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High-Order Accuracy Computation of Coupling Functions for Strongly Coupled
Oscillators\ast 

Youngmin Park\dagger and Dan D. Wilson\ddagger 

Abstract. We develop a general framework for identifying phase-reduced equations for finite populations of
coupled oscillators that is valid far beyond the weak coupling approximation. This strategy repre-
sents a general extension of the theory from [Wilson and Ermentrout, Phys. Rev. Lett., 123 (2019),
164101] and yields coupling functions that are valid to higher-order accuracy in the coupling strength
for arbitrary types of coupling (e.g., diffusive, gap-junction, and chemical synaptic). These coupling
functions can be used to understand the behavior of potentially high-dimensional, nonlinear oscil-
lators in terms of their phase differences. The proposed formulation accurately replicates nonlinear
bifurcations that emerge as the coupling strength increases and is valid in regimes well beyond those
that can be considered using classic weak coupling assumptions. We demonstrate the performance of
our approach through two examples. First, we use the diffusively coupled complex Ginzburg--Landau
(CGL) model and demonstrate that our theory accurately predicts bifurcations far beyond the range
of existing coupling theory. Second, we use a realistic conductance-based model of a thalamic neu-
ron and show that our theory correctly predicts asymptotic phase differences for nonweak synaptic
coupling. In both examples, our theory accurately captures model behaviors that weak coupling
theories can not.
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1. Introduction. Self-sustained oscillations are observed in a wide array of biological [46,
17], physical [37, 27], and chemical [18, 8] systems. A common and powerful approach to
understanding how network oscillators interact is the phase reduction method [18, 17, 13, 29].
Its utility comes from reducing a network of N general n-dimensional oscillators into N  - 1
equations that characterize the temporal evolution of phase differences. Indeed, the weak
coupling paradigm has driven much work on coupled oscillators in recent decades [10, 12, 36,
7, 28, 33].

Unfortunately, the weak coupling assumption cannot accurately capture the dynamical
behavior of coupled oscillator networks in many practical applications. This limitation is
especially true in many biological systems. For instance, while individual cortical neurons
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HIGH-ORDER COUPLING FUNCTIONS 1465

elicit small-magnitude postsynaptic responses [16], the postsynaptic neuron receives tens of
thousands of such responses, resulting in effectively strong coupling [32]. Subcortical networks
such as the basal ganglia include strong synaptic conductances [38]. Pacemaker neurons
such as those in the pre-Boetzinger complex and crab stomatogastric ganglion have coupling
strengths that are several orders of magnitude beyond the regime for which the weak coupling
approximation is valid [3, 15]. For weak coupling to serve as a good approximation in these
cases, perturbed trajectories must remain within a small neighborhood of the underlying
limit cycle---a particularly restrictive requirement for limit cycles that have slowly decaying
transients [45, 9].

To overcome the weak coupling assumption, researchers have used particular tractable
models such as integrate-and-fire models [40, 11] or used common features in coupled biological
oscillators such as pulse-like coupling [6, 5, 4, 31, 26] to make problems tractable. We wish
to establish a general extension of weak coupling theory for potentially high-dimensional
oscillators that includes nonpulsatile coupling.

Recent work in this direction includes [44]; the authors derive a general second-order
correction to the classic first-order theory of weakly coupled oscillators. The method exploits
the theory of isostable coordinates [23, 42], which represent level sets of the slowest decaying
modes of the Koopman operator [25, 2] to derive the higher-order accuracy corrections for the
phase dynamics. The authors in [34, 14] introduce a general numerical method to numerically
estimate higher-order phase equations. Finally, although not directly a coupling result, the
results of [41] are highly relevant in which Wilson introduced a phase reduction method for
strong perturbations using isostable coordinates.

In this paper, we develop a general framework that can be used to identify coupling func-
tions that are valid to arbitrary accuracy using an asymptotic expansion in the reduced-
order coordinates. Related work by [34, 14] requires estimations obtained by the phase
dynamics over time; i.e., the full model must be computed for potentially long times and
become is difficult to implement in high dimensions. In contrast, we exploit the higher-
order isostable reduction from [41] and derive high-accuracy phase-interaction functions to
higher-order accuracy in the coupling strength. This work extends upon previous results in
[44, 43] that computed second-order accurate coupling functions using the isostable coordinate
framework.

By restricting our attention to a hypersurface defined by the slowest decaying isostable
coordinates, the resulting framework can be readily implemented even if the underlying models
are high dimensional. Furthermore, the numerical implementation only involves computing a
hierarchy of scalar ODEs and scalar integrals and does not require a priori knowledge of the
phase trajectories. One caveat is that we use first-order averaging theory. However, we find
that first-order averaging is sufficient to capture nonweak coupling dynamics in our examples.

We organize the paper as follows. In section 2, we introduce our general phase reduction
method for N coupled oscillators. In section 2.1, we demonstrate up to order \varepsilon 3 how our
symbolic solver derives the reduced equations using N = 2 oscillators. We apply our results to
the complex Ginzburg--Landau (CGL) ODE model in section 3.1 and a realistic conductance-
based neural model of a thalamic neuron in section 3.2. We conclude with a discussion in
section 4.

All code used to generate the phase equations are publicly available on GitHub at https://
github.com/youngmp/strongcoupling. Our open-source implementation is written in Python
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1466 YOUNGMIN PARK AND DAN D. WILSON

[39]. The repository includes documentation on how to use our software for general systems
and includes additional examples.

2. Derivation. In this section, we reduce the dynamics of N strongly coupled oscillators to
a system of N - 1 equations representing the phase differences. We begin with the autonomous
ODEs

(2.1) \.Xi = F (Xi) + \varepsilon 
N\sum 
j=1

aijG(Xi, Xj), i = 1, . . . , N,

where each system admits a T -periodic limit cycle Y (t) when \varepsilon = 0. We allow \varepsilon > 0 not
necessarily small and assume general smooth vector fields F : \BbbR n \rightarrow \BbbR n and a smooth coupling
function G : \BbbR n \times \BbbR n \rightarrow \BbbR n. The scalars aij modulate the strength of coupling between pairs
of oscillators, whereas \varepsilon modulates the overall coupling strength of the network. Throughout
the text, we will use subscripts i and j to denote oscillator indices and superscripts k and \ell 
to denote exponents and expansions.

Similar to prior studies [42, 44], we make the explicit assumption that all but one of the
n  - 1 nonunity Floquet multipliers is sufficiently close to 0 so that only a single isostable
coordinate is required per oscillator. Additional isostable coordinates could be considered
with appropriate modifications to the derivation to follow. Let \kappa < 0 be the corresponding
Floquet exponent. Using the theory of isostable reduction [44, 41], (2.1) reduces to the phase-
amplitude coordinates,

\.\theta i = 1 + \varepsilon \scrZ (\theta i, \psi i) \cdot 
N\sum 
j=1

aijG(\theta i, \psi i, \theta j , \psi j),

\.\psi i = \kappa \psi i + \varepsilon \scrI (\theta i, \psi i) \cdot 
N\sum 
j=1

aijG(\theta i, \psi i, \theta j , \psi j),

(2.2)

where \theta i represents the phase of oscillator i and \psi i represents the amplitude of a trajectory
perturbed away from the underlying limit cycle. Note that \theta i is a function of time, but we will
generally suppress this dependence for notational convenience in the derivation to follow. We
will later show that the variable \psi i, once expanded in \varepsilon , can be expressed in terms of \theta i, \theta j ,
thus reducing the dimension of the system to one.

The functions \scrZ and \scrI can be computed to arbitrarily high accuracy by computing coef-
ficients of the expansions:

\scrZ (\theta , \psi ) \approx Z(0)(\theta ) + \psi Z(1)(\theta ) + \psi 2Z(2)(\theta ) + \cdot \cdot \cdot ,(2.3)

\scrI (\theta , \psi ) \approx I(0)(\theta ) + \psi I(1)(\theta ) + \psi 2I(2)(\theta ) + \cdot \cdot \cdot ,(2.4)

Xi(t) \approx Y (\theta i) + \psi ig
(1)(\theta i) + \psi 2

i g
(2)(\theta i) + \cdot \cdot \cdot ,(2.5)

\psi i(t) \approx \varepsilon p
(1)
i (t) + \varepsilon 2p

(2)
i (t) + \varepsilon 3p

(3)
i (t) + \cdot \cdot \cdot ,(2.6)

where Z(k), I(k), and g(k) are the phase response curve (PRC), isostable response curve (IRC),
and Floquet eigenfunction expansions, respectively, \theta i are the phase variables of each oscillator,D
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HIGH-ORDER COUPLING FUNCTIONS 1467

and \psi i are the amplitude coordinates. Using the method in [41], these functions can be
computed numerically provided the underlying equations are known. We will assume that we
have performed such computations for a given system and have solutions Z(k), I(k), and g(k)

for each k. (Our Python implementation includes methods that automate the computation
of these functions.)

Next, we expand the coupling function G in powers of \varepsilon . Let us fix a particular pair of
oscillators i and j. To expand G in powers of \varepsilon , we use the Floquet eigenfunction approxima-
tion

(2.7) \Delta xi \approx \psi ig
(1)(\theta i) + \psi 2

i g
(2)(\theta i) + \cdot \cdot \cdot ,

where \Delta xi \equiv Xi(t)  - Y (\theta i(t)). We view the coupling function as the map G : \BbbR 2n \rightarrow \BbbR n,
where G(X) = [G1, . . . Gn]

T \in \BbbR n, Gm : \BbbR 2n \rightarrow \BbbR , and X = [XT
i , X

T
j ]

T \in \BbbR 2n. We then apply
the standard definition of higher-order derivatives from [22, 41] to obtain the multivariate
Taylor expansion in \Delta xi.

Starting with an arbitrary mth coordinate of the vector-valued function G(Y + \Delta X),
where Y = [Y (\theta i)

T , Y (\theta j)
T ]T and \Delta X = [\Delta xTi ,\Delta x

T
j ]

T (both 2n \times 1 column vectors), the
Taylor expansion yields

Gm(Y +\Delta X) = Gm(Y ) +G(1)
m (Y )\Delta X +

\infty \sum 
k=2

1

k!

\biggl[ 
k
\otimes \Delta XT

\biggr] 
vec
\Bigl( 
G(k)

m (Y )
\Bigr) 
,(2.8)

where

(2.9) G(k)
m =

\partial vec
\Bigl( 
G

(k - 1)
m

\Bigr) 
\partial XT

\in \BbbR (2n)(k - 1)\times 2n.

That is, the partial of G is taken with respect to all coordinates of oscillators i and j. We
replace \Delta X in (2.9) with the Floquet eigenfunction expansions ((2.7)) and replace each \psi k

i

with the expansion for \psi i ((2.6)). With these substitutions in place, we collect the expansion
of G in powers of \varepsilon . In general, the notation becomes cumbersome, so we summarize this step
by writing

G(\theta i, \psi i, \theta j , \psi j) =K
(0)(\theta i, \theta j)

+ \varepsilon K(1)
\Bigl( 
\theta i, \theta j , p

(1)
i , p

(1)
j

\Bigr) 
+ \varepsilon 2K(2)

\Bigl( 
\theta i, \theta j , p

(1)
i , p

(2)
i , p

(1)
j , p

(2)
j

\Bigr) 
+ \cdot \cdot \cdot .

(2.10)

The O(1) K(k) functions are the appropriately collected terms including partials of G and the
Floquet eigenfunctions. In the calculations to follow, we often suppress the dependence on

the O(1) functions p
(k)
i , p

(k)
j . We refer the reader to Appendix A for the details of (2.10). It is

straightforward to verify (using a symbolic package) that for a given k, each K(\ell ) term only

depends on terms p
(\ell )
i , p

(\ell )
j for \ell \leq k.D
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1468 YOUNGMIN PARK AND DAN D. WILSON

At this step, we have all the necessary expansions in \varepsilon to rewrite the phase-amplitude
equations in (2.2) in powers of \varepsilon . However, this system is still in two dimensions per oscillator.
In order to reduce the equations to one per oscillator, we solve for \psi i in terms of \theta i, \theta j . To
this end, we proceed with the method suggested by [44].

Making the substitution \^\theta i = \theta i  - t in (2.2) yields

\.\^\theta i = \varepsilon 
N\sum 
j=1

aij\scrZ (\^\theta i + t, \psi i) \cdot G(\^\theta i + t, \^\theta j + t),(2.11)

\.\psi i = \kappa \psi i + \varepsilon 
N\sum 
j=1

aij\scrI (\^\theta i + t, \psi i) \cdot G(\^\theta i + t, \^\theta j + t).(2.12)

Now substituting the expansion \psi i(t) = \varepsilon p
(1)
i (t)+ \varepsilon 2p

(2)
i (t)+ \varepsilon 3p

(3)
i (t)+ \cdot \cdot \cdot , into (2.12) yields

a hierarchy of ODEs in powers of \varepsilon of \psi i in terms of \^\theta i, \^\theta j . The left hand consists of straight-
forward time derivatives:

\psi \prime 
i = \varepsilon 

d

dt
p
(1)
i + \varepsilon 2

d

dt
p
(2)
i + \varepsilon 3

d

dt
p
(3)
i + \cdot \cdot \cdot .

The right side, after plugging in the function expansions, reads

\kappa \psi i+\varepsilon 

N\sum 
j=1

aij\scrI (\^\theta i + t, \psi i) \cdot G(\^\theta i + t, \^\theta j + t)

= \kappa 
\Bigl[ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr] 
+ \varepsilon 

N\sum 
j=1

aij

\Bigl( \Bigl[ 
I
(0)
i (\^\theta i + t) + \psi I

(1)
i (\^\theta i + t) + \psi 2I

(2)
i (\^\theta i + t) + \cdot \cdot \cdot 

\Bigr] 
\cdot 
\Bigl[ 
K

(0)
i (\^\theta i + t, \^\theta j + t) + \varepsilon K

(1)
i (\^\theta i + t, \^\theta j + t) + \varepsilon 2K

(2)
i (\^\theta i + t, \^\theta j + t) + . . .

\Bigr] \Bigr) 
.

These expansions yield the hierarchy of scalar ODEs in \varepsilon :

O(\varepsilon ) :
dp

(1)
i

dt
= \kappa p

(1)
i (t) +

N\sum 
j=1

aijI
(0) \cdot K(0),

O(\varepsilon 2) :
dp

(2)
i

dt
= \kappa p

(2)
i +

N\sum 
j=1

aij

\Bigl( 
I(0) \cdot K(1) + p

(1)
i I(1) \cdot K(0)

\Bigr) 
,

O(\varepsilon 3) :
dp

(3)
i

dt
= \kappa p

(3)
i +

N\sum 
j=1

aij

\Bigl( 
I(0) \cdot K(2) + p

(1)
i I(1) \cdot K(1)

+ p
(2)
i I(1) \cdot K(0) +

\Bigl( 
p
(1)
i

\Bigr) 2
I(2) \cdot K(0)

\biggr) 
,

...D
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HIGH-ORDER COUPLING FUNCTIONS 1469

where p
(k)
i are functions of time t (with phase shifts in \^\theta i and \^\theta j as we will show below), I(k)

are functions of \^\theta i+t, and K
(k) are functions of \^\theta i+t, \^\theta j+t. Note that all ODEs are first-order

inhomogeneous differential equations with forcing terms that depend on lower-order solutions,
so we can solve each ODE explicitly. In particular, the forcing functions f (k)(\^\theta i+ t, \^\theta j + t) are
the summed terms above:

f (1)(\^\theta i + t, \^\theta j + t) =
N\sum 
j=1

aijI
(0) \cdot K(0),

f (2)(\^\theta i + t, \^\theta j + t) =

N\sum 
j=1

aij

\Bigl( 
I(0) \cdot K(1) + p

(1)
i I(1) \cdot K(0)

\Bigr) 
,

f (3)(\^\theta i + t, \^\theta j + t) =
N\sum 
j=1

aij

\biggl( 
I(0) \cdot K(2)+p

(1)
i I(1) \cdot K(1)+p

(2)
i I(1) \cdot K(0)+

\Bigl( 
p
(1)
i

\Bigr) 2
I(2) \cdot K(0)

\biggr) 
,

...

The integrating factor method yield a solution for p
(k)
i in terms of the forcing function f (k),

p
(k)
i (t) =

N\sum 
j=1

aij

\int t

t0

e\kappa (t - s)f (k)(\^\theta i + s, \^\theta j + s)ds+ e\kappa tC, k = 1, 2, . . . ,

where C is a constant of integration. To discard transients, we ignore the constant of inte-
gration and take t0 \rightarrow  - \infty . For convenience, we also make the change of variables s\rightarrow t - s.
Then the solutions become

p
(k)
i (t) =

N\sum 
j=1

aij

\int \infty 

0
e\kappa sf (k)(\^\theta i + t - s, \^\theta j + t - s)ds(2.13)

= \~p
(k)
i (\^\theta 1 + t, . . . , \^\theta N + t).(2.14)

Note that p
(k)
i (t) is a function of time, whereas \~p

(k)
i is a function of space. In particular, \~p

(k)
i

acts on the N -torus. Recalling that \~p
(k)
i are coefficients of the \varepsilon -expansion of \psi i, it follows

that each \psi i can be written directly in terms of \^\theta 1, . . . , \^\theta N , and we have therefore eliminated

the equation for \psi i. (Note the lowest order \~p
(k)
i is the same function as the function rj

as [44].)
We now simplify (2.11) by introducing the expansions derived above:

\.\^\theta i = \varepsilon 

N\sum 
j=1

aij\scrZ (\^\theta i + t, \psi i) \cdot G(\^\theta i + t, \^\theta j + t)

= \varepsilon 

N\sum 
j=1

aij

\Bigl[ 
Z(0)+\psi iZ

(1)+\psi 2
i Z

(2)+\psi 3
i Z

(3)+ \cdot \cdot \cdot 
\Bigr] 
\cdot 
\Bigl[ 
K(0)+ \varepsilon K(1)+ \varepsilon 2K(2)+ \varepsilon 3K(3)+ \cdot \cdot \cdot 

\Bigr] 
.
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1470 YOUNGMIN PARK AND DAN D. WILSON

Substituting the expansion for \psi i and collecting in powers of \varepsilon yields

\.\^\theta i = \varepsilon 
N\sum 
j=1

aijK
(0) \cdot Z(0)

+ \varepsilon 2
N\sum 
j=1

aijK
(1) \cdot Z(0) + \~p

(1)
i K(0) \cdot Z(1)

+ \varepsilon 3
N\sum 
j=1

aijK
(2) \cdot Z(0) + \~p

(1)
i K(1) \cdot Z(1) + \~p

(2)
i K(0) \cdot Z(1) +

\Bigl( 
\~p
(1)
i

\Bigr) 2
K(0) \cdot Z(2),

...

Note that the suppressed dependencies are as follows: K(0) = K(0)(\^\theta i + t, \^\theta j + t), K(1) =

K(1)(\^\theta i + t, \^\theta j + t, \~p
(1)
i , \~p

(1)
j ), K(2) = K(2)(\^\theta i + t, \^\theta j + t, \~p

(1)
i , \~p

(2)
i , \~p

(1)
j , \~p

(2)
j ), \~p

(k)
i,j = \~pki,j(

\^\theta 1 +

t, . . . , \^\theta N + t), and Z(k) = Z(k)(\^\theta i + t). The differential equation above represents a system of
nonautonomous ODEs for the phase dynamics of each oscillator.

In order to obtain an autonomous ODE that preserves the long-term dynamics of this
nonautonomous system, we apply (first-order) averaging theory to obtain

(2.15) \.\theta i = \varepsilon 
N\sum 
j=1

aij\scrH (1)(\theta i, \theta j) + \varepsilon 2
N\sum 
j=1

aij\scrH (2)(\theta i, \theta j) + \varepsilon 3
N\sum 
j=1

aij\scrH (2)(\theta i, \theta j) + \cdot \cdot \cdot ,

where

\scrH (1)(\theta i, \theta j) =
1

T

\int T

0
K(0) \cdot Z(0)dt,

\scrH (2)(\theta i, \theta j) =
1

T

\int T

0
K(1) \cdot Z(0) + \~p

(1)
i K(0) \cdot Z(1)dt,

\scrH (3)(\theta i, \theta j) =
1

T

\int T

0
K(2) \cdot Z(0) + \~p

(1)
i K(1) \cdot Z(1) + \~p

(2)
i K(0) \cdot Z(1) +

\Bigl( 
\~p
(1)
i

\Bigr) 2
K(0) \cdot Z(2)dt.

System (2.15) represents the phase dynamics of N strongly coupled oscillators taking into
account the amplitude dynamics.

Remark. Our use of first-order averaging is a strong assumption, but its utility depends on
the system of interest. For the example systems we consider in this paper, first-order averaging
is sufficient to capture phase dynamics far beyond the weak coupling regime. However, if a
system or problem demands higher-order averaging, we may incorporate methods from [20, 21]
in future studies.

We note that for numerical implementation, computing (2.13) is the most computationally
expensive step because it is a scalar time integral that must be recomputed for pairs of phase
variables. We refer the reader to Appendix B for details of our numerical approach.D
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HIGH-ORDER COUPLING FUNCTIONS 1471

2.1. Computation of coupling functions for \bfitN = 2 oscillators. As a concrete example
of how our symbolic script generates phase equations, we show the process for deriving the
phase equations for two reciprocally coupled oscillators \theta 1, \theta 2 up to order O(\varepsilon 3). We assume
a system of N = 2 coupled oscillators without self-coupling (aii = 0). We write \eta i = \^\theta i + t for
brevity.

Recall the \varepsilon -expansion in the coupling function G in the previous section:

G(\eta 1, \psi 1, \eta 2, \psi 2) =K
(0)(\eta 1, \eta 2)

+ \varepsilon K(1)
\Bigl( 
\eta 1, \eta 2, p

(1)
1 , p

(1)
2

\Bigr) 
+ \varepsilon 2K(2)

\Bigl( 
\eta 1, \eta 2, p

(1)
1 , p

(2)
1 , p

(1)
2 , p

(2)
2

\Bigr) 
+ \cdot \cdot \cdot .

Each K(k) contains the amplitude expansions \psi 1 and \psi 2. We derive more explicit forms for
K(k) by plugging in the Floquet eigenfunction expansions,

\Delta xi \approx \psi i(t)g
(1)(\eta i) + \psi 2

i g
(2)(\eta i) +O

\bigl( 
\psi 3
i

\bigr) 
,

into the derivative expansion of G,

Gm(Y +\Delta X) = Gm(Y ) +G(1)
m (Y )\Delta X +

\infty \sum 
k=2

1

k!

\biggl[ 
k
\otimes \Delta XT

\biggr] 
vec
\Bigl( 
G(k)

m (Y )
\Bigr) 
,

and collect in powers of \psi i. The appropriately collected terms are

(2.16) G(\eta 1, \psi 1, \eta 2, \psi 2) =
\sum 

k+\ell \leq 2

\psi k
1\psi 

\ell 
2M

(k,\ell )(\eta 1, \eta 2),

where the functionsM (k,\ell ) are mapsM (k,\ell ) : S1\times S1 \rightarrow \BbbR 2 consisting of the expanded Floquet
eigenfunctions of order \psi k\psi \ell and the partial derivatives of G. To obtain an expansion in \varepsilon ,
we plug in the amplitude expansion (2.6) and collect in powers of \varepsilon , noting that for N = 2

without self coupling, the p
(k)
i (t) terms are

p
(k)
i (t) =

\int \infty 

0
e\kappa sf (k)(\^\theta i + t - s, \^\theta j + t - s)ds

\equiv p
(k)
i (\^\theta i + t, \^\theta j + t),

where i = 1, 2, j = 3 - i. The resulting K(k) functions are

K(0)(\eta 1, \eta 2) =M (0,0)(\eta 1, \eta 2),

K(1)(\eta 1, \eta 2) = p
(1)
2 (\eta 2, \eta 1)M

(0,1)(\eta 1, \eta 2) + p
(1)
1 (\eta 1, \eta 2)M

(1,0)(\eta 1, \eta 2),

K(2)(\eta 1, \eta 2) =
\Bigl( 
p
(1)
2 (\eta 2, \eta 1)

\Bigr) 2
M (0,2)(\eta 1, \eta 2) + p

(1)
1 (\eta 1, \eta 2)p

(1)
2 (\eta 2, \eta 1)M

(1,1)(\eta 1, \eta 2)

+
\Bigl( 
p
(1)
1 (\eta 1, \eta 2)

\Bigr) 2
M (2,0)(\eta 1, \eta 2).D
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1472 YOUNGMIN PARK AND DAN D. WILSON

Next, we write the \varepsilon -expansion of the PRC function \scrZ , again using the amplitude expansion
(2.6):

\scrZ (\eta 1, \eta 2) = Z(0)(\eta 1) + \varepsilon p
(1)
1 (\eta 1, \eta 2)Z

(1)(\eta 1)

+ \varepsilon 2
\biggl[ 
p
(2)
1 (\eta 1, \eta 2)Z

(1)(\eta 1) +
\Bigl( 
p
(1)
1 (\eta 1, \eta 2)

\Bigr) 2
Z(2)(\eta 1)

\biggr] 
+O(\varepsilon 3),

where i = 1, 2 and j = 3  - i. We now plug the \varepsilon -expansions for G and \scrZ into the phase
equation (2.11) and average it to yield

\theta 1 = \varepsilon \scrH (1)(\theta 2  - \theta 1) + \varepsilon 2\scrH (2)(\theta 2  - \theta 1) + \varepsilon 3\scrH (3)(\theta 2  - \theta 1) +O
\bigl( 
\varepsilon 4
\bigr) 
,

where

\scrH (1)(\eta ) =
1

T

\int T

0
Z(0) \cdot M (0,0)ds,

\scrH (2)(\eta ) =
1

T

\int T

0
p
(1)
1 Z(1) \cdot M (0,0) + p

(1)
2 Z(0) \cdot M (0,1) + p

(1)
1 Z(0)M (1,0)ds,

\scrH (3)(\eta ) =
1

T

\int T

0

\biggl[ 
Z(0) \cdot K(2) + p

(1)
1 Z(1) \cdot K(1) + p

(2)
1 Z(1) \cdot K(0) +

\Bigl( 
p
(1)
1

\Bigr) 2
Z(2) \cdot K(0)

\biggr] 
ds.

All Z(k) are functions of the integrating variable s, all K(k) are functions of (s, \eta + s), all

p
(k)
1 are functions of (s, \eta + s), and all p

(k)
2 (contained inside the K(k) terms) are functions of

(\eta + s, s). The equation for \theta 2 is identical but with \theta 1  - \theta 2 as inputs to the \scrH (k) functions.
Finally, we take the phase difference \phi = \theta 2  - \theta 1, resulting in the scalar equation

\.\phi = \varepsilon [\scrH ( - \phi ) - \scrH (\phi )] \equiv  - 2\scrH \mathrm{o}\mathrm{d}\mathrm{d}(\phi )

= \varepsilon 
\Bigl[ 
\scrH (1)( - \phi ) - \scrH (1)(\phi )

\Bigr] 
+ \varepsilon 2

\Bigl[ 
\scrH (2)( - \phi ) - \scrH (2)(\phi )

\Bigr] 
+ \varepsilon 3

\Bigl[ 
\scrH (3)( - \phi ) - \scrH (3)(\phi )

\Bigr] 
+O

\bigl( 
\varepsilon 4
\bigr) 
,

where \scrH \mathrm{o}\mathrm{d}\mathrm{d} is the odd part of \scrH , and we will often refer to the right-hand side of the above
as  - 2\scrH \mathrm{o}\mathrm{d}\mathrm{d} or with a slight abuse of notation, simply call them interaction functions. As
mentioned earlier, fixed points of the scalar  - 2\scrH \mathrm{o}\mathrm{d}\mathrm{d} function inform us of the existence and
stability of phase-locked states in a given pair of coupled oscillators. We will demonstrate this
property in the examples to follow.

We remark that this expansion is consistent with previously developed strategies for get-
ting the first and second-order responses. The first-order term contains the functions M (0,0)

and Z(0), which are the coupling function G and classic infinitesimal PRC, so \scrH (1) is the
classic interaction function. The second-order term is identical to that derived in [44]. Most
importantly, the proposed theory represents an extension of the work in [44] and can be
used to calculate coupling functions to arbitrary orders of accuracy in the coupling strength.
Higher-order approximations are straightforward to attain through symbolic manipulations,
which is automated using our Python code.D
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HIGH-ORDER COUPLING FUNCTIONS 1473

3. Results.

3.1. CGL model. We begin with a relatively straightforward example of two diffusively
coupled complex CGL models:

x\prime j = (1 - x2j  - y2j )xj  - q(x2j + y2j )yj + \varepsilon [xk  - xj  - d(yk  - yj)] ,

y\prime j = (1 - x2j  - y2j )yj + q(x2j + y2j )xj + \varepsilon [yk  - yj + d(xk  - xj)] ,(3.1)

where j = 3 - k with k = 1, 2. When \varepsilon = 0 and q = 1, the system admits a stable 2\pi -periodic
limit cycle, xj(t) = cos(qt), yj = sin(qt). Examples of \scrH functions are shown in Figure 1.
Panels A, B, and C show the \scrH function for second, fourth, and tenth-order for d = 0.4
and \varepsilon = 0.26. For this coupling strength, second- and fourth-order \scrH functions show that the
antiphase solution is unstable, but the tenth-order function reveals a stable antiphase solution.
Panels D, E, and F, show the \scrH function for second, fourth, and tenth-order for d = 0.3 and
\varepsilon =  - 0.66. The second- and fourth-order functions show that synchrony is unstable, but the
tenth-order function reveals a stable synchronous solution.

Depending on the choices of d, q, and \epsilon , the model (3.1) can admit stable phase-locked
solutions, stable antiphase solutions, or bistability between phase-locked and antiphase solu-
tions. Critical curves that define regions of stability were computed exactly by [1] and are
given by

0 T/2 T

−0.25

0.00

0.25

−
2H

o
d
d
(φ

)

Order 2

A d = 0.4, ε = 0.3

0 T/2 T

−0.25

0.00

0.25

Order 4

B

0 T/2 T

−0.25

0.00

0.25

Order 10

C

0 T/2 T

φ

−1

0

1

−
2
H

o
d
d
(φ

) Order 2

D d = 0.3, ε = −0.7

0 T/2 T

φ

−0.5

0.0

0.5 Order 4

E

0 T/2 T

φ

−10

0

10
Order 10

F

Figure 1. Examples of generalized \scrH functions in the CGL model. Roots indicate existence of phase-locked
solutions (with stability determined by the slopes). (A, B, C): Second, fourth, and tenth-order interaction
functions, respectively, for the choice of coupling parameters d = 0.4 and \varepsilon = 0.26. Stability in the antiphase
state only appears in C with the addition of the tenth-order term. (Inset shows a negative slope at antiphase.)
(D, E, F) Higher-order coupling functions for second, fourth, and tenth order, respectively, for the choice of
coupling parameters d = 0.3 and \varepsilon =  - 0.66. Stability in the synchronous state only appears in (F) with the
addition of the tenth-order term. (Inset shows a negative slope at synchrony.) q = 1 for this example.D

ow
nl

oa
de

d 
10

/0
8/

21
 to

 7
6.

23
4.

10
1.

43
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1474 YOUNGMIN PARK AND DAN D. WILSON

\varepsilon s =
dq  - 1

d2 + 1
,

\varepsilon a =
1 - dq

d2  - 2dq + 3
.

(3.2)

These curves are shown as black lines in Figure 2 and define regions where different locking
modalities are stable. We compare our method to the ground truth of (3.2) by generating \scrH 
functions of different order truncations and tracking the fixed points of the equation

\.\phi = \varepsilon [\scrH ( - \phi ) - \scrH (\phi )]

as a function of \varepsilon and d.
In Figure 2, we show the boundaries constructed from our theory using second-order (pur-

ple) and tenth-order (green) \scrH functions. The system switches between stable and unstable
synchrony across solid lines (between regions I and III) and between stable and unstable
antiphase across dashed lines (between regions I and II). As expected, the tenth-order ap-
proximation closely follows the ground-truth curves (black) for a much greater range of d, \varepsilon 
compared to existing second-order theory. The parameter values corresponding to Figure
1(A, B, C) are labeled with a star ( \star ) towards the upper left corner of the diagram. This
point is in parameter region I, which corresponds to stable synchrony and unstable antiphase,

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Coupling parameter d

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

C
ou

p
li
n

g
S

tr
en

gt
h
ε

I

I

II
II
III

III

A,B,C

D,E,F

Analytic

2nd Order

10th Order

Figure 2. Two-parameter diagram of the CGL model in coupling parameters d and \varepsilon . Synchrony is only
stable in regions I and II, whereas antiphase is only stable in regions I and III. All black lines are analytically
computed from (3.2). Black solid lines denote boundaries where the system switches between stable and unstable
synchrony (\varepsilon s). Black dashed lines denote boundaries where the system switches between stable and unstable
antiphase (\varepsilon a). Purple solid, dashed: bifurcations detected using second-order interaction functions from [44].
Green solid, dashed: bifurcations detected using tenth-order interaction functions. The points labeled  \star A,B,C
and  \star D,E,F correspond to the parameter values used in Figure 1(A, B, C), and (D, E, F), respectively.
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HIGH-ORDER COUPLING FUNCTIONS 1475

confirming the accuracy of Figure 1(C). The parameter values corresponding to Figure 1(D,
E, F) are labeled with a star ( \star ) towards the lower left corner of the diagram. This point is
also in parameter region I, and we confirm stable synchrony and unstable antiphase observed
in Figure 1(F).

The analytically tractable features of this model allow us to confirm our theory and demon-
strate its strong performance. Additionally, our theory can also be applied straightforwardly
to analytically intractable models as will be seen in the next example.

3.2. Thalamic neuron model. As a second example, we consider a model of synaptically
coupled conductance-based neurons taken from [35] that replicate the salient dynamical be-
haviors of tonically firing thalamic neurons. The state variables of the thalamic neuron models
satisfy

dVi
dt

= ( - I\mathrm{L}(Vi) + I\mathrm{N}\mathrm{a}(Vi) + I\mathrm{K}(Vi) + I\mathrm{T}(Vi) - g\mathrm{s}\mathrm{y}\mathrm{n}wj(Vi  - E\mathrm{s}\mathrm{y}\mathrm{n}) + I\mathrm{a}\mathrm{p}\mathrm{p})/C,

dhi
dt

= (h\infty (Vi) - hi)/\tau h(Vi),

dri
dt

= (r\infty (Vi) - ri)/\tau r(Vi),

dwi

dt
= \alpha (1 - wi)/(1 + exp((Vi  - V\mathrm{T})/\sigma T )) - \beta wi,

where i = 1, 2 and j = 3  - i. The voltage variable Vi depends on the gating variables hi, ri,
and receives synaptic inputs from the synaptic variable wj from the reciprocal neuron. We
consider excitatory synaptic coupling, E\mathrm{s}\mathrm{y}\mathrm{n} = 0. We will use the parameter g\mathrm{s}\mathrm{y}\mathrm{n} to denote
the coupling strength in this section. (It is equivalent to \varepsilon in our formulation.) All remaining
equations are listed in Appendix C along with the parameters in Table 1.

Table 1
Thalamic model parameter values.

Parameter Value

C 1\mu F/cm2

Ek  - 90mV
ENa 50mV
Et 0mV
El  - 70mV
Esyn 0mV
gl 0.05mS/cm2

gk 5mS/cm2

Parameter Value

gNa 3mS/cm2

g\mathrm{s}\mathrm{y}\mathrm{n} 0 - 0.25mS/cm2

\alpha 3
\beta 2
\sigma T 0.8
VT  - 20mV
I\mathrm{a}\mathrm{p}\mathrm{p} 3.5\mu A/cm2

Figure 3 shows generalized \scrH functions up to first, second, and fourth order for g\mathrm{s}\mathrm{y}\mathrm{n} \in 
\{ 0.01, 0.09, 0.25\} . For g\mathrm{s}\mathrm{y}\mathrm{n} = 0.02, all generalized \scrH functions exhibit the same types of
stability, namely, unstable synchrony and stable antiphase (Figure 3(A)), and the full model

D
ow

nl
oa

de
d 

10
/0

8/
21

 to
 7

6.
23

4.
10

1.
43

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1476 YOUNGMIN PARK AND DAN D. WILSON

−0.001

0.000

0.001

−
2
H

o
d
d
(φ

)

A gsyn = 0.02

Order 1
Order 2
Order 4

−0.01

0.00

0.01

B gsyn = 0.09

−0.25

0.00

0.25

C gsyn = 0.25

0 T/2 T

5000

10000

15000

F
u

ll
M

o
d

el
t

0 T/2 T

2000

4000

0 T/2 T

250

500

Figure 3. Examples of generalized \scrH functions in the thalamic model. Roots indicate existence of phase-
locked solutions and slopes indicate the stability. In each top panel, first- (purple), second- (blue), and fourth-
(green) order generalized interaction functions are shown. In each bottom panel, the phase difference between
two full thalamic models are shown for 20 initial conditions. (A): With gsyn = 0.02, i.e., weak coupling, all
orders agree and the full model converges to the antiphase state as indicated by the black arrow. (B): With
gsyn = 0.0.9, the weak coupling theory remains valid, and the stability of fixed points agree with the higher-order
interaction functions. Note that the fourth-order function (top panel) predicts a region indicated by  \star where
phase differences evolve relatively slowly. The phase differences near synchrony in the full model (bottom panel)
exhibit slow changes in the phase differences indicated by a  \star consistent with the fourth-order prediction. (C):
With gsyn = 0.25, only the fourth order captures the existence of near-synchronous states. To ease comparisons,
we scaled the first-order function by a factor of 10 and the second-order term by a factor of 7. The black arrow
indicates the location of the antiphase point in the full system.

converges to antiphase as expected (Figure 3(A), black arrow and black curves). For g\mathrm{s}\mathrm{y}\mathrm{n} =
0.09, all \scrH functions agree in stability (Figure 3(B), bottom black arrow and black lines).
However, only the fourth-order \scrH function explains the slow transitions to antiphase for
solutions near synchrony.

We remark on a few important features in the bottom panels of Figure 3(B and C) that
may appear erroneous but are in fact consistent with our theory. Note that the underlying
limit cycle will deform as a function of the coupling strength g\mathrm{s}\mathrm{y}\mathrm{n}, and the greater the coupling
strength the greater the deformation. Although we don't show the limit cycle deformation
explicitly, we have observed that the shape and period of the limit cycle with no coupling,
g\mathrm{s}\mathrm{y}\mathrm{n} = 0, may differ substantially from the shape and period of the limit cycle for stronger
coupling, e.g., when we increase g\mathrm{s}\mathrm{y}\mathrm{n} to g\mathrm{s}\mathrm{y}\mathrm{n} = 0.09 and g\mathrm{s}\mathrm{y}\mathrm{n} = 0.25. In the case of weak
coupling, a standard approach is to use the limit cycle with no coupling as a reference point
to initialize solutions with some desired phase difference. This choice works well because
weak coupling does not perturb solutions far from the unperturbed limit cycle. However, in
the case of strong coupling, using the unperturbed limit cycle to initialize solutions results
in strong transients as the solutions settle on to the strongly perturbed limit cycle. Because
the strongly perturbed limit cycle may differ greatly in shape and period from the unper-
turbed limit cycle, the transients sometimes allow oscillators to switch in the sign of the
phase.

For example, oscillators initialized using the unperturbed limit cycle at \theta 1 and \theta 2, where
\theta 2 lags just behind \theta 1 (\phi = \theta 2  - \theta 1 < 0), may rapidly switch in order and result in \theta 1 laggingD
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HIGH-ORDER COUPLING FUNCTIONS 1477

just behind \theta 2 (\phi > 0) as the underlying trajectories settle on to the strongly perturbed limit
cycle. It is possible to mitigate the issue of transients by using the strongly perturbed limit
cycle as a reference to initialize solutions, but we chose to use the unperturbed limit cycle as
it is a standard approach. For the few initial conditions that result in this type of switch,
we chose to reverse their sign post hoc. For this reason, some initial conditions appear to be
missing in panel B, and some phase difference trajectories overlap in panel C.

Regarding the convergence of phase differences away from the antiphase T0/2 in panels
B and C, note that we used the period T0 \approx 10.6 of the unperturbed oscillator to normalize
all solutions so the antiphase state during strong coupling will appear incorrect by a factor
of T0.09/T0 and T0.25/T0, where T0.09 \approx 10 is the period of oscillation at g\mathrm{s}\mathrm{y}\mathrm{n} = 0.09 and
T0.25 \approx 8.4 is the period of oscillation at g\mathrm{s}\mathrm{y}\mathrm{n} = 0.25. The ratios T0.09/T0 and T0.25/T0 are
consistent with the respective differences seen in panels B and C.

0.0 0.1 0.2 0.3
gsyn

0

T/4

T/2

φ

A Full

0.0 0.1 0.2 0.3

0

T/4

T/2

B Reduced (Order 2)

0.0 0.1 0.2 0.3
gsyn

0

T/4

T/2

C Reduced (Order 4)

Figure 4. One-parameter bifurcation diagrams in gsyn of the phase difference between two thalamic os-
cillators. (A): Bifurcation diagram of the full system. Synchrony is unstable, antiphase is stable, and for
gsyn \approx 0.19, a stable near-synchronous state emerges. (B): Bifurcation diagram of the reduced system using
an order 2 approximation. Synchrony is unstable, and antiphase is stable as expected, but there is no near-
synchronous solution. The bifurcation diagram when using the order 1 accurate coupling functions (i.e., the
standard theory of weakly coupled oscillators) is identical to the order 2 accurate diagram. (C): Bifurcation di-
agram of the reduced system using an order 4 approximation. Synchrony is unstable, and antiphase is unstable
in agreement with the full model, and the near-synchronous branch appears for gsyn \approx 0.1.

We further illustrate the differences between the generalized\scrH functions using one-parameter
bifurcation diagrams (Figure 4). Similar to the CGL model, we follow fixed points of the phase
difference equation

\.\phi = g\mathrm{s}\mathrm{y}\mathrm{n} [\scrH ( - \phi ) - \scrH (\phi )]

for different order truncations. The bifurcation parameter is naturally g\mathrm{s}\mathrm{y}\mathrm{n}.
To compute the one-parameter diagram of the full model, we used Newton's method to

converge onto the underlying stable phase-locked states. For a given coupling strength g\mathrm{s}\mathrm{y}\mathrm{n},
we initialized the model at the antiphase to capture the antiphase solution then incremented
g\mathrm{s}\mathrm{y}\mathrm{n} by a small amount (0.02nS) and repeated the stability calculation to follow the antiphase
branch. To compute the stability of other branches, we repeated this calculation by initializing
the full model at different phase shifts (one at synchrony and the other at a phase difference
that led to the stable phase-locked branch). The full model exhibits unstable synchrony,
stable antiphase, and a stable phase-locked state that emerges at g\mathrm{s}\mathrm{y}\mathrm{n} \approx 0.19 as g\mathrm{s}\mathrm{y}\mathrm{n} increasesD
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1478 YOUNGMIN PARK AND DAN D. WILSON

(Figure 4(A)). We were unable to capture unstable phase-locked branches in the full system
using this method.

In Figure 4, we find that using the second-order \scrH function captures unstable synchrony
and stable antiphase but not the stable phase-locked solution. Finally, using the fourth-
order \scrH function, we capture all qualitative features of the full model including the stable
phase-locked solution, which emerges at g\mathrm{s}\mathrm{y}\mathrm{n} \approx 0.1. We are also able to capture the unstable
phase-locked branch.

This result demonstrates the general utility our theory. It is naturally applicable to ar-
bitrary, smooth n-dimensional smooth dynamical systems with arbitrary, smooth coupling
functions. Despite stronger coupling inducing relatively large changes to the underlying vec-
tor field, the theory robustly reproduces the behaviors of the full, unreduced model.

4. Discussion. In this paper, we have established a general coupled oscillator theory for
coupling strengths that extend well beyond the regime of weak coupling. By exploiting phase-
amplitude relationships based on the isostable coordinate framework, we derived coupling
functions valid to arbitrary orders of accuracy in the coupling strength. To verify the theory,
we applied our theory to two different models. In the first example, we used the CGL model
to demonstrate how higher-order coupling functions accurately characterize both the exis-
tence and stability of synchronous and antiphase solutions. Using these higher-order coupling
functions, we reproduced the analytically derived boundaries in the two-parameter bifurca-
tion diagram with much greater accuracy than existing methods. In the second example,
we considered a neurobiologically motivated model of a tonically firing neuron. Our theory
accurately reproduced the phase-locked solutions of coupled thalamic models.

Provided relatively mild conditions such as sufficient smoothness of the vector fields are
satisfied, our theory can be applied to a wide variety of oscillatory dynamical systems in
the biological, chemical, and physical sciences. While we only explicitly considered N = 2
oscillators in this paper, an important future direction includes augmenting this theory to
networks of oscillators and extending classic results on weakly coupled oscillators.

We have demonstrated the utility of our theory, but some limitations remain. First,
strong coupling leads to strongly deformed limit cycles in the full system, and phase informa-
tion from the weakly coupled system does not necessarily transfer into the strongly coupled
system. While our theory manages to accurately capture phase and amplitude information
far from the unperturbed limit cycle without using direct knowledge of the strongly coupled
system, care must be taken when translating from our theory to the full system. The theory
is best suited to understanding the asymptotic behavior of coupled oscillators (although it is
worth reiterating that the theory can reproduce qualitative transient behavior for nonweak
coupling).

Other limitations of our theory are computational. Some of the functions in this paper
are expensive to compute, but this limitation may be improved by existing work on phase
reduction theory for strong perturbations. In [19], the authors introduce the local orthogonal
rectification (LOR). In contrast to the isostable framework, LOR codes the amplitude as an or-
thogonal distance from a limit-cycle trajectory. Other insights that may lead to more efficient
computation of coupling functions may be gleaned from [30] where authors introduce a pa-
rameterization method to compute higher-order phase-amplitude coordinates, which sidestepsD
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the need to compute symbolic derivatives and the need to use Newton's method in this work
and in [44].

Finally, we discuss where our results stand relative to general work using pulse-coupled
oscillators. In [5], the authors derive a general method---independent of model, coupling
strength, and synapse---to predict N : 1 phase locking. These pulse-coupled methods are
powerful and broadly applicable to experimental neuroscience because the underlying differ-
ential equations need not be known. Similarly, Cui et al. (2009) derive a functional PRC given
a regular stream of pulse trains perturbing oscillator phase responses with additional effects
such as adaptation[6]. However, the former results rely on a strongly attracting limit cycle,
and the latter resultsvely on the input type (pulsatile and regular). Beyond the linear regime,
if the input changes or multiple inputs are applied, it is generally challenging to generalize
the experimentally obtained PRCs. In particular, when only considering the linear PRCs, the
resulting reduced-order equations, in general (especially with weakly attracting limit cycles),
will not predict bifurcations that result as the coupling strength increases. The continuous-
time method proposed in this paper provides a systematic method for generating coupling
functions valid to higher than linear orders of accuracy in the reduced-order coordinates.

Appendix A. Derivation of the Taylor expansion of \bfitG in \bfitvarepsilon .
Recall that when starting with an arbitrary mth coordinate of the vector-valued function

G(Y + \Delta X), where Y = [Y (\theta i)
T , Y (\theta j)

T ]T and \Delta X = [\Delta xTi ,\Delta x
T
j ]

T (both 2n \times 1 column
vectors), the Taylor expansion yields (2.8) and (2.9), which are rewritten here for convenience:

Gm(Y +\Delta X) = Gm(Y ) +G(1)
m (Y )\Delta X +

\infty \sum 
k=2

1

k!

\biggl[ 
k
\otimes \Delta XT

\biggr] 
vec
\Bigl( 
G(k)

m (Y )
\Bigr) 
,(A.1)

where

(A.2) G(k)
m =

\partial vec
\Bigl( 
G

(k - 1)
m

\Bigr) 
\partial XT

\in \BbbR 2n(k - 1)\times 2n.

The goal is to arrive at the form in (2.10):

(A.3) G(\theta i, \psi i, \theta j , \psi j) = K(0)(\theta i, \psi i, \theta j , \psi j)+\varepsilon K
(1)(\theta i, \psi i, \theta j , \psi j)+\varepsilon 

2K(2)(\theta i, \psi i, \theta j , \psi j)+ \cdot \cdot \cdot .

To begin, we substitute the Floquet eigenfunction for \Delta xi,

(A.4) \Delta xi = \psi ig
(1)(\theta i) + \psi 2

i 2g
(2)(\theta i) + \cdot \cdot \cdot ,

into (A.1). For clarity, we will consider individual terms in (A.1) and later collect in powers
of \varepsilon . The first term, Gm(Y ), is a scalar and is O(1) in \varepsilon . This term is equivalent to K(0). The

second term contains G
(1)
m (Y ), a 1\times 2n vector that multiplies \Delta X, a 2n\times 1 vector; therefore

this term is scalar as expected. Written in terms of (A.4),

(A.5) G(1)
m (Y )\Delta X = G(1)

m (Y )

\biggl[ 
\psi ig

(1)(\theta i) + \psi 2
i g

(2)(\theta i) + \cdot \cdot \cdot 
\psi jg

(1)(\theta j) + \psi 2
j g

(2)(\theta j) + \cdot \cdot \cdot 

\biggr] 
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1480 YOUNGMIN PARK AND DAN D. WILSON

where each g(k) is a 2n\times 1 vector. If we then substitute the expansion for \psi i,

\psi i(t) \approx \varepsilon p
(1)
i (t) + \varepsilon 2p

(2)
i (t) + \varepsilon 3p

(3)
i (t) + \cdot \cdot \cdot ,

into (A.5), we arrive at a form where powers of \varepsilon are explicit:

G(1)
m (Y )\Delta X

= G(1)
m (Y )

\left[  \Bigl( \varepsilon p(1)i (t) + \varepsilon 2p
(2)
i (t) + \cdot \cdot \cdot 

\Bigr) 
g(1)(\theta i) +

\Bigl( 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr) 2
g(2)(\theta i) + \cdot \cdot \cdot \Bigl( 

\varepsilon p
(1)
j (t) + \varepsilon 2p

(2)
j (t) + \cdot \cdot \cdot 

\Bigr) 
g(1)(\theta j) +

\Bigl( 
\varepsilon p

(1)
j (t) + \varepsilon 2p

(2)
j (t) + \cdot \cdot \cdot 

\Bigr) 2
g(2)(\theta j) + \cdot \cdot \cdot 

\right]  
= G(1)

m (Y )

\Biggl( 
\varepsilon 

\Biggl[ 
p
(1)
i (t)g(1)(\theta i)

p
(1)
j (t)g(1)(\theta j)

\Biggr] 
+ \varepsilon 2

\Biggl[ 
p
(2)
i (t)g(1)(\theta i) + p

(1)
i (t)2g(2)(\theta i)

p
(2)
j (t)g(1)(\theta j) + p

(1)
j (t)2g(2)(\theta j)

\Biggr] 
+ \cdot \cdot \cdot 

\Biggr) 
.

(A.6)

Although not explicitly written here, it is straightforward to derive expressions for the higher-
order terms in \varepsilon , especially using a symbolic math toolbox such as those found in Python,
MATLAB/Octave, Mathematica, and Maple. (We opted to use Python's Sympy [24].) Note
that the first-order \varepsilon term above is equivalent to K(1), and this term only depends on up to

p
(1)
i .

We now turn to the next term in the Taylor expansion of G in (A.1). This term contains a
tensor product \Delta XT \otimes \Delta XT , which yields a 1\times (2n)2 vector, and the vec(\cdot ) operator applied
to the second derivative of Gm, vec(G

(2)
m (Y )), which yields a (2n)2 \times 1 vector. Therefore, the

second term is a scalar as expected. All powers of \varepsilon are contained in the first term, so we
unpack this term explicitly.

Let g
(k)
m denote the mth coordinate of the vector-valued function g(k) and Xm denote the

mth coordinate of \Delta X for m = 1, . . . , 2n. Then

Xm =

\Biggl\{ 
\psi ig

(1)
m (\theta i) + \psi 2

i g
(2)
m (\theta i) + \cdot \cdot \cdot for m = 1, . . . , n,

\psi jg
(1)
m (\theta j) + \psi 2

j g
(2)
m (\theta j) + \cdot \cdot \cdot for m = n+ 1, . . . , 2n.

The tensor product \Delta XT \otimes \Delta XT can then be written as

\Delta XT \otimes \Delta XT

=
\bigl[ 
X2

1, X1X2, . . . , X
2
2n

\bigr] 
=

\biggl[ \Bigl( 
\psi ig

(1)
1 (\theta i) + \psi 2

i g
(2)
1 (\theta i) + \cdot \cdot \cdot 

\Bigr) 2
,\Bigl( 

\psi ig
(1)
1 (\theta i) + \psi 2

i g
(2)
1 (\theta i) + \cdot \cdot \cdot 

\Bigr) \Bigl( 
\psi ig

(1)
2 (\theta i) + \psi 2

i g
(2)
2 (\theta i) + \cdot \cdot \cdot 

\Bigr) 
, . . . ,\Bigl( 

\psi jg
(1)
2n (\theta j) + \psi 2

j g
(2)
2n (\theta j) + \cdot \cdot \cdot 

\Bigr) 2\biggr] 
=

\Biggl[ \biggl( \Bigl\{ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 
g
(1)
1 (\theta i) +

\Bigl\{ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 2
g
(2)
1 (\theta i) + \cdot \cdot \cdot 

\biggr) 2
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\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 
g
(1)
1 (\theta i) +

\Bigl\{ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 2
g
(2)
1 (\theta i) + \cdot \cdot \cdot 

\biggr) 
\times 
\biggl( \Bigl\{ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 
g
(1)
2 (\theta i) +

\Bigl\{ 
\varepsilon p

(1)
i (t) + \varepsilon 2p

(2)
i (t) + \cdot \cdot \cdot 

\Bigr\} 2
g
(2)
2 (\theta i) + \cdot \cdot \cdot 

\biggr) 
, . . . ,\biggl( \Bigl\{ 

\varepsilon p
(1)
j (t) + \varepsilon 2p

(2)
j (t) + \cdot \cdot \cdot 

\Bigr\} 
g
(1)
2n (\theta j) +

\Bigl\{ 
\varepsilon p

(1)
j (t) + \varepsilon 2p

(2)
j (t) + \cdot \cdot \cdot 

\Bigr\} 2
g
(2)
2n (\theta j) + \cdot \cdot \cdot 

\biggr) 2
\Biggr] 
.

It is now possible to collect in powers of \varepsilon 2. The order \varepsilon 2 terms above combined with those
in (A.6) belong to the term K(2). Note that the K(2) term's dependence on \psi i and \psi j only

appears in the functions p
(1)
i , p

(2)
i , p

(1)
j , and p

(2)
j .

In general, using a symbolic math toolbox, it is possible to verify up to the desired order

that the K(k) term only depends on terms p
(\ell )
i , p

(\ell )
j for \ell \leq k.

Appendix B. Numerical integration.
For N = 2, our theory requires the computation of the functions

p
(k)
i (\eta 1, \eta 2) =

\int \infty 

0
e\kappa sf (k)(\eta 1  - s, \eta 2  - s)ds.

The above integral must be repeated for each \eta i and \eta j , where \eta i and \eta j are taken from a grid
of phase values. IfM is the number of discretized points in the interval [0, T ], P is the number
of discretized points in the interval (\infty , 0], and N is the number of oscillators, then the total
number of computations is proportional to P \times MN . This computation is especially expensive
if \kappa is small (requiring large P ) or if the functions f (k), containing the underlying PRCs,
IPRCs, and Floquet eigenfunctions require a fine temporal resolution to integrate (requiring
M large). In the case of the thalamic model, \kappa is small, roughly \kappa \approx 0.023, and at least
20000 time units were required to compute the PRC, IRC, and Floquet eigenfunctions to
acceptable accuracy (in contrast, the CGL model required fewer time units on the order of
2000). We typically iterated Newton's method until the magnitude of the derivative vector
reduced to 1e  - 10 or lower, which resulted in the magnitude of the difference between the
final and initial conditions of the periodic solutions to be on the order of 1e  - 7. We used
P = 25 \times M , so each integral calculation was relatively costly. We found that the \eta i and \eta j
was best sampled using M = 4000, i.e., a grid of 4000\times 4000 discretized phase values, so the
integral was computed 16 million times. We found Riemann integration to be efficient and
sufficiently accurate. (We chose the integration mesh such that further refinements did not
visually affect the \scrH -functions.)

To speed up computations of the above integral, we transformed it to minimize repeating
calculations in two variables. Letting u = \eta 1  - s, a straightforward transformation yields

e\kappa \eta 1
\biggl[ \int 0

 - \infty 
e - \kappa uf(u, \eta 2  - \eta 1 + u)du+

\int \eta 1

0
e - \kappa uf(u, \eta 2  - \eta 1 + u)du

\biggr] 
.

Note that the first integral depends only on the phase difference \eta 2 - \eta 1, so it is computed along
only one dimension, and the total number of computations is proportional to P \times M\times (N - 1).
The second integral does not solely depend on the phase difference \eta 2  - \eta 1 and must beD
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1482 YOUNGMIN PARK AND DAN D. WILSON

computed in two dimensions. However, the computation is not on the entire grid of \eta 1, \eta 2
points but on a triangular half of the domain because the upper integral limit varies as a
function of \eta 1. The number of computations for the second integral is proportional to MN/2.
The total number of calculations is P \times M \times (N  - 1)+MN/2, which is a significant reduction
compared to the original integral.

Finally, we vectorized and computed each integral independently for any given \eta 1, \eta 2, al-
lowing us to parallelize the integral computation. The parallelization uses the pathos

multiprocessing module to allow for more robust serialization and does not use the standard
multiprocessing module. Assuming that the PRC, IRPC, and Floquet eigenfunctions have

been computed, solving for p
(k)
i up to order 4 with M = 4000 takes approximately 45 minutes

for the thalamic model on 8 cores. Solving p
(k)
i for the CGL model only requires M = 200

and takes roughly 5--10 minutes on two cores.

Appendix C. Thalamic model.
The remaining equations for the thalamic model are

I\mathrm{L}(V ) = g\mathrm{L}(V  - EL), I\mathrm{N}\mathrm{a} = g\mathrm{N}\mathrm{a}hm
3
\infty (V )(V  - E\mathrm{N}\mathrm{a}),

I\mathrm{K} = 0.75g\mathrm{K}(1 - h)4(V  - E\mathrm{K}), I\mathrm{T} = g\mathrm{T}rp
2
\infty (V )(V  - E\mathrm{T}),

and

ah(V ) = 0.128 exp( - (V + 46)/18), bh(V ) = 4/(1 + exp( - (V + 23)/5)),

m\infty (V ) = 1/(1 + exp( - (V + 37)/7)), h\infty (V ) = 1/(1 + exp((V + 41)/4)),

r\infty (V ) = 1/(1 + exp((V + 84)/4)), p\infty (V ) = 1/(1 + exp( - (V + 60)/6.2)),

\tau h(V ) = 1/(ah(V ) + bh(V )), \tau r(V ) = 28 + exp( - (V + 25)/10.5).

Please see Table 1 for the parameters.
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