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N-Body Oscillator Interactions of Higher-Order Coupling Functions*
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Abstract. We introduce a method to identify phase equations that include N-body interactions for general
coupled oscillators valid far beyond the weak coupling approximation. This strategy is an extension
of the theory from [Y. Park and D. Wilson, SIAM J. Appl. Dyn. Syst., 20 (2021), pp. 1464-1484]
and yields coupling functions for N > 2 oscillators for arbitrary types of coupling (e.g., diffusive,
gap-junction, chemical synaptic). These coupling functions enable the study of oscillator networks in
terms of phase-locked states, whose stability can be determined using straightforward linear stability
arguments. We demonstrate the utility of our approach with two examples. First, we use a diffusely
coupled complex Ginzburg—Landau (CGL) model with N = 3 and show that the loss of stability
in its splay state occurs through a Hopf bifurcation viewing the nonweak diffusive coupling as the
bifurcation parameter. Our reduction also captures asymptotic limit-cycle dynamics in the phase
differences. Second, we use N = 3 realistic conductance-based thalamic neuron models and show
that our method correctly predicts a loss in stability of a splay state for nonweak synaptic coupling.
In both examples, our theory accurately captures model behaviors that weak and recent nonweak
coupling theories cannot.
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1. Introduction. Oscillatory phenomena exist in many biological [3, 72, 60, 24, 73], chemi-
cal [27, 13], and physical systems [44]. Numerical models that capture the important behaviors
of these systems often involve complex interactions of large numbers of variables, reducing the
visibility of important mechanisms. As such, phase reduction is often used for understanding
the aggregate behavior of interacting oscillators in a reduced-order setting [27, 24, 17, 48, 16].

The many techniques developed for phase reduction often include specific assumptions
that improve tractability at the cost of biological relevance. The Kuramoto model is an
exceptionally well-studied model, owing to its elegant simplicity, and has proven invaluable
towards understanding higher-order interactions and stable synchronous network states [29].
However, the Kuramoto model was originally derived in the case of infinite, homogeneous,
globally coupled oscillators [12] near the Hopf bifurcation [30], limiting its use for finite pop-
ulations away from the Hopf. Moreover, its analysis is often limited to studying questions
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around synchrony as opposed to other phase-locking phenomena, due to the often-taken limit
of infinite oscillators.

When a finite number of oscillators is considered, other features may be exploited, each
with their own limitations. When the network exhibits symmetries, it is possible to enumerate
all phase-locked states with weak or strong coupling [20], but this method is not suited to work
in the case of asymmetries [23]. In networks of neurons, the pulse-like shape of action potentials
allows for the use of pulse coupling [11, 5, 4, 52, 40]. This approach yields analytically tractable
results for weak or strong and possibly asymmetric coupling, but the number of oscillators is
often limited to pairs. The study of network behavior can be made tractable by using piecewise
smooth models, but coupling functions require particular assumptions such as linear coupling
[9, 8], weak coupling [7, 49], and Laplacian coupling [43]. In addition, the analysis of phase-
locked states is often restricted to understanding the stability of a synchronous network state
[8, 10] (although some do consider the stability of splay states [7]).

The most relevant reduction for the present study is the theory of weakly coupled oscilla-
tors, which allows for a general form of the vector field and coupling function so long as the
coupling strength is weak [15, 26, 46, 48, 49, 47]. To be more precise, by weak coupling, we
mean phase reductions that only consider expansions up to first order in coupling strength
(often represented by ¢), and are thus generally only guaranteed to be valid for arbitrarily
small €. The weak assumption is a severe limitation because it cannot necessarily be used to
accurately capture the dynamical behavior of coupled oscillator networks in many biological
networks, e.g., cortical networks [53, 6], subcortical networks [62], and pacemaker networks
[3, 19]. Indeed, recent studies have pushed beyond the weak coupling regime by deriving cor-
rection terms in higher orders of the coupling strength (i.e., nonweak coupling), but these too
have their limitations. Higher-order phase correction terms considered in [55, 18, 64] require
the underlying limit cycle to be strongly attracting, limiting their applicability when Flo-
quet multipliers are close to unity [67]. Recently developed isostable coordinates have proven
invaluable towards developing more robust phase reductions, e.g., [69, 50, 42]. However,
these methods have only been applied to pairs of oscillators without heterogeneity (except
in [42], where the authors consider the complex Ginzburg-Landau model for N > 2 and the
Morris—Lecar model for N = 200), and a recently published article by [34] closely mirrors
our assumptions, but is only valid for planar systems. The recent work by Nicks, Allen, and
Coombes [42] is of significant relevance to this paper, and we briefly contrast our results in
the discussion in section 6.

In networks consisting of more than two oscillators, N-body interactions on simplicial
complexes become relevant. Much recent work has been done to develop phase reductions in
this direction, but the study of N-body interactions have been limited to tractable models
such as the Kuramoto model [59, 61, 58, 2] or the Ginzburg-Landau equation [29]. Finally,
note that these studies begin with higher-order interactions as an assumption, in contrast to
[69], where it is shown that higher-order interactions emerge as a function of higher-order
corrections to weak coupling theory. Thus, there exists no phase-isostable reduction method
for general n-dimensional oscillators that accounts for heterogeneity, strong coupling, and
resulting N-body interactions.

In the present study, we address this gap in the literature by deriving a phase reduction
method applicable to networks of (weakly or strongly attracting) coupled oscillators with
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arbitrary network topology beyond weak coupling, i.e., we calculate higher-order corrections to
the first-order reduction methods while incorporating isostable coordinate(s). The formulation
includes N-body interactions on simplicial complexes and enables us to study the existence
and stability of phase-locked states in a manner not possible using the original models.

The paper is organized as follows. We derive the proposed phase-isostable reduction in
section 3 and check the performance of our method using the complex Ginzburg-Landau
(CGL) model (with some analytical calculations) in section 4. We also confirm that our
method works using the neurobiologically realistic thalamic model in section 5. Stability of
splay states as a function of coupling strength are discussed as part of these results. We
conclude the paper with a discussion in section 6.

All code used to generate figures is available for public use at https://github.com/
youngmp/nbody [45].

2. Background.

2.1. Phase and phase reduction. Consider a general dynamical system
(2.1) X =F(X)+U(X,t),

where X € R” is the state, F': R™ — R™ is a smooth vector field, and U(X,t) € R" is some
additive input. Let Y be a stable T-periodic orbit that emerges when taking U(X,t) = 0.
In situations where the timing of oscillations is of interest, it can be useful to consider the
dynamics of (2.1) in terms of a scalar phase §(X) € S' rather than in terms of the state.
When U(X,t) = 0, the notion of isochrons [21] can be used to define phase in the basin of
attraction of the limit cycle. Isochrons can be defined as follows: letting 6; € [0,1) be the
phase associated with an initial condition a(0) € Y, the 6; isochron is composed of the set of
all b(0) for which

2.2 li t)—b(t)||=0

(2.2) Jim [a(t) = b(1)[| =0,

where || - || can be any vector norm. Isochrons are typically scaled so that % is a constant
for trajectories that evolve under the unperturbed flow of the vector field; in this work, we
choose % =1 for convenience.

Working in phase coordinates, by restricting one’s attention to a close neighborhood of
the periodic orbit and allowing U(X,t) # 0, through a change of coordinates one arrives at
the standard phase reduction [17, 24, 27]

o 00 dx
dt % dt
=y (FX)+U(X,1)
(2.3) —1+2(0) - U(X,1),

where Z(6) = g—f( evaluated on the periodic orbit at phase 6, and the “dot” denotes the dot
product. In the third line above, we use the fact that g—f( - F(X) was scaled to equal 1.
Reductions of the form (2.3) have been used widely as a starting point for the analysis of
weakly perturbed and weakly coupled oscillatory systems [17, 54, 41, 71].
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2.2. lIsostable coordinates. In (2.3), the gradient of the phase is evaluated on the periodic
orbit. As such, it requires the state X to remain close to Y for the reduction to remain valid.
This is only guaranteed in the limit of weak forcing; in many practical applications, alternative
techniques that can accommodate stronger forcing must be used. One common strategy is
to augment the phase coordinates with amplitude coordinates. A variety of techniques for
considering both phase and amplitude coordinates have been proposed [70, 55, 65, 68, 57].

In this work, we use the phase-isostable coordinate system, which augments the phase
dynamics with additional information about level sets of the slowest decaying modes of the
Koopman operator [35, 38]. To illustrate this coordinate system, let U(X,t) =0 and define
AX =X —Y(0). To a linear approximation the dynamics of (2.1) follow

(2.4) AX =JAX,

where J is the Jacobian evaluated at Y (6(t)). Notice that (2.4) is linear and time-varying
with the Jacobian being T-periodic. Let ® be the fundamental matrix, i.e., with AX(T) =
O®AX(0) for initial conditions 6(X (0)) ~ 0. Further, let w;,v;, and \; be left eigenvectors,
right eigenvectors, and associated eigenvalues, respectively, of ®. Floquet exponents can be
computed according to x; = log()\;)/T. Let k1 be the slowest decaying nonzero Floquet
exponent. If k1 is unique, an associated isostable coordinate can be defined in the basin of
attraction of the limit cycle according to [67]

(25) Y1(3X) = Tim (w] (n(th, X) = Yo) exp(—ritf))

where ¢ denotes the time of the kth transversal of the § = 0 isochron, n(t, X) is the unper-
turbed flow of the vector field that takes X (0) to X (t), Y is the intersection of the periodic
orbit and the # = 0 isochron, and | denotes the transpose. In contrast to isochrons defined
in (2.2), which characterize the infinite time convergence to the periodic orbit, the isostable
coordinates defined in (2.5) give a sense of the distance from the periodic orbit, with larger
|11 (X)| values corresponding to states that will take longer to approach the periodic orbit.
Isostable coordinates can also be used to characterize faster decaying components of the so-
lution, but an explicit definition akin to (2.5) is not always possible [28]. Instead, faster
decaying isostable coordinates can be defined as level sets of appropriately chosen Koopman
eigenfunctions. In this work, we will assume that the faster decaying isostable coordinates
decay rapidly and are well approximated by zero. Using (2.5), it is possible to show directly

that when U(X,t) =0, dg]’; = k191 in the basin of attraction of the limit cycle [67].

2.3. Phase-isostable reduction. Information about the slowest decaying isostable coordi-
nate can be used to augment standard phase models of the form (2.3) to increase the accuracy
of the reduction in response to larger magnitude inputs. In the analysis in the following sec-
tions, we assume that all nonzero Floquet exponents except x1 have a large real component
so that the associated isostable coordinates decay rapidly and are well approximated by zero.
Moving forward, for notational convenience, we will simply use ¥ and x to denote the only
nontruncated isostable coordinate and its Floquet exponent—from this point forward, sub-
scripts of any variable including ¢ and k will only denote the oscillator index. Taking this
isostable coordinate into account, one can consider a modified version of (2.3),

(2.6) 6=1+20,0) UX,1),
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where the gradient of the phase is not necessarily evaluated on the periodic orbit, but rather at
a state corresponding to X (6,); note that X (0,0) =Y (). In order to use (2.6), it is necessary
to consider the isostable coordinate dynamics as well as the phase dynamics. Considering the
dynamics given by (2.1), by the chain rule,

dp 9 dX
dt %)1/(; dt
= o (FL) +U(X.0)
(2.7) = )+ 1(0,4) - U(X, t),

where Z(0, 1)) = g—;@ evaluated at X (6,v). In the third line above, the relationship g—;é -F(x) =
K1) since %’ = k1 when U(X,t) = 0. Taken together, (2.6) and (2.7) comprise the phase-
isostable reduction. For computation and analysis purposes, the gradient of the phase and
isostable coordinate is often represented according to a Taylor expansion in the isostable
coordinate centered at i =0:

0=1+(Z90) + 2D (0) +¢? 2D (@) +---)-U(X,1),
(2.8) =kt + (1O0) + 1M (0) + 1P (O) + ) - U (X, 1).

3. Higher-order coupling with N-body interactions. We now derive a reduced system of
phase equations that captures higher-order interactions between coupled oscillators, starting
with the ordinary differential equation (ODE)

N
j=1

where each system admits a T-periodic limit cycle Y;(¢) when §; = e = 0. We assume, when
di,e # 0, that d; and e are not necessarily small, and that ¢; is order O(g). Thus, while the
derivation to follow is constrained by e, heterogeneity and coupling need not be weak in the
sense that we seek to capture higher-order corrections to first-order phase dynamics.

We assume general smooth vector fields F; : R™ — R™, smooth coupling functions Gj; :
R™ x R™ — R™, and smooth additive heterogeneity @; : R™ — R™ where n; € N for
each oscillator 7. The scalars a;; modulate coupling strength between pairs of oscillators and
determine network topology, whereas € modulates the overall coupling strength of the network.

Remarks.

e Oscillators need not necessarily share the same period to apply the proposed method.
Requiring all oscillators to have the same period when §; = ¢ = 0 is a matter of
convenience, but equivalent to heterogeneity in the following sense. The dynamics of
node 7 without coupling (¢ = 0) are given by X; = F;(X;,c) + 6;Q;(X;), where ¢!
is a particular choice of a parameter in F; such that when §; = 0, the stable limit
cycle of the node dynamics Y;(t,c}) has period T for each i. While we require that
lc; — ¢f| = O(e) for all ¢, we remind the reader that € is not necessarily small-—and our
method is designed to capture potential higher-order effects. This property is the same
as that considered in [34]—we save a more detailed comparison for the discussion in
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section 6. As a natural example, it is reasonable to expect such ¢ to exist in multiple
heterogeneous neural oscillators by adjusting their individual input currents, with the
caveat that the heterogeneity is not too large.

e The choice of heterogeneity in (3.1) implicitly restricts our attention to cases where
the difference ¢; — ¢ = ¢; yields a linear change in each vector field. However, non-
linear changes may be incorporated by including additional higher-order terms in §;
(we elaborate more on this feature at the end of the phase difference derivation in
section 3.3).

e In principle, there may be any number of heterogeneous parameters per oscillator
(as opposed to one ¢ per oscillator 7), but we restrict our attention to the simple case
of one heterogeneous parameter across all oscillators (§; = §) because the primary goal
of the present study is to verify that our proposed phase reduction accurately captures
higher-order interactions due to coupling.

We assume that there is only one nontrivial isostable coordinate similar to prior studies
[67, 69, 50] and let k; <0 be the corresponding Floquet exponent, where we place no restric-
tions on the spread of k; between oscillators (we reiterate that the subscript i denotes the
oscillator index, so k; is not the ith Floquet exponent of a given oscillator, but rather the
Floquet exponent of the nontrivial isostable coordinate of oscillator 7).

We reduce (3.1) to phase-amplitude coordinates using phase-isostable reduction of the
form (2.6) and (2.7):

N
0i=1+06Zi(0;,01) - Qi(05,03) + £2:(0;,2;) - Zaz’sz’j(Qiﬂ/Jm 0;,v;),
(3.2) =

N
Ui = ki + 6T;(0i,10:) - Qi(0:,45) + €Zi (03, ¢0;) - Zaiszj(@',%v 0;,%;),

j=1

where 6; represents the oscillator phase, 1; represents the amplitude of a trajectory perturbed
away from the underlying limit cycle, Z; is the gradient of the phase often referred to as the
phase response curve (PRC), and Z; is the gradient of the isostable coordinate often referred
to as the isostable response curve (IRC). We suppress the time dependence of 6; and v; to
reduce notational clutter.

3.1. Expansions. An important step towards reducing (3.1) involves taking the Taylor
expansion of all terms with respect to 1; and €. Assuming that the functions Z; and Z;
are sufficiently smooth within their respective basins of attraction, their approximations may
be obtained to high degrees of accuracy by computing the coefficients of v; as in (2.7) (see
[66, 51]):

(3.3) Zi(0,9) ~ 27(0) + 20 (0) + 0?2 () + -,
3.4) Z;(0,4) ~ I(0) + IV (0) + 212 (0) + - - - |
(3.5) Xi(t) = Yi(0:) + g (0:) + 0262 (6:) + - ,
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where Zi(k)7 IZ-(k), and ggk) are the higher-order correction terms to the infinitesimal (linear)
PRC, infinitesimal (linear) IRC, and Floquet eigenfunction, respectively. We make an addi-
tional ansatz that each isostable coordinate v; can be expressed as order O(e) deviations from
1; =0 due to coupling and heterogeneity, and that corrections to the order O(g) term can be

computed directly from higher-order Taylor expansions. Thus,

(3.6) i) ~epV (1) + 27 (1) + 2P (1) + - -

i

We assume that we have calculated solutions Zi(k), Ii(k), and gl(k) for each ¢ = 1,...,N and
k € N, for instance, using methods described in [66].

Some care must be taken when obtaining e-expansions for the coupling functions Gj;
(in contrast to the e-expansion of Z;, Z;, and X;, which is a straightforward matter of substi-
tuting (3.6) into (3.3), (3.4), and (3.5), respectively). Let us fix a particular pair of oscillators
7 and j. We use the Floquet eigenfunction approximation for each oscillator,

(3.7) Ax; %¢i9§1)(9i) +1/}i2g§2)(0i) +ey

where Ax; = X;(t) — Y;(0;(t)) is the difference between the limit cycle Y; and trajectory X;.
Azx; has an identical expression in terms of j instead of i. We view the coupling function as
the map Gij s Rt R™ where Gij(Eij) = [Gij71(5ij),Gij72(Eij),...,Gijm(Ei]‘)]T € R™,
Gijm : R — R, and Z;; = [X;,XJT]T € R™*™ an (n; + nj) x 1 column vector. Define
Aij = [}/Z(QZ)T,Y}(QJ)T]T € R™* and AEU = [Ax;r,Al‘;r]T € R™*"% Both are (nz + nj) x 1
column vectors, so that the relation Z;; = A;; + AZ;; is well defined.

We apply the standard definition of higher-order derivatives from [33, 66] to obtain the
multivariate Taylor expansion of Gjj,, for each m=1,2,...,n:

= = — 1 [k k
(3.8) Gij,m(Aij + A:ij) = Gij,m(Aij) + G(l) (Aij)A:*ij + Z 7l |:® A:;5:| vec (Gz(],)m(AZ])) ,

13,m
k=2

where the “vec” operator simply reshapes a matrix by stacking its columns, allowing us to
avoid calculating high-dimensional tensors. For example, if an m x n matrix A has columns
a; for i=1,...,n for a; € R™, then vec(A) is the mn x 1 column vector (af ,aq,...,a,)". If
A is a Jacobian matrix, taking partial derivatives of vec(A) yields a matrix, whereas taking
partial derivatives of A yields a tensor. Both contain the same information, but the partials
of vec(A) are much easier to implement in a computer. Temporarily treating A;; as a vector
of dummy variables, higher-order derivatives of G;j ., are given by

(=14
R W i G D)

e RO xOtn) s,
A, B
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We replace AZ;; in (3.8) with the Floquet eigenfunction expansions (3.7) and replace each
1; with its expansion (3.6). With these substitutions in place, we collect the expansion of G;;
in powers of €. The notation becomes cumbersome, so we summarize this step by writing

Gij(0i,1i,05,95) :Kff)(ei,ej)
+ 6K’L(j1) (Q’La 9]7p§1)7p§1)>

2 1 2 1 2
+ K (00,05,007, 07 00 0 0P )
R

The K functions contain the collected Floquet eigenfunctions and the partial derivatives
of G;; for each order O(se). We compute more explicit forms of K Z.(f) in Appendix C for use
in some explicit calculations in section 4.1. It is straightforward to verify using a symbolic
package that the function K*®) only depends on terms pl(.e), py) for ¢ < k. For additional details,
we refer the reader to our code repository [45], where we implement SymPy to automate the
collection of symbolic terms [37].

Note that the e-expansion of ); is just as straightforward to calculate using the above

method. We summarize the expansion of ); by writing

Qu0:,05) = Q" 0) + 2 (0:p17) +22Q1 (01,00
+3QP (01‘ ptY,p p(3)> T

More explicit forms for Ql@

are also in Appendix C, and have almost the same form as the
expression for Kg“&). These more explicit terms will likewise be used in the section 4.1

calculations.

3.2. Elimination of isostable coordinates. While we now have all the necessary expan-
sions in ¢ to rewrite the phase-amplitude equations (3.2) in powers of ¢, there remain two
variables for each oscillator: 6; and ;. Thus, some work remains to reduce the system to
a single phase variable. We proceed with the method suggested by [69, 50], by deriving and
solving linear equations for each term pgk) in the expansion of 1; (3.6). We state two key
assumptions before proceeding.

Assumption 1. There exists a sufficient separation of timescales between 6, and 6; (where
0; =0; —t), such that 6; can be treated as constant in time integrals. To be more precise, we
assume that the averaged dynamics of 8 are relatively slow compared to ¢.

Assumption 2. First-order averaging is sufficient to capture nonlinear effects well beyond
first order in e. This assumption implies some upper bound on &, but we will utilize higher-
order averaging from, e.g., [31, 32] in future work if needed.

We begin by subtracting the moving frame and letting 6; = 6; —t. Then the phase-
amplitude equations (3.2) become
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(3.11)

b: = 02;(0; +t,01) - Qi(0; + t,;) —i—&?ZaZ] (B +t,0) - Gig (0 4,0, 0; + 1,95),
7j=1
(3.12)

N
i = Kithi + 0Ti(0 + £, ) - QulBi +1,00) + € Y ayTi(0i +t,400) - Gig (0 + £33, 05+ £,10).

j=1

Substituting the expansion ;(t) = epg )( t)+e2p; (2 )( )+€3p(3) (t)+--- into (3.12) yields a hier-

7
archy of ODEs in powers of €. The left-hand 81de consists of straightforward time derivatives:

- d() i() i(s)
Vi = Carli +€dt +€dt T

and the right-hand side includes many cross-multiplication terms (not all ¢); are shown ex-
panded in ¢ for brevity):

N
Kithi + 0L;(0; + t,00) - Qs(0s +t,05) + €Y _ aiLi(0; + t,405) - G (0 + t,903, 05 + ,1)))
=1

=i [ep () + 20+
+5{[I(0)(9 )+ I (0 + 1) + P (Gi+t)+---}
(@20 +01 (0:5) +2Q1 (0,07 5
+2Q" (000" 7 07) -] }

+5Za”{[(0)9+t)—|—¢z V0 +4) + 212 (0; + 1) + }

. [Kfj)(éﬁt,éj +1)

+ oK (044,05 + .00 p")

+ 2K (éi +t.0; + t,pZ(l),pr),pg”,ng))

+ &K (0 .05+ 6000 0 o0 p® ) ]

Writing § =&d /e = eb and recollecting in powers of ¢ yields a hierarchy of scalar ODEs, which
we show up to order €3 in (3.13). We suppress the explicit 6;-, 6;-dependence of pgk), 1),
and K*).

(3.13)
dp}" (1), 5700 . )
O(e): dZt =rp;  + bl —i—ZaU i K
2 dp@) (2) (1) (1) . H(0) 0) A~ 0)  7-(1) (1) (1) . 4-(0)
O(e ):d—zt:/iipi +op, I -Q7 + 0L -Q; +Zaij (IZ- -Kij +p, I -Kij ),

j=1
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(3) 2
0 : P = wip® + P 1D 4 b () 12 4 oDV QY b1 Q)

dt )
@10 KO 1 (1) 1. K@)

i ) i

N
+ Zaij (IZ»(O) : KZ(JZ) —i—pgl)fi(l) . K(l) +p
j=1

Each ODE is a first-order inhomogeneous differential equation with a forcing term that de-
pends on lower-order solutions and is thus solvable. To demonstrate our calculations con-
cretely, we begin by explicitly solving the lowest-order term pgl). Throughout the calculations
in the remainder of this section, we will often use #; in place of él +t.

With all of its dependencies, the lowest-order equation is written as

dpz(-l)

N
o O =rp () 017 (6:) - Q1 (6:) + 3 a1 (6:) - K ) (61.65,).

=1

Applying the integrating factor method, we arrive at the solution,

7

t
P () = / e =9 (b1 (0 +5)- QO +5)+ S a1 +5) - KO (0 + 5,65, +5) | ds
to

+ et

where C' is a constant of integration. To discard transients, we ignore the constant of in-
tegration and take tg — —oo. Then, with the change of variables s — ¢t — s, the equation
becomes

N
(3.14) PV (8) = bai(6;) + > aijigij, (6:,65,),
h=1

where
w©= [ e Qe- 0 ds
9i5(&1,&2) 2/ 6Kis—7@~(0) (&1—9) 'Ki(f) (&1 —5,§—s)ds
0

2)

are functions that may be precomputed. We use (3.14) to solve for p,~’, yielding, with appro-

priate rearrangement,

2
(3.15) p2(t) = D> iy (05,05,) + D 9ijus (05,05, 65,),
J1 Ji,J2
Heterogeneity Cou};ling

where each function ¢, (gij,5,) is distinguishable from ¢; (gi;,) by the number of indices.
We find that the heterogeneous term contains two-body interactions and the coupling term
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contains three-body interactions. While our goal is not necessarily to enumerate every term
explicitly, we show the forcing function terms for pgz) term by term (and obtain more explicit
equations for ¢;;, and g;j,;, in (3.16)):

10 =t Q0 0 Y a1,
J1

in(O) -le) = bIZ.(O) -ul(.l) bg; + Zaijlgijl

Ji
=217 ufV g+ bzaz‘jlgijlfi(o) cuf,
J1
0)  7-(1) _ 7(0) (1) ( 0) (1),,0.1)
LKy =1, +p; vy, }
i di Qijy Gigr | Vi 34 551 9551 | Vij
| 7 Ji
0 [ 0 0,1
:Iz() _qu ’L(j )+quJ ( )} +I() Z[aljlgljl z(] )+ajjlgjjl z(] ) ’
J1
pTY K = bgi+ > a0, | 1Y K
J1
_qul(l) K +Zaljlglj11(1) K()

J1

Thus, we may write (3.15) more explicitly:

(3.16) pEQ) (t)= b2(h]o )+ bz Gijy (0:,05,) + Z Zgwljz (0i,05,,05,) + 9ijij. (05,05, 6;.),

where
€)= [ e [as =1 €= -~ )
(€ = )0 (€ —5) -0 (€~ 9)] ds,
w6.8) = [ e lata =106 - 9006 - 56—

+45, (&~ s) IO (E — 8) - vV (6 — 5,60 — )
a6 — ) I (€ — ) KO (61— 5,6 — 5)
+gip (61— 5.6 — )1V (& —5)- Q€1 — 5)
i (61— 5,60 — ) [V (E1 — 5) - ulD (€1 — 5) | ds,
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Gijrja (§1,€2,€3) :/o e [gijz (61— 5.6 )1 (& —5) 'USI’O) (SEERSEE)
Dier—s) KD (€ 5,6 5)| ds,

Gijrj» (&1, 62, €3) :/o € gs5 (62 — 5,63 — )1V (€1 — 5) - zjoll)(fl — 5,6 —s)ds.

+ 9, (§1 — 5,83 — S)

Even more explicit terms that include pairwise coupling terms a;; are shown in [42,
Appendix C].

Note that b increases in power for each new term; thus we require b < 1 for arbitrarily high-
order expansions, which is equivalent to the condition that the overall strength of heterogeneity
must be less than or equal to the overall coupling strength (6 < ¢). This condition is not
restrictive, however, because we tend not to take arbitrarily high expansions, and coupling
may be weakened relative to heterogeneity by adjusting the coupling constants a;;.

We continue these calculations for each order k to obtain solutions of the same form as
(3.15):

k k
=0 > g 00O 05 ) D D Gigiee (000, 05,)

=1 J1,-sJe—1 =1 j1,.-,Je

J/

Heterogeneity Coupling

The maximum number of indices ji,...,J is N — 1, because we use one index for oscillator
1 and there are N oscillators. Naturally, higher-order terms for £k > N do not introduce
additional higher-order interactions, but may improve the accuracy of the expansion.

Now that we have expressed each pz(-k) in terms of phase, effectively eliminating the isostable
equation, we turn to deriving a phase difference equation.

3.3. Phase difference equation. We expand the phase equation (3.11) in € (where again,
for brevity, not all 1; are shown expanded in ¢):

0: = 82;(0; +t,43) - Qi(0; + t, ) +sZaU (0 4 t,90) - G (0; + 1,05 4+ )
j=1

=5 {[200+0) + 6.2 0+ 0 + 02220+ 1) + -]
[QE )( 0;) +£Qi <9¢,p51) —G-EZQE ( z,pgl),p?))
+23Q (01,00 o) 4 }

+azaw[ oz 4 p2z@ 4 ..}.[KZ(J(J)JrgKi(];)+52K§J2)+_”].

Substituting the expansion for ; and collecting in powers of ¢ yields a virtually identical
right-hand side as (3.13) with Z in place of I:
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(3.17)

. N
éi =& bZi(O) . QZ(O) + ZaijZfO)

+e? [ppVzW . QW 1 pz© 1)JrZaz (295§ + V2 KJ)

) i ij

ij

2
2 o1 4 (7)) 1P+ pP 1V - QY 0 - QY

N
2
o3y (20K o2 KD o2 KD+ (1) 20 )

This differential equation is a system of nonautonomous ODEs for the phase dynamics of each
oscillator.

We now use averaging theory to transform this nonautonomous system (3.17) into an
autonomous system. Again, for concreteness, we examine the first few terms of the right-
hand side. The averaged order O(e) dynamics satisfy

N
bq@ + Z ailez(jl'l) (ejl - Oz),
Ji=1

where

- _1 "o 0
i—7 | 270" ds
0

T
Hijr(6) = = /0 79(s) KO(s,¢ + 5) ds

The H&) term is identical to the classic weak coupling theory for N oscillators (see, e.g., [17,
Chapter 8, eq. (8.38)]). The next order O(g?) terms are

200 = 00 1 20 -0

J1
b2® . QW = pz® ., bciﬁz%giﬁ

)

0 (0) 0
_b2 ’LL qz+bza2]1glj1 i E )’
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70 kW = 70, [ (1,10 4 1), 0 1)}

i Vij
_ Z(O) bi (1,0) b (0 1)
=4 q; + Zaijlgijl vyt 0+ Zajjlgjﬁ Vij
J1 J1
~ 01 0 0,1
:bZl() [Qz EJ )+q] ( )} +Zz( )'Zaiﬁgijl 7,(j )+a’3]1g]]1 EJ )7
Ji
1 1 0 ~ 1 0
Pz KD = | bai+ a9y | 20 K
Ji
:szZ(l) K +Zamlgwlz(l) K()
J1

Thus, the second-order term is given by

B> sy (05, — 00) + > Hijoj, (6, — 6,6, — 6y),
it

J1,J2
where
~ b2 T ~ b2 T 3
1 0O =7 [ 502060 as+ 5 [ it () Qs ds
J1
b [T ). (10)
+ZT/ 3(5)79(s) - 00 (5,6 + 5) ds
. 0
J1
b [T 0/ (0D
#3307 [ e+ 92060 s ek 5 s
J1
b0 O
+ Z T /s Gi(s)Z; ' (s) - Kj;/ (s, £+ s)ds
baij, 2D (s). QW
Z (8)gij, (s, +5)ds
bai i1
+ Z T / Z9(5) - Q) ()9, (s, + 5) ds
(077} 5
ZHZ]MQ 1,82) = Z = / : 2]110)(5,5—1—8)91'3‘2(875+S)ds
Ji,J2 J1,J2
a;
2 / ) ol (5,60 + 8)gjga (€1 5,60 + 5) ds
J1,J2
Aij 5
+Z - / 1(2)(5’51+5)gij2(37§2+8) ds
J1,72

Three-body interactions are apparent, as is the existence of interactions between coupling
and heterogeneity. These terms, with b= 0, are the second-order interaction terms from [69].
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A careful examination of these explicit terms may be of interest in future work, but we collapse
them into single functions and continue these calculations with the aid of a symbolic package
up to some chosen order k:

k k
A (k A A ~ k A A ~
ez:b E Ee E qz(jl)...jl{_l(ehaﬁr"70‘]‘271)—’— E ge E HEjl)j[(euejmaejz)
(=1 (=1

=1 Ji,njea =1 Ji,de

Heterogeneity Coupling

Defining ¢; = 6; — él, we arrive at the phase difference equation,

k
;) ~(¢ ~(¢
bi = bz ¢’ Z |:qi(,j)1,...,j(,1 (¢j1 =iy Py — ¢i) — qg,‘;l,...,jg,1 (¢j17 Te ¢jzf1):|
(318) EZ; Jis-eJe—1
l L
+ de Z |:/Hz(,j)1,...,j,3 (¢j1 = iy j, — ¢i) — /Hg,gl,...,jg (¢j1’ R ¢jz)]
=1

= Jis-eese

fori=2,..., N. This equation is a generalized version of the two-body interactions in [50] and
a generalization beyond the second-order coupling terms in [69]. Since we will not examine
particular terms in the inner summation, we rewrite the right-hand side as a single H function
for each oscillator ¢ and order /¢ for notational convenience:

k
(319) qbl:zgz [bQEE)(¢277¢N)+H§E)(¢277¢N) ’ 7’:277N
=1

Remarks.

e At order k£ and above, heterogeneity contributes (k—1)-body interactions (heterogene-
ity contributes a constant term in the lowest-order term).

e The choice of additive, linear heterogeneity in the original system (3.1) yields additive,
linear heterogeneity in the reduced dynamics (3.19). This choice is not strictly neces-
sary. While we do not require oscillators to have identical or even similar vector fields,
consider for the sake of example that we have a system of identical neural oscillators
where oscillator 7 has one heterogeneous parameter ¢; in the dynamics of some gating
variable X,

Xoo(Visei) =1/(1 + exp((Vi + 1)),

while all other oscillators j # ¢ have ¢; = 0. Such a system can be transformed into the
current framework by taking a Taylor expansion from the parameter value(s) ¢* =0
at which all oscillator periods are the same. Then,

Xoo(Visei) = Xoo(Vis ) + (i — ) X1 + (¢ — ¢ )? Xg + -+,

where X; are the higher-order terms in the Taylor expansion. Taking § = ¢;, higher-
order § terms may be included in the formulation.
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e While we simplified our assumptions to include only one heterogeneous parameter,
a generalization to multiple heterogeneous parameters is straightforward. Using the
same calculations as above, if ¢* is an arbitrary heterogeneous term where all oscillators
have equal period, then we can compute the same Taylor expansion as above for each
oscillator and obtain the parameter §; = |¢; — ¢*| for each i. Note that there is no
restriction on the number of heterogeneous parameters per oscillator, so long as there
exist parameter values where all oscillator periods are equal.

e Heterogeneity and asymmetry may induce interesting dynamics that will be considered
in future work, but we disregard heterogeneous effects for the remainder of the paper
to focus on the primary goal of confirming that the proposed N-body phase reduction
is valid in the simple case of identical oscillators with homogeneous coupling.

e The phase difference equation may also be derived by using the averaged isostable
expansion terms, ﬁgk), which, like 6;, tend to have a slowly varying mean, even when
€ is not arbitrarily small. The average term ﬁgk) is useful because it only depends

on the relatively slow phases 0;, éj, so it may be moved out of time integrals, greatly

simplifying calculations. We perform this type of averaging in the thalamic model in

section 5.

4. Complex Ginzburg—Landau model. We now apply the proposed method to a set of
three globally coupled complex Ginzburg—Landau (CGL) models, where the coupling is dif-
fusive and homogeneous. The ODE form of this model has been studied extensively [69, 50],
making it an ideal preliminary test for our results. Let X; = (z;,7;)" and N = 3. The network
is given by

3
Xi=F(Xi)+ ) ai;G(Xi, X)),
j=1

_ (oxzi(1—R;) —yi(1+ p(R; — 1)) o (x5 =) —d(y; —yi)
F(XZ) B <ayi(1 — Rz) + mi(l + ,O(Ri - 1))) ’ G(X“X]) N <(yjj - yi) + d(xjj - mz)) ’

and R; = 2? + y?. We assume all-to-all coupling without self coupling, so that pairwise terms
a;; are given by
{1 /N ifi#j,
aij =
0 else.
It is straightforward to verify that the Floquet exponent for this system is given by k = —20,

where the Floquet multiplier x no longer has a subscript because all oscillators are identical
in this example.

4.1. Explicit calculations. The g, Z, and I functions of the CGL model each have only
one (the first) nontrivial mode. To make explicit calculations, we write these functions in
complex Fourier form,
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[ a eX i6;) + c.c. ]
o™ (8) = g p(i6;) ’
i g exp(191)+c.c. ]
Z(k)(ez): aZ exp(lﬁz)—i-c.c. ’
I Z exp(lﬁl)—i—c.c. ]
IZ-(k)(Qz‘): al exp(191)—|—c.c. ’
I I exp(191)+c.c. |

where ag];),bg?) € C, X € {g9,Z,1}, and “c.c.” stands for “complex conjugate.” We use
the upright i for imaginary numbers and keep the italicized ¢ for indices. Note that due

to symmetry, bglg) = 1ag?) for all k. The limit cycle coefficients are simply a; = 1/2 and

by =—i/2.
By assumption, p(o)

, =0, so we calculate the next order term,

D g L
P (91,92,93)—%

M-

2 [cl (1 — ei(éi_éj)> —i—c.c.} ,

(0)

where ¢y =2a;"ar(1 —id) € C. Continuing the calculation,

= s 35 [ () ) e

Ji=1 J2—1

9 = Z Z {dle i—0;, +d1€( )_‘_%(dz)ei(éjl—ajz)

Ji=1j2=1

+ d2€i(2é7‘,—éj1 _é.7'2) + d3 =+ C.C] s
(0) (1)

where d; = —(?R(ClCQ + dg) + dg), do = cic3, d3 = 201%(62 + 63) Ca = aj’ag (1 — id), c3 =

agl)d (1 —id). The function R simply returns the real part of its input.

Remarks.

e The nontrivial Floquet exponent, s, appears in the denominator of both p;
pg ). Thus, a smaller nontrivial Floquet exponent (|r| < 1), which occurs for weakly
attracting limit cycles, makes the isostable coordinate contribute nontrivially to the
phase dynamics. While we generically expect x to appear implicitly in the denomina-
tor, these calculations make its appearance explicit. Indeed, the inclusion of isostable
coordinates for || small is the key difference between our work and purely phase-based
methods.

e The coefficient for each pgk) is of the form 1/(Nk)* and thus may diverge for large
k. Questions of convergence will be explored in future work, but we note that this
issue does not appear to significantly affect the results for the relatively lower-order
truncation we consider.

e Higher-order terms contain not only higher-order interactions, but also higher-order

Fourier modes, e.g., (i(20i=0;,—0,)

MW nd
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e In this example, each of the functions pgl) and pz(-z) depends only on phase differences,
so that p( )(él +t,05 +t, 03 +1) = (k)(él, 05, ég) This pure phase dependence holds so
long as b%k) —ia )I; and the oscillators are identical—we exploit this property for the
numerlcal results in section 4.2. (This lack of time dependence is a lucky coincidence.
In general, even with identical oscillators, we expect to see additional terms that do
not purely depend on phase differences.)

With the solutions pz(-l) and p§2) in hand, we turn to the calculation of H functions.

7—[51) = %Z [61 (ei(éi_éﬁ) — 1) + c.c.} )
where ¢ = 2a(ZO)dL(1 —id) e C.

e ;ji[ (3 (6160 — (e + ]

J1=1 32—1
3

1 N o
Z Z {dle T +d el =0 4 R(dy)e! %2~ “)—I-d el(=20: +912+‘911)—i-d4—i-c c.
]1—112—1

where Cil = (%(6162 + Cig) + 622), CZQ = —(1C3, Cig = —261%(@2 + 63) Co = a(Z)aé )(1 — ld)
3 = a(Z)aL(l — id). While it is possible to calculate HES) explicitly, the terms are far too
numerous to show here. We instead proceed numerically.

4.2. Numerical results. Numerically calculating the H functions (3.19) for the CGL
model is straightforward because the Nyquist frequency of the underlying functions are espe-
cially low and requires only a dozen Fourier terms at O(e3). Using a Fourier truncation in
this scenario greatly reduces the time complexity and memory requirements for the averaging
calculation behind the H functions (see Appendix A.1 for additional details).

We show comparisons between the full and reduced versions of the CGL model in Figure 1.
The top row shows phase estimates of the full model for ¢ = 0.005 (A) and £ = 0.06 (C), where
later shades correspond to later times (see Appendix D for more details on the phase estimation
of the full model). The bottom row shows the O(e) (blue), O(g?) (orange), and O(&3) (black)
phase models exhibiting qualitatively similar dynamics at ¢ = 0.005 (E) and € = 0.06 (G),
respectively. Corresponding time traces are shown to the right of each portrait, e.g., panel
(B) corresponds to (A), and (F) corresponds to (E).

At ¢ = 0.005, the full model tends towards an asymptotically stable splay state when
initialized near synchrony with phases (¢2,¢3) = (0.05,0.25) ((A), (B), where ¢; € [0,2m)).
With the same initial values, all O(g) (blue), O(¢?) (orange), and O(£3) (black) phase models
coincide with each other and with the full model as expected (E), (F). For greater values
of e, the full model splay state loses stability and the phase differences converge towards a
limit cycle attractor (C), (D). Only the O(e?) (black) phase model exhibits a similar limit
cycle oscillation, while the O(g) (blue) phase model dynamics do not change, and the O(g?)
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A Full € = 0.005 B C Full e = 0.06 D
i 77 a s 0
2 = g 7
1000
500 A
2000 A
<& 7 +3000 A +=1000 11
4000 +
1500
0 5000 A
T /| T 6000 2000 - T
0 T 2 0 @ 2w
b2 o
E Phase ¢ = 0.005
0 0
or 1/ /
1000
500 A
2000 A
< 7 +3000 A +1000 A
— 0(e) 4000 -
0(e?) 1500 -
oL — O() ] 5000
T T — 6000 - 2000
0 T 27
b2 i

Figure 1. Comparison of the full (top row) and reduced (bottom row) CGL models. All panels show the
corresponding nullclines of the O(e*) reduced model. (A) Phase difference estimate of the full model dynamics
at ¢ = 0.005. Lighter shades indicate later times. (E) The corresponding reduced models (O(g) blue, O(e?)
orange, and 0(53) black). Arrows indicate movement in forward time. Note that all phase models coincide.
(B), (F) Corresponding plots over time of the full model and reduced model, respectively. (C), (D) Full and
reduced model dynamics, respectively, for e = 0.06. (D), (H) Corresponding plots over time of the full and
reduced models, respectively. Parameters: d =0.9, 0 = 0.1, p=0.15. We show every hundredth time point of
the full model phase estimation to reduce lag when rendering vector graphics in this document.

(orange) phase model simply converges to synchrony due to changes in the underlying basin
of attraction (G), (H).

Note that even though both O(g?) and O(e®) terms contain three-body interactions, only
the O(e3) phase model reproduces limit cycle behavior. This example demonstrates that
N-body interactions alone are not always sufficient to capture the dynamics of the original
model. Additional correction terms may be necessary.

The stability of the splay state is straightforward to calculate using the reduced model
because only the eigenvalues of the Jacobian matrix evaluated at the splay state (¢po,p3) =
(2m/3,47/3) need to be known. By using the Fourier expansion of the H functions, only
derivatives of sinusoids are required to compute the Jacobian, and this derivative can be
taken rapidly without the need for estimates such as finite differences. The result of this
analysis is shown in Figure 2. The left and right panels show the real and imaginary parts of
the eigenvalues, respectively. While O(g?) (orange) does eventually lose stability, it occurs at
a four-fold greater coupling strength than the full or O(e3) models.
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A Real B Imaginary

1.0 1
0.5
0.0

705 -

710 -

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
€ €

Figure 2. Real (A) and imaginary (B) parts of the eigenvalues of the Jacobian matriz evaluated at the
splay state in the reduced CGL models. Blue: O(g); orange: O(g?); black: O(3). The dashed line is provided
for reference to highlight the loss of stability as € increases in higher-order accuracy models. Parameters are
identical to those used in Figure 1.

5. Thalamic model. We now apply the method to a set of N = 3 synaptically coupled
conductance-based thalamic neuron models from [56]. These results extend our previous work
where we applied a strongly coupled phase reduction method for N =2 thalamic models [50].

(

ik) terms for this model, we compute the averaged

dynamics ﬁgk). Then the integral calculations for each pz(k)
solution nevertheless closely follows its original trajectory.

The thalamic model is given by the equations

Remark. To simplify calculating the p
become trivial, but the resulting

N
dV; syn
— — [ (V) + Ina(Vi) + T (Vi) + T (Vi) + 22 > aijwi(Vi = Esgn) = Tpp | /C,
dt N st
dh;
= (o (VE) = i) (V).
dr;
= (roo (V) = 1)/ (Vi),
dw;
o = ol —wi)/(L+exp((V; = Vi) /or)) = B,
where ¢ = 1,...,3, and a;; = 0 and a;; = 1 otherwise. Remaining equations are found in

Appendix B, and all parameters are shown in Table 1. Given neuron 4, the coupling term
in the voltage variable V; is given by the average excitatory effect of the synaptic variables
w; without self-coupling. The synaptic conductance parameter gy sets the overall coupling
strength and is identical to the coupling strength parameter .

We compare the reduced and full versions of the thalamic model in Figure 3, where the
parameters are chosen as in Table 1 with Egyn =0 mV and I,p, = 0.8 pA/ cm?. The top row
shows phase estimates of the full model for e = 0.005 (A) and ¢ = 0.027 (C), where lighter
shades correspond to later times (see Appendix D for more details on the phase estimation of
the full model). The bottom row shows the O(e) (blue) and O(g?) (black) phase models ex-
hibiting qualitatively similar phase dynamics at € =0.005 (E) and € =0.016 (G), respectively.
Corresponding time traces are shown to the right of each portrait, e.g., panel (B) corresponds
to (A), and (F) corresponds to (E).
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Table 1
Thalamic model parameter values.

Parameter Value
C 1uF/cm?
Ey -90 mV
ENa 50 mV
B 0 mV
FEr, -70 mV
Esyn 0 mV (Figure 3) or -100 mV (Figure 5)
gL 0.05 mS/cm”
9K 5mS/cm?
gNa 3mS/cm?
gsyn =€ 0mS/cm® to 0.027 mS/cm?
« 3
B 2
or 0.8
Vr 20 mV
Lapp 0.8uA /cm?® (Figure 3) or 0.6puA/cm® (Figure 5)
A Full € = 0.005 o B o D
2w / g /
[ ' 2000
5000 -
4000 +
g/ A «10000 1 + 6000 A
8000 +
15000 4
10000 A
20000 - T 12000 -+ —t
0 7w 27 0 s 27 0 7w 27
®i $2 @i
Phase ¢ = 0.016 H
07 ¢ 4 0
2500 A
5000 A
5000
1
10000 ~ 75001 $
>
100004 $
15000 - — O(e)
o= 0(c") § 125007 G—H
20000 - / c =1 15000 L
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Figure 3. Comparison of the full (top row) and reduced (bottom row) thalamic models. All panels show the
corresponding nullclines of the O(e?) reduced model. (A) Phase difference estimate of the full model dynamics.
Lighter shades indicate later times. (E) The reduced models (O(c) blue and O(e?) black) at the approzimate
corresponding coupling strength. Note that the O(g) model remains at the splay state. Arrows indicate movement
in forward time. (B), (F) Corresponding plots over time of the full model and reduced model, respectively. (C),
(D), Full and reduced model dynamics, respectively. (D), (H) Corresponding plots over time of the full and
reduced models, respectively. Parameters as in Table 1 with Esyn = 0mV and lapp, = 0.8 uA/cmz. We show
every hundredth time point of the full model phase estimation.
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A Real B Imaginary

0.005
0.000 A

0.000 A
—0.001 A

—0.005

0.000 0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015 0.020
B B

Figure 4. Real (A) and imaginary (B) parts of the eigenvalues of the Jacobian matriz evaluated at the splay
state in the reduced thalamic models. Blue: O(g); orange: O(g?); black: O(e*). The dashed line is provided
for reference to highlight the loss of stability as € increases in higher-order accuracy models. Parameters are
identical to those used in Figure 3.

At ¢ = 0.005, the full model phase differences tend towards an asymptotically stable
splay state when initialized near synchrony with phases (¢2,¢3) = (0.4,1) ((A), (B), where
¢; € [0,27)). With the same initial values, all O(¢) (blue) and O(g?) (black) phase models
coincide with the full model at, as expected, (panels (E), (F)).

For greater values of ¢, phase differences in the full model asymptotically tend towards a
limit cycle oscillation (panels (C), (D)) and the O(¢?) reduced model tends towards synchrony.
While the asymptotic dynamics differ, we nevertheless capture the loss of stability in the
splay state (we checked the order O(e?) term, but found no improvement in the reduced
solution). Real and imaginary parts of the Jacobian evaluated at the splay state are shown in
Figure 4.

To further demonstrate the utility of our method, we show the phase reduction of the
thalamic model for a different set of synaptic parameters: Egy, = 0 and € < 0. This choice
is less biologically relevant because it corresponds to an excitatory chemical synapse with a
negative conductance, but the goal of this example is to show that the reduced model can
capture additional nonlinear dynamics in a model more complex than the CGL model.

Comparisons between the full and reduced versions of the thalamic model for this new
parameter set are shown in Figure 5. The top row shows phase estimates of the full model
for e = —0.008 (A) and £ = 0.0025 (C), where lighter shades correspond to later times (see
Appendix D for more details on the phase estimation of the full model). The bottom row
shows the O(e) (blue) and O(g?) (black) phase models exhibiting qualitatively similar phase
dynamics at e = —0.0014 (E) and € =0.0025 (G), respectively. Corresponding time traces are
shown to the right of each portrait, e.g., panel (B) corresponds to (A), and (F) corresponds
to (E).

The right column of Figure 5 (panels (C), (D) and (G), (H)) serves as a sanity check,
where € > 0 puts us back in a biologically realistic regime. The full and reduced models all
tend towards synchrony; however, the O(¢?) model (black) captures the transient dynamics
more accurately than the O(e) model.

At e = —0.008, the full model phase differences exhibit a loss of stability in the splay state
and the asymptotic dynamics tend towards a limit cycle (A), (B). The O(g?) reduced model

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/04/25 to 76.234.101.43 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

N-BODY INTERACTION FUNCTIONS 1493

A Full e = —0.008 B

Full e = 0.0025
\/ 0
S 2000 4

\|4O

4000 A
+ 6000 -
8000

10000 1
|
—Z 12000

E Phase ¢ = —0.0014 F OE

.~ . ———711 °

27 7 —630(2) 7" i 2500
20000

gi G Phase £ = 0.0025
3
E2

) 5000 -

& 1 40000 & 1 ~ 7500
10000
— 0(e) 60000

12500

NANNANA -~

1 T T . T 80000 T T T T T T 15000

Figure 5. Comparison of the full (top row) and reduced (bottom row) thalamic models. All panels show the
corresponding nullclines of the O(e?) reduced model. (A) Phase difference estimate of the full model dynamics.
Lighter shades indicate later times. (E) The reduced models (O(e) blue and O(e*) black) at the approzimate
corresponding coupling strength. Note that the O(e) model remains at the splay state. Arrows indicate movement
in forward time. (B), (F) Corresponding plots over time of the full model and reduced model, respectively. (C),
(D) Full and reduced model dynamics, respectively. (D), (H) Corresponding plots over time of the full and
reduced models, respectively. Parameters as in Table 1 with Esyn = —100mV and I.pp = 0.6 uA/ch. We show
every hundredth time point of the full model phase estimation.

captures this behavior ((E), (F), black), whereas the O(e) reduced model does not ((E), (F),
blue). Note the considerable nonlinearity in the phase difference dynamics as a function of ¢.
Despite the small size of ¢, the O(e) and O(¢?) dynamics differ substantially.

This example is affected by a nearby saddle-node on an invariant cycle (SNIC) bifurcation,
which occurs just below the applied current value of I, =0.6 pA/ cm?, and reminds us that
“small” ¢ is relative. The first example of the thalamic model (Figure 3) uses much greater
values of ¢ =0.005 and € = 0.027, the latter being an order of magnitude greater than in the
current example (Figure 5). The proximity to a SNIC also highlights the shortcomings with
our second assumption, where we use first-order averaging. The reciprocal of our period is
1/T = 1/44 ms ~ 0.023, which places an approximate upper bound on the coupling strength
¢, which must be much smaller than 1/7" [32].

Nevertheless, we can compute changes in the stability of the splay state as in the previous
examples. The real and imaginary parts of the eigenvalues of the Jacobian matrix evaluated
at the splay state are shown in Figure 6. The O(c?) model captures the loss in stability while
the O(e) model does not.
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A Real B Imaginary
0.0010 4
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—0.0015 —0.0010 —0.0005 0.0000  0.0005 0.0010 —0.0015 —0.0010 —0.0005 0.0000  0.0005 0.0010
€ €

Figure 6. Real (A) and imaginary (B) parts of the eigenvalues of the Jacobian matriz evaluated at the splay
state in the reduced thalamic models. Blue: O(g); orange: O(e?); black: O(e®). The dashed line is provided
for reference to highlight the change of stability as € increases in higher-order accuracy models. Parameters are
identical to those used in Figure 5.

6. Discussion. In summary, we derived coupling functions that capture higher-order N-
body interactions while allowing for nontrivial effects from slowly decaying Floquet modes.
While we did not consider heterogeneity, the formulation allows for the vector fields to be
entirely different, so long as there exists a parameter in each system that can bring the
oscillators to the same period, or alternatively, so long as the oscillator periods are similar
in the absence of coupling. We applied our method to two systems, the CGL model and a
thalamic neuron model. We found that higher-order terms were necessary to reproduce the
dynamics of the original system. In the CGL model, even though the O(£?) reduced model
contained three-body interactions, it was the O(e®) reduced model that captured additional
nonlinearities, suggesting that in general, N-body interactions alone are not always sufficient
to reproduce full model dynamics. In the thalamic model, we considered two examples, the
first at I,pp, = 0.8 uA/ch Eq¢yn = —100 and the second at I,p, = 0.6 pA/cm2 Egyn =0. In the
first example, we captured the loss in stability of the splay state using the O(¢?) model. In the
second example, we explored beyond a biologically relevant parameter regime and observed
limit cycle behavior in the phase difference of the full model for gsyn =& < 0, which the O(e?)
reduced model captured. We noted that the € values between the full and reduced models
differed more than in previous examples in capturing similar behaviors. This difference is likely
due to the existence of a SNIC bifurcation just below the parameter value I,,, = 0.6 pA/ cm?.

Our method is both a generalization of existing methods that consider higher-order phase-
isostable interactions and a general framework from which to study higher-order effects. For
example, a higher-order reduced model is derived using the Haken—-Kelso-Bunz (HKB) equa-
tion in [36]. The higher-order terms are the lowest-order Fourier terms of our H functions; thus
the same questions of existence can be answered with our method and further explored with
additional Fourier terms and multibody interactions. Larger networks of the HKB equation
that consider interactions well beyond dyadic [74] fit comfortably within the limitations of our
method (see section 6.1 for details). Similarly, there is no restriction to applying our method to
questions of coordinated movement, e.g., [25], or studies of coupled population dynamics [39].

Our method may aid in addressing questions of synchrony and phase-locking in gen-
eral finite populations of coupled oscillators with heterogeneity where order parameters are
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typically used. For example, the heterogeneous systems and coupling functions considered in
[1] cannot exhibit synchrony and a “bounded synchronization” measurement [22] is necessary.
Our method could provide a far more detailed understanding of the bounded synchronization
state alongside other possible phase-locked states. Moreover, similar questions could be asked
in much more realistic and complex neurobiological models.

Two recent results are most relevant to our work. The first is [34], where a phase-isostable
description of coupled oscillators is derived for heterogeneous, planar oscillators. The authors’
assumptions and handling of the isostable coordinate(s) are similar to ours (including earlier
work [50]). In particular, their heterogeneous assumption is equivalent to ours in the following
sense. If we let p=1,..., M be the oscillator index for M oscillators, then we can directly
transform our framework into theirs by taking 0,2,,(0,,%) - Qi(04,%,) to lowest order in
g, which is some constant (5,@, say, and setting 1 + 5,@ = wy. Then our framework can be
used to explore phase-locking and phase drift as a function of coupling strength and forcing
frequency in the same manner. A key difference is that our framework allows oscillators of
arbitrarily high dimension (not to mention that we publicly share our numerical methods
under an open-source license [45]).

Finally, the remarkable work by Nicks, Allen, and Coombes [42] warrants special attention.
They use both phase and isostable coordinates to derive conditions for the existence and
stability of phase-locked states in networks of coupled oscillators. The isostable dynamics
are kept explicit, which confers some advantages that our method may not. Indeed, the
choice of “eliminating” the isostable dynamics in our work inevitably reduces the accuracy
of our approximation, because we ignore potentially important transient effects. Moreover,
analytical calculations become rapidly cumbersome for lower-order terms for even very simple
models such that numerics become necessary beyond order 3 or 4. Their work highlights the
importance of choosing methods with compatible assumptions when applying phase-isostable
methods to one’s own models. It may very well be worth increasing the accuracy of a reduced
system in exchange for an increase in dimension. On the other hand, our method is useful if
only pure phases are desired, while including at least some of the corrective effects of isostable
dynamics.

6.1. Limitations. We begin with limits related to our implementation. If the H functions
have sparse Fourier modes, then a Fourier truncation can be used to greatly reduce the
time complexity and memory requirements of our method (see Appendix A.1). In particular,
knowledge of the exact types of functions that appear for each order is a significant part of this
computational efficiency. However, the current implementation has only up to order O(e?)
implemented for the Fourier method. While it is clear that there is a pattern in the types of
separable and nonseparable functions that appear in the Fourier terms as a function of higher
orders, we have not precisely determined a formula for this pattern at the time of this writing.
Once the pattern is fully understood, it will be possible to determine significantly higher-order
interaction terms using the Fourier truncation.

Limitations related to the reduction method outside of our implementation center around
the two key assumptions that make the derivation of this method possible. First, we assume

that the timescale of phase 6; —t (i.e., the phase equation after subtracting the moving frame)
differs sufficiently from the timescale of the functions pgk) (the expansion terms of the isostable

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/04/25 to 76.234.101.43 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1496 YOUNGMIN PARK AND DAN WILSON

coordinate 1);), such that 6; terms can be taken out of a time integral. This assumption is
reasonable for at least moderate values of € up to € =0.06 in our examples, where the phase
difference variables ¢; tend to vary relatively slowly. However, additional work must be done
to more carefully examine this assumption for use in greater stronger coupling strengths e.

Second, we use first-order averaging, which is technically valid for small ¢ comparable
to those used in weak coupling theory. This limitation is especially apparent in the last
example, where the thalamic model is near a SNIC bifurcation and the reciprocal of the
period (1/44 ms =~ 0.023) places an approximate upper bound on the coupling strength ¢, as &
must be much smaller than 1/7" [32]. This example may benefit from higher-order averaging
methods [31, 32]. In addition, we have observed phase drift in the full model (data not shown)
in a manner that may not be possible to capture in the current formulation. For example,
with N = 3 homogeneous oscillators and some values of &, two oscillators synchronize and
the third exhibits a phase drift, effectively resulting in a two-oscillator system with a drift in
the remaining phase difference. In our formulation, a single phase difference equation cannot
exhibit drift without heterogeneity. This discrepancy may be due to ignoring transients in the
isostable coordinates—if we were to include explicit isostable dynamics such as in [42], this
behavior might be captured.

Appendix A. Numerical details for computing higher-order interaction functions. We
briefly discuss three numerical methods for calculating H functions.

A.1l. Option 1: Averaging in terms of Fourier coefficients. If the expansion terms ggk),
Zi(k), and Il.(k) have sparse Fourier modes, it may be advantageous to calculate the H functions
in terms of Fourier coefficients. Given order k, define ® = (61,...,0y) and 1 = (1,...,1).
Suppose that we wish to obtain an Hgk) function, so we apply first-order averaging to some

order k function f*) for a given system of N oscillators:
T —
/f('“)(91+t,...,9N+t)dt.
0

The integrand f*) is simply a placeholder for any of the terms that appear in the integrand
in the calculation of H functions, e.g., for k=1, f(!) could be any integrand term here:

T
Ay ,
§ : H'Ulh (51762) = § ,_ZZ /0 Zz(O) (S) ' U1(;10) (87 5 + S)gij2 (37§ + 8) ds

j17j2 jl,j2
. T
+) aﬂ]/ 20 () -0 (5,61 + 8)gjuja (€1 + 5,62+ 5) ds
2.7 1
J15J2
T
Dijy (0) (0) )
+;;T/O Z@ (S)le (S’§1+s)gljg(57£2+8)ds_

Consider the N-dimensional Fourier expansion of the integrand:

T
/ S jpme™ @10 q1,
0

meZN
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where ¢ m, are the Fourier coefficients given oscillator j and order k, and m = (mq,mo,...,
my). We simplify this integral using straightforward integral properties and orthogonality of
the Fourier basis:

T T
[ 5 cxmem@mas 5 [Nopnem@ny
0 0

mezN mezZN

T

(A.1) = Z CLk’meim'@/ emLt gt

mezZN 0

= Y Cipme™®.

m-1=0
That is, the only integral terms that remain are those such that the index vector m is orthog-
onal to the vector 1, and the integral of those surviving terms trivially evaluates to the scalar
1 (this calculation is a special case of [14]). Thus, the question of computing the average in
time is simply a matter of computing the set of Fourier coefficients and extracting the relevant
subset. If the number of oscillators N and mesh size K are large, then the desired averaged
function in its final form can be taken as above; otherwise the desired functions can be found
by the inverse Fourier transform.

Claim: The right-hand side of (A.1) depends on N —1 variables. Without loss of generality,
suppose j = 1. Now consider the change of variables s = 01 4+ ¢ and recall that ¢; = 6; — 0;.
Then rewriting (A.1) yields

T T
Z C1,k;,m/ eI (s,62+5, 6N +5) 1o — Z Cl,k,m/ pilmistma(gats)ttmn(dn+s)] qg
0 0

mezZN mezZN

- Z Cl,k,mei(m2¢2+"'+m’v¢”)/T ™1 s
mezZN 0
_ Z Cl’k’mei(m2¢>g+m+mN¢>N)’
m-1=0
where the last lines uses the orthogonality of the Fourier basis to evaluate the integral. Thus,
we may easily evaluate (A.1) for N — 1 phase differences by evaluating any one coordinate at
Zero.

While (A.1) is computationally efficient, we once again find that evaluating the underly-
ing N-dimensional function to compute the Fourier coefficients of (A.1) requires significant
amounts of memory. For example, evaluating an N-dimensional function on a mesh size of
K again requires N points prior to taking the Fourier coefficient. So we seek an additional
reduction in memory.

A.2. Option 2: Using an ODE solver as an adaptive mesh. In cases where the response
functions (Z and Z) and Floquet eigenfunctions have derivatives that greatly exceed their
magnitudes, it is not possible to use only a small number of Fourier coefficients. Indeed, the
thalamic model has a relatively large number of nontrivial Fourier modes for each order. For a
uniform mesh, the number of points in the time-average integral grid K exceeds 1 x 107, which
is difficult to compute efficiently. Parallelizing this problem is further hindered by memory
constraints.
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Because the sharp peaks in the response functions and eigenfunctions tend to be in small
regions of phase space, an adaptive mesh greatly reduces the number of integration points K.
The most straightforward method is to use an ODE solver by rephrasing the time-average
integration as an initial value problem. Given k, and 64,...,0y, rewrite

1 [T
H:T/ R 01+t Oy 1) dt
0

as
d
dt
Then the desired time-average is given by H(T'). If needed, the mesh is provided by the ODE
solver. We use the Python [63] implementation of LSODA.

ToHE) =00+ ..., 05 +1), H(0)=0.

A.3. Option 3: Brute force and parallelization. If all else fails, it is possible to brute force
calculations of the H functions, especially if the network has N < 3 oscillators with only a few
lower-order terms and a coarse mesh. Our Python implementation will attempt to use CPU
parallelization, and if available, CUDA parallelization. Because the memory requirements
grow exponentially as a function of mesh size, mesh sizes are typically restricted to 500 points
for roughly 16GB of RAM. Running the code on a cluster with more CPUs is recommended
(instructions are included in the repository with sample scripts).

Appendix B. Thalamic model. The remaining equations for the thalamic model are

L(V)=g.(V —FEL), Ixa=gnahm> (V)(V — Exa),
Ix =0.75gk (1 — h)*(V = Ex), It = grrp%(V)(V — E),

and

an(V)=0.128exp(—(V +46)/18), by(V)=4/(1+exp(—(V +23)/5)),
Moo (V) =1/(1+exp(—(V +37)/7)), hoo(V)=1/(14exp((V +41)/4)),

Too(V)=1/(14+exp((V +84)/4)), pso(V)=1/(1+exp(—(V +60)/6.2)),
(V) =1/(an(V) +bp(V)), 7(V)=28+exp(—(V +25)/10.5).

Appendix C. Coupling function expansions. Recall our original coupled system (3.1),

N
Xi=F(X;) +6:Qi(X)) +¢ | Y ayGyj(Xi, Xj) |, i=1,2,....N.
j=1

Here we provide a high-level description of the e-expansion of the coupling functions Gj;.
First, fix ¢ and j and consider an arbitrary mth coordinate G, of G;;. Recall that we expand
this function in the following manner:

=1
(C.1) Gm(A+AZ) =G (A) +GL(MAE+ )~ [@ AET] vec (Gg,k;)(A)) ,
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where AZ = [AzT,AyT]T € R% ¥ A is purely a function of §; and 6;, and Az ~ wiggl)(ﬁi) +
@Z)Z-Qg?) (0;) + ---, with Ay defined similarly. Writing Az = [Azy,...,Az, ", each Az, is a
polynomial in ; by definition (likewise for Ayy). It follows that Ql@ AZT = AE only contains
polynomials in v; in the first n; elements and polynomials in 9; in the last n; elements. Thus,
the term G%) (A)AE, which is equivalent to a dot product, is a scalar that consists of the sum
of a polynomial in 1; with a sum of a polynomial in ;. The next term in the expansion
includes the cross-multiplication of the two polynomials:

HAST = [Az1AZT Az AZ T Az, AZT Ay AZT L Ay, AT
= [[Am%, Az1Azxy, ..., Az1Axy,,, Az1Ayy, ... AxlAyn].],.. .
[Azy, Az, Azp, Axo, . .., Axii,A:):mAyl, Az Ayn ],
[Ay1Azy,..., Ay Az, Ay2, .. Ay Ay, ...,
[Ayn, Az, ..., Ayn, Ay, Ayn, Ay, ..., Ay%]]],

where the square brackets only help organize the terms. This vector has the shape 1 x (nﬁ—nj)Q
and contains polynomials of the form

(Wic1 + ¥2ca + - ) (ydy + ¢2da + - )70

for some arbitrary scalars cg, di, k € N*, and for 0 </ < 2. Thus, the scalar term
2
[@ AET} vec (G;? (A))

contains a sum of polynomials in v; and 1; with minimum order 2. Indeed, continuing this
argument for arbitrary k yields polynomials in v; and 1; of minimum degree k in the scalar
term

[é AET} vee (GH()).

Since m was chosen arbitrarily, it follows that each coordinate of G;; contains the same types
of polynomials, and we can express each term in (C.1) as polynomials with vector coefficients.
We assume that the polynomial terms have been collected and let vgl’h)(ﬁi, 6;) be the vector
coefficient of the term @bflv,bf?. Then we may express the expansion of Gj; in terms of 1; and

(F

oo k
—_ k—6) (0,k—¢
Gii(M(8:,65) + AZ(0:, 05,05, 07)) = > > w0, 6,).
k=0 ¢=0

(1)

)

2, (2)

Finally, we make the substitution ¢; = ep, * +¢*p,” +- - -, yielding the following terms ordered

in powers of ¢:
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O(ao) voo),

O(eh) : pOu? + plVo @Y,

O(e2) : p (2) )+ 5) Z(JO2)+(I%( )) 1(20)_1_(p§ )) (02)+p£) §) Z(jl,l)’

0):r O30 15 Ou09 4 U 1y OpIID 1 (GOP + (0

Thus, we have a more explicit form for the Ki(f)
1(]21 ’62) is known. The calculation of vgl’&')

C.1. Thalamic model.

1
Kz(]O) = a[aijEsynwj — GV Wy, 0,0, O]T
(1)

1 1
Ki(j ) = 5 [aijEsyngSj)pj

e-expansion terms of G;j, assuming that

is handled automatically by a symbolic package.

- aijvig&)pf) - az‘jwa'gﬁ)Pgl), 0,0, O]T

.
K(2) _ 1 1 aijESyngSj)p;Z) + aijESyngi(U) (pg )) aljvlggu az]“lgz(u) (pg ))
i =@ |l M) (2) @), (V) 31) 0,0,0
—aiwigs'pY — aijwiglt (pM)? — aijott gl)p

Appendix D. Phase estimation. We briefly describe the phase estimation method used
in the paper (which is very similar to the estimation done in [46]). Consider a model with
state variables z1,...,x,, and suppose that we have saved a T-periodic limit cycle trajectory
(at e =0) to some array [yi,...,yn). Then for a given simulation, we can define the phase to
be a point 6 € [0,7") that minimizes

dist(x1(t) —1(0),...,zn(t) — yn(6)),

where

dist(Azy, ..., Azy) =/ (Az1)2 + -+ (Azy)2.

By simulating nondimensionalized versions of the equations, we need not normalize by the
variance as in [46]. This brute-force method is remarkably fast with appropriate vectorization.
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