an arbitrary scale factor (α1 = 1 will be used in
this work). Additionally, considering the Floquet eigenfunctions
from Eq. (7),

g(0, p) · n =
xγp

′
⏐⏐
θ=0 · n
κ1(p)

, (18)

here ′
≡ d/dθ and n is a unit vector normal to the Poincaré

section used to define θ∗
= 0. Finally, as discussed in [23],

features of the isostable coordinate dynamics can be inferred by
considering an initial condition that has been perturbed from its
limit cycle at xγp . For instance, in the case where there is a single
isostable coordinate, the associated Floquet exponent κ1 can be
btained according to

1(p) =
log(τn+1/τn)

T (p)
, (19)

where τi = t∗i+1 − t∗i −T (p). Note that when noise is present, each
τi used in the estimate of (19) must be taken soon after the initial
perturbation; otherwise the measurement of τn+1/τn in Eq. (19)
will be highly susceptible to the noise. Relations (17)–(19) will
be used in conjunction with the proposed model identification
strategy as described in Section 4. These equations are obtained
directly from results presented in [23] as shown in Appendix D.

3. Inference of adaptive phase-isostable reduced models from
first order accurate terms

The direct method [2,9,10] and related approaches [23,34]
have been previously proposed to infer Z(θ, p) and Ij(θ, p) from
(13) for a given xγp by considering the phase response to pulsatile
inputs. Ref. [35] suggests a similar strategy for finding D(θ, p)
and each Qj(θ, p) using step function inputs instead of pulses.
Alternatively, the derivation presented below illustrates that the
additional terms of the adaptive reduction D(θ, p) and Qj(θ, p) are
directly related to Z(θ, p) and Ij(θ, p), respectively. These relations
are obtained by first considering the shift of the periodic orbit
in response to a static perturbation using an isostable coordinate
basis.
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.1. Response to static perturbations using an isostable coordinate
asis

To begin, consider a periodic orbit xγp (θ ) of the general dy-
namical system (1) that results when holding u constant at the
value p. Considering the solution in a basis of phase and isostable
coordinates with dynamics governed by Eq. (9), the solution θ (t)
and ψj(t) in response to the static shift in input u(t) = p+ϵei can
e expanded in powers of ϵ where

θ (t) = θ0(t) + ϵθ1(t) + ϵ2θ2(t) + . . . , (20)

j(t) = ψj,0(t) + ϵψj,1(t) + ϵ2ψj,2(t) + . . . , (21)

or j = 1, . . . ,N −1. First considering the solution θ (t), substitut-
ing Eq. (20) in to Eq. (9) yields

θ̇0+ϵθ̇1+ϵ
2θ̇2+· · · = ω+ϵZ i(θ0(t)+ϵθ1(t)+ϵ2θ2(t)+· · · , p), (22)

where Z i is the ith component of Z . Note that the dependence of ω
on p has been suppressed for convenience of notation. Collecting
O(1) terms, θ̇0 = ω so that θ0(ωt) = θ (0) + ωt . For simplicity of
exposition, let θ (0) = 0. Continuing with the O(ϵ) terms

θ̇1 = Z i(ωt, p), (23)

o that

1(t) =

∫ t

0
Z i(ωs, p)ds + ci, (24)

here ci is a constant to be determined momentarily. Next
onsidering the isostable coordinates, substituting Eq. (21) into
q. (9) yields
˙ j,0 + ϵψ̇j,1 + · · · = κj(ψj,0(t) + ϵψj,1(t) + . . . ) + ϵI ij (θ0(t)

+ ϵθ1(t) + . . . , p), (25)

or j = 1, . . . ,N−1 where I ij is the ith component of Ij. Once again,
the dependence of κj on p has been suppressed for convenience
f notation. Collecting O(1) terms, ψ̇j,0 = κjψ̇j,0 so that ψj,0(t) =

j,0(0) exp(κjt) and limt→∞ ψj(t) = 0. Continuing with the O(ϵ)
erms
˙ j,1 = κjψj,1 + I ij (ωt, p)

= κjψj,1 + bi0,j +
∞∑

m=1

[
aim,j sin(mωt) + bim,j cos(mωt)

]
, (26)

here the aim,j and bim,j are the Fourier series coefficients of
i
j (ωt, p). After all transients have decayed Eq. (26) admits periodic
olutions of the form

i
j,1,ss(t) = −

bi0,j
κj

+

∞∑
m=1

[
−

aim,jκ sin(mωt)

κ2 + ω2m2 −
aim,jmω cos(mωt)

κ2
j + ω2m2

+
bim,jmω sin(mωt)

κ2
j + ω2m2

−
bim,jκj cos(mωt)

κ2
j + ω2m2

]
. (27)

With the above results in mind, next consider the expansions
or θ (t) and ψj(t) from Eqs. (20) and (21). For Eq. (20), to leading
order ϵ

θ (t) = ωt + ϵ

[∫ t

0
Z i(ωs, p)ds + ci

]
+ O(ϵ2), (28)

fter all transients have decayed, Eq. (21) becomes
i
j,ss(t) = ϵψ i

j,1,ss(t) + O(ϵ2). (29)

owards simplifying Eqs. (28) and (29) to find a periodic solution,
et Gi(ωt, p) = Z i(ωt, p) − Z̄ i(p), where Z̄ i(p) =

1
T

∫ T
0 Z i(ωs, p)ds.

Eq. (28) can be rewritten as

θ (t) = ωi t + ϵ
(
H i(ωt, p) + c

)
+ O(ϵ2), (30)
∆ i

5

where H i(ωt, p) =
∫ t
0 Gi(ωs, p)ds and ωi

∆ = ω + ϵZ̄ i(p). Consid-
ering Eq. (7) which relates the phase and isostable coordinates
to the state, substituting Eqs. (29) and (30) for the phase and
isostable coordinates (which gives the solution after all transients
have decayed), and neglecting O(ϵ2) terms, the periodic solution
esulting from the static shift in input is

γ
p+ϵei (ω

i
∆t) = xγp (ω

i
∆t + ϵH i(ωt, p) + ϵci) +

N−1∑
j=1

[
ϵgj

(
ωi
∆t

+ ϵH i(ωt, p) + ϵci, p
)
ψ i

j,1,ss(ωt)
]
. (31)

Taylor expanding xγp and each gj and ψ i
j,ss about ωi

∆t from the
above equation and neglecting O(ϵ2) terms ultimately yields

xγp+ϵei (θ ) = xγp (θ )+ϵx
γ
p

′(θ )(H i(θ, p)+ci)+
N−1∑
j=1

[
ϵgj(θ, p)ψ i

j,1,ss(θ )
]
,

(32)

where ′
≡ d/dθ and θ = ω∆t to leading order ϵ along the new

periodic orbit. The constant shift ci is related to the fact that each
xγp is unique up to a constant phase shift.

Eq. (32) gives an O(ϵ) accurate approximation for the shift in
the periodic orbit in response to a static change in parameters.
Note that Eq. (32) shares similarities with results from [39]. The
advantage here is that working in an isostable coordinate basis
allows for substantial simplification when considering the terms
of the adaptive phase-isostable reduction from (12) as illustrated
in Sections 3.2 and 3.3.

3.2. Inferring terms of the adaptive phase-isostable reduction with
only pulse inputs

Considering Eq. (32) and the definition of ∂xγ
∂pi

given under
Eq. (13), one can write

∂xγ

∂pi
= xγp

′(θ )(H i(θ, p) + ci) +

N−1∑
j=1

[
gj(θ, p)ψ i

j,1,ss(θ )
]
, (33)

where θ is the asymptotic phase. Toward identification of the
terms D(θ, p) and Qj(θ, p) from the adaptive phase-isostable re-
duction (13), as discussed in [27], ∂θ

∂x ·xγp
′
= 1 and ∂θ

∂x ·gj(θ, p) = 0
or all j, with all partial derivatives and functions evaluated at θ
n the xγp limit cycle. With this in mind, Di(θ, p) can be written
s

i(θ, p) = −
∂xγ

∂pi
·
∂θ

∂x
= −H i(θ, p) − ci. (34)

Likewise, as discussed in [27], ∂ψn
∂x · gj(θ, p) = 1 if j = n and 0

otherwise and ∂ψn
∂x · xγp

′
= 0. Using this result in conjunction with

Eq. (33) one finds

Q i
j (θ, p) = −

∂xγ

∂pi
·
∂ψj

∂x
= −ψ i

j,1,ss(θ ). (35)

ecall from Eq. (27) that ψ i
j,1,ss(θ ) is fully specified by the Fourier

coefficients of I ij (θ, p), ω, and κj; likewise, H i(θ, p) is fully specified
by Z i(θ, p). As such, with the exception of ci, the terms that
comprise (34) and (35) are uniquely determined with knowledge
of the first order accurate phase-isostable dynamics from (9). In
determining the value of the constant ci, recall that each xγp (θ )
is unique up to a constant phase shift in the implementation of
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he adaptive phase–amplitude reduction (13). To disambiguate
his constant phase shift, for instance, one can define a Poincaré
ectionΣ as an n−1 dimensional hyperplane and take θ (x, p) = 0
to correspond to the intersection of Σ and xγp for all p. With this
definition, xγp · n evaluated at θ = 0 is constant, where n is a
nit normal vector to Σ . Using this definition, starting with (32),
aking the dot product with n on both sides and rearranging one
finds

ci =
−

∑N−1
j=1

((
gj(0, p) · n

)
ψ i

j,ss(0)
)
−

(
xγp

′(0) · n
)
H i(0, p)

xγp
′(0) · n

. (36)

bove, H(0, p) and each ψj,ss(0) can be determined directly from
the infinitesimal phase and isostable response curves. In applica-
tions where only one isostable coordinate is required, gj(0, p) · n
can be determined according to Eq. (18). As such, by inferring
the first order accurate terms for a collection of periodic orbits
that comprise (7) and (9), the necessary terms of the adaptive
phase amplitude reduction from (13) are uniquely determined.
Note that each Di from Eq. (34) does not depend on the isostable
coordinates and each Q i

j from Eq. (35) only depends on the
dynamics associated with the ψj isostable coordinate. As such,
model order reduction that ignores the most rapidly decaying
isostable coordinates is still possible when computing D(θ, p) and
each necessary Qj(θ, p) using a reduced order isostable coordinate
basis.

3.3. Inferring terms of the adaptive phase-isostable reduction with
only step function inputs

As discussed in [35] it is possible to infer the terms D(θ, p)
and each Qj(θ, p) from Eq. (13) using step function inputs. For
instance, suppose u(t) = p + ϵh(t0)ei, where h is the Heaviside
step function and ei is the ith component of the standard unit
basis. Using this step function input and letting ṗ = eiδ(t0) where
δ is a delta function impulse, u − p = 0 at all times. As such, by
measuring the resulting change in the phase and isostable coor-
dinates, i.e., ∆θ and ∆ψj, respectively, one can obtain pointwise
estimate of Di(θ (t0), p) = ∆θ/ϵ and Q i

j (θ (t0), p)/ϵ. This process
can be repeated for multiple values of θ (t0) and subsequently for
different initial values of p allowing D(θ, p) and each Qj(θ, p) to
be fit to the resulting data.

Considering the results from Sections 3.1 and 3.2, it is also
possible to apply a series of step function inputs to infer D(θ, p)
along with each Qj(θ, p) and subsequently compute Z(θ, p) and
each Ij(θ, p). Starting with the inference of the infinitesimal phase
response curve, Z(θ, p), consider Eq. (34) after substituting θ =

ωt along the limit cycle:

Di(ωt, p) = −H i(ωt) − ci,

=

∫ t

0
−Z i(ωs, p) + Z̄ i(p)ds − ci. (37)

Taking the time derivative and rearranging yields

Z i(ωt, p) = −
d
dt

(
Di(ωt, p)

)
+ Z̄ i(p). (38)

s discussed elsewhere [39], to leading order the shift in fre-
uency is directly related to the average value of the infinitesimal
hase response curve, i.e., Z̄ i(p) ≈ (ω(p+ ϵei)−ω(p))/ϵ. Thus, an
stimate of Z(θ, p) from (13) can be obtained with knowledge of

both D(θ, p) and the shift in the natural frequency resulting from
a static shift in the parameters.

Next, for inference of the infinitesimal isostable response
curves, letting Q i(θ, p) = β i

+
∑

∞
[
αi sin(mθ ) + β i
j 0,j m=1 m,j m,j i

6

cos(mθ )] where αi
m,j and β

i
m,j are Fourier coefficients of Q i

j (θ, p),
and considering Eq. (35), after algebraic manipulation one finds

β i
0,j +

∞∑
m=1

[
αi
m,j sin(mθ ) + β i

m,j cos(mθ )
]

= −ψ i
j,ss

=
bi0,j
κj

+

∞∑
m=1

[aim,jκ sin(mθ )

κ2 + ω2m2 +
aim,jmω cos(mθ )

κ2 + ω2m2

−
bim,jmω sin(mθ )

κ2 + ω2m2 +
bim,jκ cos(mθ )

κ2 + ω2m2

]
, (39)

where the final line is obtained using Eq. (27). Subsequently,
equating Fourier coefficients in Eq. (39) yields

bi0,j = β i
0,jκj,[

aim,j
bim,j

]
=

[
κ mw

−mw κ

][
αi
m,j

β i
m,j

]
. (40)

Recall here that ak and bk are the Fourier series coefficients of
I ij (θ ) as defined below Eq. (26). Eq. (40) provides a direct relation-
ship between the Fourier coefficients of Q i

j (θ, p) and the Fourier
coefficients of I ij (θ, p) from Eq. (13).

3.4. Summary of analytical results

In summary, the adaptive phase-isostable reduction from
Eq. (13) is comprised of terms from the first order accurate phase-
isostable reduction from Eq. (9) (i.e., ω(p), Z(θ, p), and both Ij(θ, p)
and κj(p) for each nontruncated isostable coordinate) along with
the terms D(θ, p) and Qj(θ, p) for each nontruncated isostable
coordinate. As illustrated in the previous sections, the terms
D(θ, p) and Qj(θ, p) can be computed explicitly with knowledge
of ω(p), Z(θ, p), Ij(θ, p), and κj(p). Additionally, Z(θ, p) and Ij(θ, p)
an be computed explicitly with knowledge of ω(p), D(θ, p),
Qj(θ, p), and κj(p). As such, a direct method approach for the
computation of these necessary terms can be implemented in one
of the following two ways:

(1) Using pulsatile inputs, the resulting changes to the phase
and isostable coordinates can be inferred using strategies
similar to the direct method [23,34]. Subsequently, Z(θ, p)
and each Ij(θ, p) with associated κj(p) can be determined
for a collection of periodic orbits xγp . The remaining terms
D(θ, p) and each Qj(θ, p) can be determined according to
Eqs. (34) and (35), respectively.

(2) Using step function inputs the resulting changes to the
phase and isostable coordinates can be inferred using strate-
gies similar to the direct method [23,34]. Subsequently,
D(θ, p) and each Qj(θ, p) with associated κj(p) can be deter-
mined for a collection of periodic orbits xγp . The remaining
terms Z(θ, p) and each Ij(θ, p) can be determined according
to Eqs. (38) and (40), respectively.

hen using either strategy 1 or 2 above, ω(p) can be inferred
rom the unperturbed natural period. Fig. 2 provides a schematic
easoning for the theoretical results from Section 3.

The computational results to follow in Section 4 illustrate
oth of these model identification approaches for a collection of
umerical models. Results from Sections 4.2 and 4.3 use strategies
and 2, respectively, but either strategy could be implemented
n both of these applications.
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Fig. 2. A schematic reasoning for the theoretical results from Section 3. For a general dynamical system with a stable limit cycle xγp , the shape of the limit cycle will
change with static shifts to the parameter pi (Panel A). In the limit that the change in the parameter pi is small, the change in the periodic orbit is proportional to
∂xγ
∂pi

(Panel B). At all values of θ , ∂x
γ

∂pi
can be decomposed as a linear combination of xγ ′

p (θ ), g1(θ, p), . . . , gN−1(θ, p) (panels C1 through C3). The resulting coefficients
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N−1(θ, p) (Panels D1 through D3). Ultimately, as shown in
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4. Numerical illustration

4.1. Illustration in a simple dynamical model with an analytical
solution

The derived relationships (34), (35), (38), and (40) are illus-
trated for a simple dynamical model

ẋ = σx(µ2(t) − r2) − y(1 + η(r2 − µ2(t))),

ẏ = σy(µ2(t) − r2) + x(1 + η(r2 − µ2(t))). (41)

Here, x and y are state variables representing Cartesian coordi-
nates, r = x2 + y2, σ and η are model parameters, and µ is a
bifurcation parameter. Stable oscillations emerge resulting from a
Hopf bifurcation when taking µ > 0. Here, µ will also be consid-
ered as a control input. For constant values of µ, Eq. (41) admits
stable periodic solutions xγµ(t) = [µ cos(t), µ sin(t)]T . Because
Eq. (41) is two-dimensional, each periodic orbit has one isostable
(amplitude) coordinate. Analytic solutions for the reduced order
equations associated with Eq. (41) can be obtained as described
below.

To begin, the gradient of the phase can be obtained by find-
ing appropriately normalized periodic solutions of the adjoint
Eq. (C.1). For this model, these solutions are [dθ/dx, dθ/dy] =

[η cos(t)/σµ − sin(t)/µ, η sin(t)/σµ + cos(t)/µ]. Additionally,
∂F
∂µ

= [2µ2(η sin(t) + σ cos(t)), 2µ2(σ sin(t) − η cos(t))]T . Di-
rectly computing the infinitesimal phase response curve using the
relation provided just below Eq. (5),

Z(θ, µ) =

[
dθ
dx
,
dθ
dy

]
∂F
∂µ

= 0. (42)

urthermore, ∂xγµ
∂µ

= [cos(t), sin(t)]T so that using the relation
provided just below Eq. (13)

D(θ, µ) = −
∂xγ

∂µ

T [
dθ
dx
,
dθ
dy

]
= −

η

µσ
. (43)

otice that Eq. (38) holds for Z(θ, µ) and D(θ, µ) above, i.e., that
dD

= 0 so that Z(θ, µ) must be a constant. Because the frequency
dt (

7

does not depend on µ, the right hand side of Eq. (38) is zero
yielding the correct infinitesimal phase response curve. Similarly,
it is straightforward to verify that Eq. (34) holds here.

Continuing for the isostable coordinate dynamics, in radial
coordinates, Eq. (41) becomes

ṙ = σ (µ(t)2 − r2)r,

˙ = 1 + η(r2 − µ(t)2), (44)

here v = arctan(y/x). These radial dynamics are decoupled from
he angular dynamics with the analytical solution.

(t) =
µ exp(µ2(α1 + σ t))√
exp(2µ2(α1 + σ t)) + 1

, (45)

alid for µ > 0 where α1 is a constant determined by the initial
ondition. In the limit as time approaches infinity, Eq. (45) is
ell approximated by r(t) − µ = α2 exp(−2µ2σ t) where α2 is a
onstant that depends on initial conditions. As such, the Floquet
xponent is κ1(µ) = −2µ2σ . Eq. (C.2) admits periodic solutions
f the form [dψ1/dx, dψ1/dy] = [cos(t), sin(t)]. Taking µ(t) as the
nput, one finds

I1(θ, µ) =

[
dψ1

dx
,
dψ1

dy

]
∂F
∂µ

= 2µ2σ ,

Q1(θ, µ) = −
∂xγ

∂µ

T [
dψ1

dx
,
dψ1

dy

]
= −1, (46)

here I1 is defined below Eq. (9) and Q1 is defined below Eq. (13).
Once again, the relationship (40) mandates that I1(θ, µ) = −κ1 =

µ2σ as expected. It is also straightforward to verify that Eq. (35)
olds. With knowledge of the terms of the adaptive reduction,
ne can use (15) to represent Eq. (41) as

˙ = 1 + 2ηp(p − µ(t)),

ṗ = 2p2σ (µ(t) − p). (47)

otice that Eq. (47) shares similarities with the polar form of the
odel Equations from (44), but is not identical.
Fig. 3 gives a comparison between the adaptive model from

47) and the phase-isostable-based model of the form (9). Note



D. Wilson Physica D 446 (2023) 133675

√

Fig. 3. Simulations of the simple model from (41) are compared to the adaptive model equations (47) and the phase-isostable-based Eqs. (9). Panel A shows traces
of x(t) in response to the input µ(t) from panel C. The corresponding 2-norm of the error is shown in panel B. Panel C also compares the parameter, p, to the actual
input, µ, over the course of the simulation.
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neither of these are reduced order models since the dimension
of each is still two. Outputs of each transformed model are
approximated according to (7). The terms of the phase-isostable
reduction are computed according to their values for µ = 4.
Panel A of Fig. 3 shows the state x(t) in response to the input
µ(t) = 4+ 4 sin(0.5t + 0.15t2). Panel B shows the corresponding
error as the 2-norm of [x(t) − x̂(t), y(t) − ŷ(t)] where x(t) and
y(t) is the output from the true model equations (41) and x̂(t)
and ŷ(t) are the approximations from the indicated model. The
adaptive model agrees much better with the true model simu-
lations. Panel C compares the input µ(t) to the value of p(t) for
the adaptive model. Results are qualitatively similar when using
different inputs of similar magnitude (not shown).

4.2. Illustration in a noisy model of a tonically firing neuron

Here, the proposed model identification algorithm is illus-
trated using the Wang–Buzsaki model of neural spiking behav-
ior [40],

CV̇ = −gNam3
∞
h(V − ENa) − gKn4(V − EK ) − gL(V − EL)

− iw + ib(t) +

√
2ζχ (t),

ḣ = γ [αh(V )(1 − h) − βh(V )h] ,
ṅ = γ [αn(V )(1 − n) − βn(V )n] ,

ẇ = a(1.5/(1 + exp((b − V )/k)) − w). (48)

Above, V represents the transmembrane voltage, h and n are
gating variables, ib(t) is a baseline current (in µA/cm2), and
2ζχ (t) is zero-mean Gaussian noise with intensity ζ = 0.2.

Here, the dynamical equations have been augmented with an
adaptation current [41], iw = gww(V −EK) where gw = 2 mS/cm2

and Ek = −90 mV. A full description of the model equations and
parameters is given in Appendix A.

The baseline current ib is taken to be an input. Writing Eq. (48)
in the same form as Eq. (10) yields Ue(x, ib(t), p) =[
(ib(t) − p) 0 0 0

]T where x =
[
V h n w

]T . For con-
stant values of ib ∈ [4, 20] µA/cm2, the neuron is in a periodically
firing regime with period T ∈ [3.8, 14.3]. Here, larger baseline
currents correspond to shorter unperturbed periods. For any x on
the periodic orbit xγ , an action potential is defined to occur at the
ib

8

moment the transmembrane potential crosses 0 with a positive
slope. Here, the crossing of this V = 0 Poincaré section is taken
to correspond to the θ = 0 level set for all periodic orbits.

4.2.1. Direct method inference of infinitesimal phase and isostable
response curves using pulsatile inputs

A model of the form (13) with a single isostable coordinate
will be inferred from noisy simulations of (48) using a slight
modification of the direct method [9,10] to compute Z(θ, ib), κ(ib),
and I1(θ, ib) associated with xγib for ib ∈ [4, 20]. This approach
employs an operational phase–amplitude coordinate system [23].
For a given choice of θ0 and i0 pulse inputs of the form

ib(t) =

⎧⎨⎩
i0 +∆i, ts + θ0

T (i0)
2π < t < ts + θ0

T (i0)
2π +∆t and

ts < tmax,

i0, otherwise,
(49)

are applied where ts denotes the timing of the most recent action
potential, ∆i corresponds to the magnitude of a pulse input
lasting ∆t time units, and tmax sets the duration of series of pulse
trains. Fig. 4 highlights the pulsing protocol mandated by Eq. (49).
Assume that tmax is chosen to be large enough so that the effect of
initial conditions dies out, during the application of pulse inputs
kth interspike interval will be

t∗k+1 − t∗k = tk+1 − tk −
α1

ωκ1
(ψ1(tk+1) − ψ1(tk))

= tk+1 − tk. (50)

erivation of the above equation uses Eq. (17) along with the fact
hat ψ1(tk+1) = ψ1(tk) in steady state. As such, the kth interspike
nterval corresponds to the time between subsequent crossings
f the θ = 0 isochron. Note that in the above equation, the
ependence of κ1 and ω on i0 is suppressed for convenience of
otation. Considering the form of the reduced order Eq. (13) with
= i0 held constant, in steady state, the change in phase resulting

rom the pulse occurring on each cycle is well approximated by
θ ≈ Z(θ0, i0)∆i∆t . The difference in the interspike interval
ill be t∗k+1 − t∗k = tk+1 − tk = T (i0)(1 − ∆θ/2π ) so that a
ointwise estimation of the infinitesimal phase response curve
an be obtained according to

(θ0, i0) ≈ −
2π

(dt∗ − T (i0)), (51)

T (i0)∆i∆t
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Fig. 4. Illustration of the pulsing protocol from Eq. (49) used to obtain estimates of Z(θ0, i0) and I1(θ0, i0). A series of pulses are applied for t < tmax with the last
ulse being applied at tp . Action potentials that occur before tp are used to obtain a pointwise estimate of Z(θ0, i0) according to Eq. (51). Action potentials that occur
fter tp are used to obtain a pointwise estimate of I1(θ0, i0) according to Eq. (55). This procedure is repeated for multiple values of θ0 and i0 and the infinitesimal
hase and isostable response curves are fit to the data.
Fig. 5. Terms of the adaptive phase-isostable reduction from Eq. (13) for the xγib periodic orbit taking ib = 12 µA/cm2 . Open circles in panels A and D are obtained
ccording to Eqs. (51) and (55), respectively. Infinitesimal phase and isostable response curves are fit using a Fourier series basis and shown as solid lines. Panels B
nd E compare the Fourier series fits to the data (thick black lines) to the true infinitesimal phase and isostable response curves (thin black lines) obtained from
eriodic solutions to Eqs. (C.1) and (C.2), respectively. Panels C and F show D(θ ) and Q (θ ) inferred from relations given in Section 3.2 using the infinitesimal phase
nd isostable response curves obtained from the direct method (thick black lines). These are compared to the true values (thin black lines).
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here dt∗ =
1
N

∑N
k=1

(
t∗k+1 − t∗k

)
is taken as the average of the N

preceding interspike intervals in order to average out the effects
of noise. To infer pointwise estimates of the infinitesimal isostable
response curve, one can consider the decay back to the limit cycle
after the pulses stop. Letting tp be the moment immediately after
the final pulse is applied, as discussed in [23], each subsequent
action potential occurs when

2πn = θ∗(tp) + ω(t∗p,n − tp) +
ψ(tp)
κ1

exp(κ1(t∗p,n − tp) − 1), (52)

s satisfied, where t∗p,n is the nth spike after the final pulse input
s applied. Comparing the first and the nth spikes after the final
ulse is applied, one finds

1(tp) =
κ1

(
2π (n − 1) − ω(t∗p,n − t∗p,1)

)
exp(κ1(t∗p,n − tp)) − exp(κ1(t∗p,1 − tp))

. (53)

Once again, considering the isostable coordinate dynamics of the
reduced order Eq. (13) with p = i0 held constant, immediately
after each pulse is applied,

ψ1(tp) ≈ I1(θ0, i0)∆i∆t + ψ1(tp) exp(κ1dt∗), (54)

here approximate equality comes from the fact that the effect
f initial transients have died out so that the isostable coordinate
mmediately preceding the previous pulse is identical to ψ1(tp)
nd dt∗ is used in order to average out the effects of noise. Rear-
anging yields pointwise estimates of the infinitesimal isostable
esponse curve

1(θ0, i0) ≈
ψ1(tp)(1 − exp(κ1dt∗))

, (55)

∆i∆t

9

where ψ1(tp) is computed according to from Eq. (53). Finally, as
discussed in [23] using the same time series data, a representative
estimate of κ1(p) can be obtained according to (19).

.2.2. Reduced order model validation
Infinitesimal phase response curves are approximated ac-

ording to the strategy described in Section 4.2.1 taking ib ∈

[4, 20] µA/cm2. Results are shown in Fig. 5 for the curves
obtained for the xγib periodic orbit taking ib = 12 µA/cm2. Open
ircles in panels A and D are obtained according to Eqs. (51)
nd (55), respectively. The spread in the data is a result of the
aussian noise in the system Eqs. (48). This data is fit to the
ourier series basis

∑2
n=0[an sin(nθ ) + bn cos(nθ )] with resulting

urves shown in black. Panels B and E compare these Fourier
eries fits to the infinitesimal phase and isostable response curves
btained using the adjoint method of solution described in Ap-
endix C. Note that the adjoint equations are solved taking the
oise intensity to be ζ = 0 and represent the true values of
he infinitesimal phase and isostable response curves. The thick
lack line in Panel C (resp., panel F) shows the value of D(θ )

(resp., Q1(θ )) inferred according to Eq. (34) (resp., Eq. (35)) using
the data obtained from the direct method. Thin black lines in
panels C and F are computed directly according to the relations
given under Eq. (13). The curves obtained according to the direct
method accurately identify low frequency components of each
curve. The Floquet exponent associated with these curves is
inferred using Eq. (19) to be κ1(12) = −0.054 compared to the

true value of −0.042. This mismatch ultimately contributes to the
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r

Fig. 6. Panels A, B, and C compare transmembrane voltage outputs for the full neural model simulation from Eq. (48) (blue), adaptive reduction (red), and phase-only
eduction (yellow) in response to the inputs ib(t) from panels G, H, and I, respectively. Panels D, E, and F show the error between these full and reduced order
simulations over time. The horizontal dashed line at θred − θact = 0 is shown for reference. Green lines in panels G, H, and I show traces of the adaptive parameter
p(t) over the course of simulations of the adaptive reduction. For slower varying inputs, the adaptive parameter p(t) follows ib(t) more closely.
vertical offset between the true curves and the curves obtained
from noisy data. Results shown in Fig. 5 are representative of
the results obtained when taking different constant values for
periodic orbits xγib for different choices of ib. Despite the fact
that the direct method does not perfectly identify the terms
comprising the adaptive phase-isostable reduced order Eqs. (13),
the resulting model still accurately captures the response to
general inputs as shown in the results below.

Outputs from both the adaptive phase-isostable reduction
from Eq. (13) and the phase-only reduction of the form (5)
are compared to full model simulations using sinusoidal in-
puts with different frequencies. Results are shown in Fig. 6. For
the adaptive reduction, the update rule ṗ = Gp(ib, θ, ψ1) =

−1000(Q1(θ, ib)ψ1) and is of the same form as (16). The output
V (t) is taken to be V γp (θ (t)), that is, the voltage corresponding
to θ (t) on the xγp periodic orbit. The phase-only reduction uses
infinitesimal phase response curves associated with the periodic
orbit that results when taking ib = 10 µA/cm2. Panels A, B,
and C, show the transmembrane voltage output for each model
and panels D, E, and F show the resulting difference between
the phase from the reduced order model, θred, and the full order
simulation, θact, in response to the inputs ib(t) in panels G, H, and
I, respectively. Note that panels D, E, and F, only show discrete
measurements because the phase of the full order simulations
can be measured once per cycle when the neuron fires an action
potential (thereby crossing the θ = 0 level set). Also, while
the reduced order models were inferred using noisy data, the
simulations from Fig. 6 take the noise intensity to be ζ = 0
in order to compare the accuracy of the reduced order and full
order models without the confounding influence of noise. For
each of the trials shown in Fig. 6 the adaptive reduction accurately
reflects the timing of action potentials for the full order model
while the accuracy of the phase-only model tends to degrade over

time.

10
4.3. Illustration in a model for the mammalian circadian clock

Here, the proposed model identification strategy is illustrated
for a 16-dimensional computational model for the mammalian
circadian clock comprised of interacting regulatory loops associ-
ated with Per, Cry, Bmal1 and Clock genes [42]. Full dynamical
equations are given in Appendix B. The influence of light is
included by modulating vsP , which sets the maximum the rate of
Per expression; vsP is chosen as the input in the implementation
of the adaptive phase-isostable reduction (13). Here, vsP = 1.2
nM/h is considered a state of total darkness and vsP = 1.8 nM/h
corresponds to a maximum level of brightness. Colored lines in
Panel A of Fig. 7 shows periodic orbits that result for values
vsP ∈ [1.2, 1.6]. Note that while the full model has 16 state
variables, only the mRNA concentrations of Per, Cry and Bmal1
(MP , MC , and MB, respectively) are plotted here. Each periodic
orbit has an unperturbed period T (vsP ) ∈ [23.7, 24.2]. In panel
A the black line shows an example trajectory starting on the
periodic orbit that results when taking vsP = 1.2 nM/h. Over the
course of the simulation, vsP is elevated to 1.8 nM/h for a duration
of 60 h. The resulting trajectory quickly leaves the vicinity of
the vsP = 1.2 nM/h orbit, traveling closer to other orbits over
the course of the simulation. Panels B and C highlight that the
response of the phase and isostable coordinate to small step
function perturbations is substantially different for each orbit
indicating that the standard first order accurate phase reduction
(5) will be unable to accurately capture the effects of these inputs.

For implementation of the adaptive phase-isostable reduced
Eqs. (13), θ = 0 for each orbit corresponds to the moment that
the trajectory crosses Poincaré section for which MP = 1 nM
with a positive slope. Methods from [23] can be used to infer the
terms D(θ, vsP ) and Q1(θ, vsP ) from time series data assuming that
traces of M (t) can be accurately recorded. Note that this model
P
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Fig. 7. Colored traces in Panel A show periodic orbits xγvsP that emerge for different choices of vsP (in nM/h). The black line highlights a trajectory starting from an
nitial condition on the vsP = 1.2 nM/h orbit and subsequently elevating vsP to 1.8 nM/h for 60 h. The perturbed trajectory does not stay close to any single orbit
over the course of the simulation. Panels B and C illustrate how D(θ, vsP ) and Q1(θ, vsP ) change for different periodic orbits color coded according to the associated
value of vsP . The dots represent individual approximations using the direct method calculated according to Eqs. (57) and (58) and this data is fit to a Fourier series
basis.
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identification procedure could be implemented using a different
observable provided the Poincaré section that defines θ = 0 is
defined appropriately.

4.3.1. Direct method inference of reduced order model terms using
step function inputs

A model of the form (13) with a single isostable coordinate
will be inferred from simulations of the circadian model from
Appendix B in response to step function inputs. In contrast to the
previous example, D(θ, vsP ) and Q1(θ, vsP ) will be approximated
using the direct method and subsequently used to infer the terms
of Z(θ, vsP ) and I1(θ, vsP ) according to Eqs. (38) and (40), respec-
tively. To implement the direct method, consider an initial state
x0 ∈ xγvsP,0 with a phase θ (x0, vsP,0) = θ0. Such an initial condition
can be obtained by holding vsP at vsP,0 long enough for transients
to decay. Letting

vsP (t) = vsP,0 + h(tp)∆p, (56)

where h(t) is the Heaviside step function, the curve D(θ0, vsP,0)
can be approximated according to

D(θ0, vsP,0) ≈
2πn − θ0 − ω(t∗p,n − tp)

∆p
, (57)

here t∗p,i is the ith crossing of the Poincaré section that defines
= 0 after step function input is applied. In Eq. (57), n must be

chosen large enough so that x(t∗p,n) is close to xγvsP,0+∆p. Likewise,
with the approximation Q1(θ, vsP,0) ≈ ∆ψ1/∆p and considering
Eq. (53), one finds

Q1(θ, vsP,0) ≈
κ1(2π (n − 1) − ω(t∗p,n − t∗p,1))

∆p(exp(κ1(t∗p,n − tp)) − exp(κ1(t∗p,1 − tp)))
. (58)

ote that in Eqs. (57) and (58), κ1 and ω correspond to the Floquet
xponent and natural frequency associated with the xγvsP,0+∆p
rbit. These equations can be used to provide pointwise approxi-
ations for D(θ, p) and Q1(θ, p) and a periodic function can be fit

o the data. For each trial using the step function input from (56),
n estimate of κ1(vsP,0+∆p) can be obtained according to Eq. (19)
y considering the relaxation to the periodic orbit xγvsP,0+∆p after
he step function input that occurs at t .
p

11
4.3.2. Reduced order model validation
Eqs. (57) and (58) are used to approximate D(θ, vsP ) and

Q1(θ, vsP ) with results shown as open circles in panels B and C
of Fig. 7. Associated infinitesimal phase and isostable response
curves are inferred using Eqs. (38) and (40) and shown as solid
lines in Fig. 8 for different choices of vsP . Open circles repre-
sent ground truth measurements and are obtained from sim-
ulations using the direct method with pulsatile perturbations
instead of step function inputs. For simulations of the adaptive
phase-isostable reduced order equations, the update rule ṗ =

Gp(p, θ, ψ1) = −108(Q1(θ, p)ψ1) is of the same form as (16). For
imulations of the standard phase reduced Eq. (5), infinitesimal
hase response curves associated with the periodic orbit for
hich vsP = 1.2 nM are used. For different initial conditions that
orrespond to different phases on the vsP = 1.2 nM periodic orbit,
ig. 9 compares the predicted and actual phase shifts that result
hen taking vsP (t) = 1.2+0.3(h(0)−h(L)) nM. Here where L sets
he duration of the pulse in vsP . Panels A, B, and C show a single
rial taking L = 24 hours with an initial condition of θ = 0. Traces
of MP (t) are shown in panel A. In response to the pulse, there is
a slight mismatch in the timing of the outputs between the full
model and the adaptive phase-isostable reduced order model; the
phase-only reduction does not accurately reflect the response to
the pulse. For the adaptive reduction, panel B shows the trace
of p(t) that results for the input shown in panel C. Panels D-G
give representative results for initial conditions associated with
different phases and for inputs of different duration. Here, ∆θ ≡

θa − θe where θa is the phase resulting from the perturbation and
θe is the phase that would have resulted had the perturbation
not been applied. For short duration pulses, both the adaptive
reduction and phase reduction strategies accurately predict the
resulting phase shift. As the duration of the applied pulse is
increased, the adaptive reduction strategy provides substantially
more accurate results than the phase reduced equations.

5. Discussion and conclusion

Reduced order models based on the recently proposed adap-
tive phase-isostable reduction (13) are generally more accurate
than models that use either standard phase reduction (2) or
phase-isostable reduction (9) when large magnitude inputs are



D. Wilson Physica D 446 (2023) 133675

p

a
m
i
a
s

u
e
w
g
s

e
p
u
p
t
w

Fig. 8. Solid lines in each panel show infinitesimal phase and isostable response curves from (13) inferred using only information about D(θ, vsP ) and Q1(θ, vsP ) from
anels B and C of Fig. 7. Open circles represent ground truth datapoints obtained using Eq. (3) with pulse inputs.
Fig. 9. For the circadian model, the input vsP is elevated from 1.2 nM (corresponding to total darkness) to 1.5 nM (corresponding to a moderate light intensity) for
finite duration of time. Panel A shows the response to a 24 h duration pulse simulated using the adaptive reduction (13), phase-only reduction (5), and the full
odel equations (B.1)–(B.16). For the simulation from panel A, Panel B shows the time course of the variable p from the adaptive reduction and the associated input

s shown in Panel C. Panels D-G aggregate results for different initial conditions (with different phases, θ ) and for different pulse durations. On balance, both the
daptive reduction and phase reduction accurately predict the phase shift for short duration pulses in vsP . For long duration pulses, the adaptive reduction approach
ubstantially outperforms the standard phase reduction.
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sed. This work details a data-driven strategy to infer the nec-
ssary terms of the adaptive phase-isostable reduction from (13)
hich overcomes the limitations of these other reduction strate-
ies highlighted in Fig. 1, i.e., that they do not accurately reflect
ystem behavior when large magnitude inputs are applied.
The important implication from this work is that for a gen-

ral system, provided it is possible to apply a series of either
ulse inputs or step inputs and examine the relaxation to the
nderlying limit cycle, then it is also possible to obtain adaptive
hase-isostable reduced order models of the form (13). As such,
he proposed strategy requires no more information than the
ell-established direct method [2,9,10] and yields substantially
12
more accurate reduced order models. By considering the change
in the periodic orbit in response to static parameter perturbations
in a basis of phase and isostable coordinates, the term of D(θ, p)
can ultimately be written as an explicit function of the infinites-
imal phase response curve Z(θ, p) using Eq. (34). Likewise, each
j(θ, p) can be written as an explicit function of the associated
nfinitesimal isostable response curve Ij(θ, p) using Eq. (35). In
ontrast to the approach suggested in [35], all the necessary terms
f adaptive phase-isostable reduced equations can be obtained
y either applying pulse inputs or step function inputs; using
oth types of inputs is not required and provides redundant
nformation.
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The proposed strategy is illustrated for three different models.
In Section 4.1, a simple model with analytic solutions is consid-
ered to verify the derived relationships between the terms of
the adaptive phase-isostable reduction. In Section 4.2, a series
of pulse inputs is applied to infer the terms of the adaptive
phase-isostable reduction in a conductance-based model neuron
subject to noise in the transmembrane voltage variable. Sec-
tion 4.3 considers only step function inputs to determine these
terms for a computational model of the mammalian circadian
clock. In each case, the adaptive reduction is substantially better
at capturing the response to large magnitude inputs than the
phase-only reduction.

The model identification strategy presented here relies on
the adaptive phase-isostable reduction methodology. As such, it
inherits the same limitations. For instance, it is only valid in
regimes where the underlying model equations have oscillatory
dynamics and cannot accommodate critical points of bifurcations
in the allowable parameter sets. Additionally, the design of an
appropriate parameter update rule Gp is not always straightfor-
ward when multiple isostable coordinates are considered. Also,
the terms from the reduction from Eq. (13) must vary contin-
uously with respect to both θ and p. As such, the underlying
system equations must have a sufficient degree of smoothness.
Additional limitations of the adaptive phase-isostable reduction
strategy are discussed in [31].

As a matter of practical implementation, there is still much
room for improvement in strategies for inference of the infinites-
imal phase and isostable response curves. For instance, the model
inference strategies described in Sections 4.2.1 and 4.3.1 do not
give perfect approximations of the required response curves and
Floquet exponents. These approximation issues are compounded
in noisy environments where there must be a balance between
using an input that is large enough discern a signal from the noisy
data, but not so large as to drive the state too far away from the
underlying limit cycle thereby invalidating the weak perturbation
assumption. The development of more accurate strategies for
data-driven inference of phase-isostable reduced order models of
the form (9) would greatly benefit the adaptive phase-isostable
model identification strategies presented here.
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Appendix A. Wang–Buzsaki model equations

Equations governing the Wang–Buzsaki model [40] considered
in Section 4.2 are given below:

CV̇ = −gNam3
∞
h(V − ENa) − gKn4(V − EK ) − gL(V − EL) − iw + ib,

ḣ = γ [αh(V )(1 − h) − βh(V )h] ,
ṅ = γ [αn(V )(1 − n) − βn(V )n] ,

ẇ = a(1.5/(1 + exp((b − V )/k)) − w). (A.1)
13
Above, V represents the transmembrane voltage and h and n are
ating variables. This model is augmented with an adaptation
urrent [41], iw , which is governed by the variable w. The baseline
current, ib, is chosen as the adaptive variable p. The membrane
capacitance, C = 1 µF/cm2. Auxiliary equations are

m∞(V ) = αm(V )/(αm(V ) + βm(V )),
βn(V ) = 0.125 exp(−(V + 44)/80),
αn(V ) = −0.01(V + 34)/(exp(−0.1(V + 34)) − 1),
βh(V ) = 1/(exp(−0.1(V + 28)) + 1),
αh(V ) = 0.07 exp(−(V + 58)/20),
βm(V ) = 4 exp(−(V + 60)/18),
αm(V ) = −0.1(V + 35)/(exp(−0.1(V + 35)) − 1).

eversal potentials and conductances are taken to be ENa =

5 mV, EK = −90 mV, EL = −65 mV, gNa = 35 mS/cm2, gK =

mS/cm2, gL = 0.1 mS/cm2. γ = 5 influences the rate of change
f the gating variables. The adaptation current is given by

w = gww(V − EK).

arameters associated with the adaptation current are a =

.02 m s−1, b = −5 mV, k = 0.5 mV, gw = 2 mS/cm2.

ppendix B. Circadian model equations

The equations for the circadian model considered in Sec-
ion 4.3 were presented in [42]. The model contains 16 variables.
he mRNA concentrations of Per, Cry, and Bmal1 are denoted
y MP , MC , and MB, respectively. Phosphorylated (resp. nonphos-
horylated) Per and Cry proteins in cytosol are denoted by PCP
nd CCP (resp., PC and CC ). Concentrations of Per-Cry complex
n cytosol and nucleus are denoted by PCC , PCN , PCCP , and PCNP ;
oncentrations of BMAL1 in cytosol and nucleus are denoted
y BC , BCP , BN , and BNP . Here, the subscripts C , N , CP and NP
enote cytosolic, nuclear, cytosolic phosphorylated, and phos-
horylated forms, respectively. Finally, IN denotes the inactive
omplex between Per-Cry and Clock-Bmal1 in the nucleus.
The model equations that govern the dynamics are:

ṀP = vsP (t)
Bn
N

K n
AP + Bn

N
− vmP

MP

KmP + MP
− kdmpMP , (B.1)

ṀC = vsC
Bn
N

K n
AC + Bn

N
− vmC

MC

KmC + MC
− kdmcMC , (B.2)

ṀB = vsB
Km
IB

Km
IB + Bm

N
− vmB

MB

KmB + MB
− kdmbMB, (B.3)

ṖC = ksPMP − V1P
PC

Kp + PC
+ V2P

PCP
Kdp + PCP

+ k4PCC − k3PCCC − kdnPC , (B.4)

ĊC = ksCMC − V1C
CC

Kp + CC
+ V2C

CCP

Kdp + CCP

+ k4PCC − k3PCCC − kdncCC , (B.5)

ṖCP = V1P
PC

Kp + PC
− V2P

PCP
Kdp + PCP

− vdPC
PCP

Kd + PCP
− kdnPCP ,

(B.6)

ĊCP = V1C
CC

Kp + CC
− V2C

CCP

Kdp + CCP
− vdCC

CCP

Kd + CCP
− kdnCCP ,

(B.7)

ṖCC = −V1PC
PCC

Kp + PCC
+ V2PC

PCCP

Kdp + PCCP
− k4PCC + k3PCCC

+ k PC − k PC − k PC , (B.8)
2 N 1 C dn C
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ṖCN = −V3PC
PCN

Kp + PCN
+ V4PC

PCNP

Kdp + PCNP
− k2PCN + k1PCC

− k7BNPCN + k8IN − kdnPCN , (B.9)

ṖCCP = V1PC
PCC

Kp + PCC
− V2PC

PCCP

Kdp + PCCP

− vdPCC
PCCP

Kd + PCCP
− kdnPCCP , (B.10)

ṖCNP = −V3PC
PCN

Kp + PCN
− V4PC

PCNP

Kdp + PCNP

− vdPCN
PCNP

Kd + PCNP
− kdnPCNP , (B.11)

ḂC = ksBMB − V1B
BC

Kp + BC
+ V2B

BCP

Kdp + BCP
− k5BC

+ k6BN − kdnBC , (B.12)

ḂCP = V1B
BC

Kp + BC
− V2B

BCP

Kdp + BCP
− vdBC

BCP

Kd + BCP
− kdnBCP ,

(B.13)

ḂN = −V3B
BN

Kp + BN
+ V4B

BNP

Kdp + BNP
+ k5BC − k6BN − k7BNPCN

+ k8IN − kdnBN , (B.14)

ḂNP = V3B
BN

Kp + BN
− V4B

BNP

Kdp + BNP
− vdBN

BNP

Kd + BNP
− kdnBNP ,

(B.15)

İN = −k8IN + k7BNPCN − vdIN
IN

Kd + IN
− kdnIN . (B.16)

arameters are taken to be identical to basal values listed in Sup-
lementary Table 1 of [42] with the exception of k1 = 0.58 and
2 = 2.0, which influence the kinetics of the nonphysphorylated

cytosolic Per and Cry protein concentrations. The influence of
light is incorporated by modulating vsP , which sets the maximum
ate of Per expression. In this work, vsP = 1.2 nM/h corresponds
o a state of total darkness and vsP = 1.8 nM/h corresponds to a
aximum level of brightness.

ppendix C. Adjoint method of solution for infinitesimal
hase and isostable response curves

Consider a general equation of the form (1) with a periodic
rbit xγp with period T (p). As discussed widely in the literature [4,
3,44], ∂θ

∂x associated with this periodic orbit can be computed by
inding periodic solutions of the adjoint equation

˙ = −JTa, (C.1)

where a =
∂θ
∂x and J is the Jacobian, both evaluated at xγp (t). The

periodic solution of Eq. (C.1) must be appropriately normalized so
that 2π

T (p) = F (xγp , p)·a(x
γ
p ), where the dot denotes the dot product.

Similarly, as discussed in [20], the gradient of the jth isostable
coordinate can be found as the periodic solution of

ḃj = −(JT − κjId)bj, (C.2)

where bj =
∂ψj
∂x evaluated at xγp (t), κj is the Floquet exponent

associated with ψj, and Id is an appropriately sized identity
matrix. For stable periodic orbits, periodic solutions of Eq. (C.1)
can be solved by integrating backwards in time until transients
decay. Periodic solutions of (C.2) are generally unstable but can be
obtained using a Newton iteration or using a bi-orthogonalization
method proposed in [45].
14
Appendix D. Identification of reduced order model parame-
ters using operational phase coordinates

As discussed in Section 2.4, operational phase coordinates can
be used to obtain information about transient behavior associated
with the decay of solutions to an underlying stable limit cycle. In
this work, results from [23] are leveraged to accomplish this task,
with useful results summarized in Eqs. (17)–(19). This appendix
is provided to clearly illustrate how Eqs. (17)–(19) from the main
text can be obtained using results that were previously presented
in [23].

In this work, θ and θ∗ represent asymptotic and operational
phase coordinates, respectively, for a stable limit cycle xγp that
emerges in Eq. (1) when u = p is held constant. As illustrated
in Eq. (15) from Ref. [23], if u is held at p, when considering
a single isostable coordinate ψ1 in the reduced order model, to
leading order ϵ the time between the kth crossing of the θ = 0
and θ∗

= 0 level set is related by

t∗k = tk −
ψ1(tk)(n · g1(0, p))

n · ẋγp |θ=0
. (D.1)

where t∗k corresponds to the kth crossing of the θ∗
= 0 level set,

tk corresponds to the kth crossing of the θ∗
= 0 level set, g1(0, p)

is the Floquet eigenfunction associated with the ψ1 isostable
coordinate evaluated at θ = 0, ẋγp |θ=0 is the time derivative of
the periodic orbit evaluated at θ = 0, n is a unit vector normal
to the θ∗

= 0 level set, and the dot denotes the dot product.
Additionally, Ref. [23] defines the following constant

α1 =
ω(p)κ1(p)(n · g1(0, p))

n · ẋγp |θ=0
. (D.2)

Note that g1(θ, p) is a Floquet eigenfunction which is unique to a
constant scaling; in this work, it is assumed that n · ẋγp |θ=0 ̸= 0
so that the normalization α1 = 1 can be mandated with an
ppropriate scaling of g1(θ, p). Combining Eqs. (D.1) and (D.2)
ields Eq. (17) from the main text. Eq. (18) from the main text can
e obtained through algebraic manipulation of Eq. (D.2) recalling
he scaling α1 = 1 and noting that dxγ

dt = ω dxγ
dθ . Eq. (19) from the

main text can be derived starting with Equation (39) from [23]:

log(τn) = α + n log(λ1), (D.3)

where τn = t∗n+1 − t∗n − T (p), where t∗n is the nth crossing of
the θ∗

= 0 level set when u is held constant at p, α is a con-
stant that depends on system parameters and initial conditions,
T (p) = 2π/ω(p) is the period of the limit cycle, and λ1 is the
Floquet multiplier associated with the isostable coordinate ψ1.
Considering Eq. (D.3) at successive indices n and n + 1, through
direct manipulation one finds

log(λ1) = log(τn+1/τn). (D.4)

Eq. (19) follows directly from the relation κ1(p) = log(λ1)/T (p)
which is a standard relationship between Floquet exponents and
Floquet multipliers.
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