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Phase-Based Reduced Order Models for Parabolic and Elliptic Bursting Neurons\ast 

Dan Wilson\dagger 

Abstract. While many well-established approaches exist for phase-based reduced order modeling of tonically
firing neurons, comparatively few general approaches exist for the consideration of bursting neurons
in a reduced order setting. Many formal analysis strategies exploit the separation of fast and slow
timescales present in most bursting neurons, but these approaches are typically ill-suited to consider
emergent behavior resulting from inter-neuron coupling or other external perturbations. This work
considers the development and analysis of two different model order reduction approaches valid for
two different topological classes of bursting neurons. For parabolic bursters, a persistent invariant
circle allows for the relatively straightforward application of the extended phase reduction approach.
For elliptic bursters, the perturbed dynamics can be considered relative to a carefully chosen set of
reference trajectories. Mathematical analysis and accompanying numerical illustrations demonstrate
the utility of the proposed approaches.
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1. Introduction. From a biophysical perspective, neural spiking can be explained in terms
of the complex interplay between ionic currents, gating variables, and synaptic neurotransmit-
ters [12], [9], [22]. These features can be combined numerically to construct conductance-based
neural models with model parameters tuned to match experimental observations. Such mod-
els can replicate a wide variety of neural spiking behaviors, but given the complexity of most
conductance-based neural models, it is often desirable to work with simplified models. For in-
stance, integrate and fire neuron models [49], [46] eschew the spiking dynamics to focus on the
subthreshold behavior with a predefined spiking threshold and possibly a refractory period.
By contrast, for tonic (repetitively firing) neurons, a coordinate change to phase variables
using isochrons [58], [14] yields a reduction of dimensionality and ultimately allows for the
implementation of weakly coupled oscillator theory [25], [18] to study the aggregate behaviors
of weakly perturbed and weakly interacting neurons [50] [4], [56], [17].

While phase-based reduction techniques have allowed for a greater understanding of the
behavior of coupled, tonically firing neurons, they are typically unable to accommodate burst-
ing neurons, i.e., those that transition between tonic firing and quiescence [22]. Bursting neu-
rons are ubiquitous in the central nervous system, providing the building blocks that comprise
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188 DAN WILSON

central pattern generators [28], [29], [6], including those found in animal respiration cycles [45],
[33], [35]. Bursting neurons can typically be characterized by a fast-slow timescale separation
of the form [22, 12]

\.x= f(x, y),

\.y= \epsilon g(x, y),(1)

where x\in \BbbR m are the fast variables responsible for spiking, y \in \BbbR k are the slow variables that
modulate spiking, f and g give the dynamics of the fast and slow variables, respectively, and
0<\epsilon \ll 1. Standard phase-based analysis is usually insufficient for bursting neurons because
the underlying assumptions break down when the state transitions between attractors (i.e.,
between tonic firing and quiescence) [22]. Indeed, existing phase-based reduction techniques
applied to bursting neuron cycles result in reduced order models with considerable phase
sensitivity [44], [30], precluding practical use as a tool for understanding coupled oscillations.
Additionally, while the timescale separation in (1) allows for analysis of the fast equations
\.x= f(x, y) in the limit that \epsilon \rightarrow 0, it can be hard to accommodate coupling between neurons
with these formulations [3], [53], [38]. Other methods including averaging [42] or the equivalent
voltage method [24], [2] can be used to capture the dynamics of the slow variables, but their
underlying assumptions also break down near bifurcations.

In direct contrast with tonically firing neurons, where phase-based reduced order modeling
can be used to understand emergent behaviors in relation to the underlying biology (ionic cur-
rents, neurotransmitters, etc.), reduced order modeling techniques for understanding the be-
haviors of coupled and perturbed bursting neurons are insufficiently developed. Consequently,
studies of coupled bursting neurons are often confined to low-dimensional, phenomenological
models [1], [7], [48], [43], [40], [41], [19]. While phenomenological models are convenient for
mathematical analysis, they generally do not preserve salient aspects of the physiology of the
neuron (e.g., specific ionic currents, ionic concentrations), which is an important consider-
ation in many applications. With this in mind, the proposed approach offers a framework
to analyze physiologically detailed bursting neurons using a reduced order coordinate frame-
work, sidestepping the need to resort to phenomenological representations. Two common
topological classes of neurons are considered in this work. The first is parabolic bursting, for
which spiking begins and ends as a result of a saddle node on an invariant circle bifurcation.
The second is elliptic bursting, whereby resting stability is lost through a subcritical Hopf
bifurcation and the subsequent transition back to quiescence results from a fold limit cycle
bifurcation [22], [12]. In this work, different strategies are required for reduction of parabolic
and elliptic bursters because different bifurcations underlie their dynamical behavior.

The organization of this paper is as follows: Section 2 provides necessary background
on existing phase-based reduced order modeling strategies that are relevant to the methods
considered in this work. Section 3 investigates a model order reduction approach for parabolic
bursters. For this topological class of neuron, the persistence of the invariant circle during
both firing and quiescence ultimately allows for the use of the extended phase reduction
approach presented in [26]. Section 4 investigates a model order reduction approach for
elliptic bursters. Here, by considering the system relative to a continuous set of carefully
chosen reference trajectories parameterized by a time-like and an amplitude-like variable, it is
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PHASE-BASED REDUCED BURSTING NEURONS 189

possible to accurately capture the transition between spiking and quiescence. Brief remarks
are given about the proposed methodology to the application of fold/homoclinic (square wave)
bursters in section 5. Concluding remarks are provided in section 6.

2. Background.

2.1. Phase reduction. Consider the dynamics of a conductance-based neuron of the gen-
eral form

Cm \.V = I\mathrm{i}\mathrm{o}\mathrm{n}(V,a, p0) + I\mathrm{e}\mathrm{x}\mathrm{t}(\mu ),

\.a= fa(V,a, p0),(2)

where V \in \BbbR is the transmembrane potential, Cm is a membrane capacitance, a \in \BbbR N - 1 is a
collection of auxiliary variables (ionic concentrations, gating variables, etc.), I\mathrm{i}\mathrm{o}\mathrm{n} is a collection
of ionic currents, and I\mathrm{e}\mathrm{x}\mathrm{t} is an external ionic current (synaptic current, externally applied
current, etc.) that is a function of \mu \in \BbbR \psi . Here, p0 \in \BbbR M is also explicitly included to
highlight the effect of a subset of the system parameters. Note that the formulation (2) is

different from the fast-slow formulation from (1). To proceed, let x=
\bigl[ 
V aT

\bigr] T \in \BbbR N comprise
the state of the full system (2). For tonically firing neurons, i.e., those with that fire at regular
intervals, phase reduction [12, 22, 37, 31] is an often used strategy to reduce the dimension
and complexity of (2). To employ this strategy, suppose that (2) has a T (p0)-periodic, stable
limit cycle x\gamma p0 when \mu = \vec{}0 where \vec{}0 is an appropriately sized vector of zeros. The phase,
\theta \in [0,2\pi ), can be defined for all states x \in x\gamma p0 with \theta scaled so that d\theta 

dt = 2\pi /T (p0) \equiv \omega (p0)

when \mu = \vec{}0. Isochrons [14], [57] are typically used to extend the definition of phase to the
basin of attraction of the limit cycle as follows: letting \theta 1 be the phase associated with some
b\in x\gamma p0 , the \theta 1 isochron is the set of all c for which

lim
t\rightarrow 0

| | \phi (t, b) - \phi (t, c)| | = 0,(3)

where \phi (t, x) denotes the flow of (2) subject to \mu =\vec{}0 and | | \cdot | | can be any vector norm. Phase
reduction of (2) can be implemented by changing to phase coordinates

\.\theta = \omega (p0) +ZR(\theta , p0)\mu .(4)

Here, ZR(\theta , p0) =
\partial \theta 
\partial V

\partial I\mathrm{e}\mathrm{x}\mathrm{t}
\partial \mu is often referred to as the phase response curve where the partial

derivatives are evaluated at x\gamma p0(\theta ) and at \mu =\vec{}0. When using (4), an estimate of the state can
be obtained according to x(t)\approx x\gamma p0(\theta (t)). In the identification of ZR(\theta , p0) from (4), when the
model equations (2) are available, it is generally convenient to compute \partial \theta 

\partial x (which contains
\partial \theta 
\partial V ) using the adjoint method [5]. In an experimental setting, it is also possible to use the
direct method [34], which entails giving a perturbation at a known phase, inferring the change
in phase, repeating the process at different phases, and fitting a curve to the resulting data
to infer ZR.

2.2. Extended phase reduction. For the phase reduction from (4), the partial derivatives
that comprise ZR(\theta , p0) are evaluated at x\gamma p0(\theta ). As such, its accuracy suffers when the state
x is far from x\gamma p0(\theta ). In practice, this leads to the caveat that phase reduction of the form (4)
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190 DAN WILSON

is only guaranteed to be valid when \mu (t) is small relative to the nonunity Floquet multipliers
associated with the periodic orbit so that x(t) - x\gamma p0(\theta ) stays relatively small. Reference [26]
presented an extension to standard phase reduction theory for use when the input can be de-
composed as the summation of a small amplitude component with a slowly varying component.
Summarizing the results of [26] here, consider a general dynamical system of the form

\.x= F (x,\mu ),(5)

where x\in \BbbR N is the state and \mu \in \BbbR \psi is an input. When taking \mu to be constant, suppose that
(5) has a stable limit cycle x\gamma \mu (\theta ) for \mu \in A, where A is an open subset of \BbbR \psi . Let T (\mu ) be the
associated period with \omega (\mu ) = 2\pi /T (\mu ) being the natural frequency. The limit cycle x\gamma \mu (\theta ) can
be parameterized by a phase \theta \in [0,2\pi ) using isochrons as defined in (3). Assume that x\gamma \mu (\theta )
is continuous with respect to \theta and \mu \in A. Note that the isochrons of x\gamma \mu (\theta ) are unique up to
a constant shift; in practice it is possible to disambiguate the phase shift between limit cycles,
for instance, by defining a Poincar\'e section transverse to the set of limit cycles and defining
the crossing of this section to correspond to a level set of phase between limit cycles. With this
in mind, an extended phase can be defined, \theta (x,\mu ), that is a function of both the state and
the input. When \mu is allowed to vary in time, suppose that it can be decomposed according to

\mu (t) = q(\epsilon t) + \sigma p(t),(6)

where \epsilon and \sigma are both sufficiently small and that q(\epsilon t) is continuously differentiable with
respect to t. Reference [26] showed that the dynamics of the extended phase are

\.\theta = \omega (q(\epsilon t)) + \sigma Z(\theta , q(\epsilon t))p(t) + \epsilon D(\theta , q(\epsilon t)) \.q(\epsilon t) +O(\epsilon 2, \sigma 2, \epsilon \sigma ),(7)

where

Z(\theta , q(\epsilon t)) =
\partial \theta 

\partial x

T \partial F

\partial \mu 
,

D(\theta , q(\epsilon t)) = - \partial x\gamma \mu 
\partial \mu 

T
\partial \theta 

\partial x
,

x(t) = x\gamma q(\epsilon t)(\theta ) +O(\epsilon , \sigma ).(8)

Above, all partial derivatives are evaluated at x= x\gamma \mu and \mu = q(\epsilon t). As with standard phase
reduction (4), Z(\theta ,\mu ) can be computed individually for each limit cycle x\gamma \mu using the adjoint

method. The terms
\partial x\gamma 

\mu 

\partial \mu can be obtained using finite difference approximations with knowledge
of each limit cycle and can also be computed with methods discussed in [52]. This approach
was further extended in [54] to consider both phase and amplitude coordinates, ultimately
eliminating the need to decompose \mu (t) in terms of a slowly varying and small amplitude signal.

3. Reduced order models for Circle/Circle (parabolic) bursters. For Circle/Circle burst-
ing (i.e., parabolic bursting), tonic spiking begins when a stable quiescent state loses stability
via a saddle-node on an invariant circle (SNIC) bifurcation. Spiking subsequently ends through
another SNIC bifurcation. Typically, autonomous Circle/Circle bursting can be characterized
according to a fast-slow timescale separation of the form (1) where the slow dynamics have at
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PHASE-BASED REDUCED BURSTING NEURONS 191

least two variables. In this section, a 6-variable model from [8] is considered with associated
equations provided in Appendix A. In the context of fast-slow decomposition from (1), the
transmembrane voltage (V ) gating variables (n and h) and intracellular calcium concentration
([Ca\mathrm{i}]) are taken to be part of the fast equations. The remaining concentrations [Na]\mathrm{o} and [K]\mathrm{i}
comprise the slow equations. Using the dissection method [38], one can hold the slow variables
constant and examine the resulting behavior of the fast equations. Applying the dissection
method, as shown in panel D of Figure 1, when I\mathrm{e}\mathrm{x}\mathrm{t} = 0, the dashed line separates regions of
tonic firing and quiescence through a curve of SNIC bifurcations. Panels A--C show the voltage
and slow variable ion concentrations during a simulation of the full model (A1) when I\mathrm{e}\mathrm{x}\mathrm{t} = 0.
Plotting the potassium concentration against the sodium concentration in panel D, one finds
that the line of SNIC bifurcations accurately separates the firing from the quiescent regime.

3.1. Forced Circle/Circle bursting. The goal here is to consider the dynamics of (A1)
with a reduced order model that accurately captures the transitions between quiescence and
bursting. To do so, consider the system (A1) in terms of its fast-slow decomposition of the
form (1). For the moment, we will take \.y= 0 so that y= y0 is constant. The system can also
be represented in the form of (2),

Cm \.V = I\mathrm{i}\mathrm{o}\mathrm{n}(V,a, y) + I\mathrm{e}\mathrm{x}\mathrm{t}(\mu ),

\.a= fa(V,a, y),(9)

where y takes the place of the parameter p0 from (2). Recall that I\mathrm{i}\mathrm{o}\mathrm{n} is comprised of all
ionic currents of an individual neuron and I\mathrm{e}\mathrm{x}\mathrm{t} is some external transmembrane current source
that could, for instance, account for the influence of synaptic current or a direct current

injection from a patch clamp. For concreteness, consider y0 =
\bigl[ 
[Na]\mathrm{o} [K]\mathrm{i}

\bigr] T
= [18.5 6.5]T

mM. Considering panel D of Figure 1, when I\mathrm{e}\mathrm{x}\mathrm{t} = 0 this is in the quiescent regime; in this case
the SNIC bifurcation occurs at I\mathrm{e}\mathrm{x}\mathrm{t} = 0.263 \mu A/cm2. In order to apply the phase reduction,

Figure 1. For simulations of the parabolic bursting model from (A1), panels A, B, and C show traces of
the transmembrane voltage (in mV), extracellular potassium, and intracellular sodium concentrations (in mM),
respectively, during a full bursting cycle. Panel D shows the potassium and sodium concentrations plotted over
time with the active phase (tonic firing) occurring on the right side of the line of SNIC bifurcations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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192 DAN WILSON

consider the periodic orbit that results from taking I\mathrm{e}\mathrm{x}\mathrm{t}(\mu ) = 0.5 + \mu . For this periodic orbit,
it is straightforward to compute the phase reduction of the form (4)

\.\theta = \omega (y0) +ZR(\theta , y0)(I\mathrm{e}\mathrm{x}\mathrm{t}(t) - 0.5).(10)

As shown in Appendix C, when using the phase reduction (10), the SNIC bifurcation is
preserved in the transition to the phase reduced model with the bifurcation occurring for the
same value of the input. Indeed, results in Figure 2 show nearly indistinguishable results for
two different inputs. Applying I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 2sin(2\pi t/100) as shown in panel C yields regular
3-spike bursts as shown in panel B. Here, for the reduced order model V (\theta ) = x\gamma y0(\theta ). Panel
A shows the corresponding phase during the simulation. Similar results are shown in panels
D--F. In this case, I\mathrm{e}\mathrm{x}\mathrm{t} is obtained as follows: random numbers between  - 2.5 and 1.5 are
chosen from a uniform distribution and held constant over a 20 ms time interval, and the
resulting signal is smoothed using spline interpolation. Results from Figure 2 illustrate that
standard phase reduction of the form (4) provides an adequate 1-dimensional representation
of the full order dynamics. Note that a Gaussian white noise process can also be used in place
of I\mathrm{e}\mathrm{x}\mathrm{t}(t); in this case, the reduced order model also accurately captures the spiking times in
the full order model (results not shown).

The standard, 1-dimensional phase reduction (4) is guaranteed to be accurate in the limit
in which the perturbations are infinitesimally small. In the the next section, a case where the
slow variables are allowed to change will be considered; for that model the standard phase
reduction (4) is insufficient, necessitating the use of the extended phase reduction (7).

Figure 2. For the model (A1), the slow variables [Na]\mathrm{o} and [K]\mathrm{i} are held constant, and the fast equations
are analyzed using phase reduction yielding the model (10). For the sinusoidal external current shown in panel
C, outputs for the full and reduced order models are nearly identical, as shown in panel B. Panel A gives
the corresponding value of phase during simulations of the reduced order model. The horizontal dashed line in
panel C denotes the value at which the SNIC bifurcation occurs with the reduced order model transitioning freely
between firing and quiescence. Panels D--F give a similar result with a different input that is chosen randomly
as described in the text.
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PHASE-BASED REDUCED BURSTING NEURONS 193

3.2. Circle/Circle bursting with slow variable dynamics. Results from section 3.1 con-
sider the model (A1) in the limit in which the slow variables are constant. Here, the slow vari-
ables will be allowed to change, necessitating the use of the extended phase reduction described
in section 2.2. To formulate this problem in this manner, the model (A1) can be written as

\.x= F (x,\mu ),(11)

where x=
\bigl[ 
V n h [Ca]\mathrm{i}

\bigr] T
are the fast variables and \mu =

\bigl[ 
I\mathrm{e}\mathrm{x}\mathrm{t} [Na]\mathrm{o} [K]\mathrm{i}

\bigr] T
is comprised

of the external current input and the slow variables. Such a system could describe, for instance,
a neuron where the bursting is mediated by the slow variable dynamics that also receives an
additional synaptic current from an external source. Because [Na]\mathrm{o} and [K]\mathrm{i} are slow variables,
provided I\mathrm{e}\mathrm{x}\mathrm{t}(t) is small in magnitude, it can be decomposed in the same form as (6),

\mu (t) =

\left[  0
[Na]\mathrm{o}(t)
[K]\mathrm{i}(t)

\right]  
\underbrace{}  \underbrace{}  
\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{l}\mathrm{y} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}

+

\left[  I\mathrm{e}\mathrm{x}\mathrm{t}(t)0
0

\right]  
\underbrace{}  \underbrace{}  

\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l} \mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{d}\mathrm{e}

.(12)

With this in mind, following [26], when holding \mu constant suppose that (11) has a family of
limit cycles x\gamma \mu that emerge when \mu =

\bigl[ 
\xi [Na]\mathrm{o} [K]\mathrm{i}

\bigr] 
for any [Na]\mathrm{o} \in A1 \subset \BbbR , [K]\mathrm{i} \in A2 \subset \BbbR 

and for a specific choice of \xi \in \BbbR . Appropriately defining an extended phase \theta (x, [Na]\mathrm{o}, [K]\mathrm{i})
as described in section 2.2, the associated dynamics follow

\.\theta = \omega ([Na]\mathrm{o}, [K]\mathrm{i}) +Z(\theta , [Na]\mathrm{o}, [K]\mathrm{i})(I\mathrm{e}\mathrm{x}\mathrm{t}(t) - \xi ))

+D\mathrm{N}\mathrm{a}(\theta , [Na]\mathrm{o}, [K]\mathrm{i})[
\.Na]o +D\mathrm{K}(\theta , [Na]\mathrm{o}, [K]\mathrm{i})[

\.K]i,(13)

where

Z(\theta , [Na]\mathrm{o}, [K]\mathrm{i}) =
\partial \theta 

\partial V
,

D\mathrm{N}\mathrm{a}(\theta , [Na]\mathrm{o}, [K]\mathrm{i}) = - 
\biggl( 

\partial x\gamma 

\partial [Na]\mathrm{o}

\biggr) T
Z(\theta , [Na]\mathrm{o}, [K]\mathrm{i}),

D\mathrm{K}(\theta , [Na]\mathrm{o}, [K]\mathrm{i}) = - 
\biggl( 

\partial x\gamma 

\partial [K]\mathrm{i}

\biggr) T
Z(\theta , [Na]\mathrm{o}, [K]\mathrm{i}),

x(t)\approx x\gamma \mu (\theta , [Na]\mathrm{o}, [K]\mathrm{i}).

(14)

Above, all partial derivatives are evaluated at x\gamma \mu (\theta , [Na]\mathrm{o}, [K]\mathrm{i}). Note that since \xi is constant,
for notational convenience the terms from (13) and (14) are not explicitly written as functions
of \xi . Considering the form of (13), knowledge of both [ \.Na]o and [ \.K]i is necessary; these terms
can be computed with a copy of the slow variable dynamics evaluated according to the ap-
proximation x(t)\approx x\gamma \mu (\theta , [Na]\mathrm{o}, [K]\mathrm{i}). Ultimately, the 6 parameter model (A1) can be reduced
to a system of 3 variables: one describing the phase with dynamics that follow (13), and two
variables that describe the slow variable dynamics. This approach is applied to the model
from (A1) using \xi = 0.5 so that the fast equations have a periodic orbit when [K]\mathrm{i} \in [6.5,12.8]
mM and [Na]\mathrm{o} \in [12,20] mM. In (14), the phase of all x\gamma \mu (\theta , [Na]\mathrm{o}, [K]\mathrm{i}) is aligned so that \theta = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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194 DAN WILSON

corresponds to the maximum value of V on the periodic orbit (i.e., the timing of an action
potential). The extended phase reduction method is compared to two other strategies. For
the first, the phase reduction as described in section 3.1 is applied using the periodic orbit
that results when (Na]\mathrm{o}, [K]\mathrm{i}) = (18,7) mM. For the second strategy, the approach investigated
in [44] is considered, whereby the entire TB-periodic bursting cycle of (A1), x\gamma \mathrm{b}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{t} (\theta ), that
results when taking I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 0 is considered as the periodic orbit (consisting of 37 action
potentials followed by a period of quiescence). The phase reduction is applied relative to this
periodic orbit yielding an equation of the form

\.\theta B = \omega B +ZB(\theta B)I\mathrm{e}\mathrm{x}\mathrm{t}(t),(15)

where \omega B = 2\pi /TB. Note that for the second reduction, \theta B corresponds to the timing of the
overall bursting cycle and not a timing of a single action potential.

Results comparing these reduced order models in response to pulses of length 400 ms are
shown in Figure 3. Panels A, B, C, and D show voltage traces from the 3-dimensional extended
phase reduction (13), the full order model (A1), the 1-dimensional phase reduction of the form
(10), and the 1-dimensional bursting phase reduction of the form (15), respectively. For each of
the reduced order models, the voltage is inferred as a function of phase on the appropriate peri-
odic orbit. Specifically, the voltage is inferred from x\gamma \mu (\theta ) with \mu = [0.5, [Na]\mathrm{o}(t), [K]\mathrm{i}(t)] for the
3-dimensional extended phase reduction, from x\gamma \mu (\theta ) with \mu = [0.5,18,7] for the 1-dimensional
phase reduction, and from x\gamma \mathrm{b}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{t}(\theta ) for the 1-dimensional bursting phase reduction. Panel
E shows the applied transmembrane current. Here, the extended phase reduction is nearly
perfect in its representation of the full order dynamics. While the single spike phase reduced
model does yield spikes in response to the applied input, the spike frequency is not accurate
and spikes do not persist after the input is removed. The burst cycle phase reduced model does
give a bursting profile that is similar to the full order model, but the timing of the bursts is not
accurate. Panel F shows the phase of oscillation plotted as a function of time for the extended,
full order, and single spike phase reduced models. For the full order model, the phase is inferred
by incrementing the phase by 2\pi at every action potential and linearly interpolating at all in-
termediate times. The threshold voltage for determining when an action potential occurs must
be larger than the voltage reached during any afterdepolarizations at the end of the bursting
cycle [39], [32]. Note that the phase, \theta B, of the burst cycle phase reduction is not comparable
phase, \theta , of the extended single spike phase models and is not shown here. Panels G and H
give additional information about the profiles of the ion concentrations for each model. Recall
that for the single spike phase model, the ion concentrations are constant by assumption.

While Figure 3 only gives the response to pulse inputs, it is representative of the general
accuracy of each reduced order model. The extended phase reduction gives a good approx-
imation of the overall dynamical system, but must explicitly account for the dynamics of
the slow variables yielding a 3-dimensional model. By contrast, both phase reduced mod-
els require only a single variable but are only capable of capturing the dynamics local to a
given limit cycle; neither of these models provide particularly accurate representations of the
full model dynamics. For the single spike phase reduction, different constant values of [Na]\mathrm{o}
and [K]\mathrm{i} yield models with different qualities. For instance, choosing values to the right of
the line of SNIC bifurcations from panel D of Figure 1 yields models that are in a tonically
firing regime in the absence of input. No matter how [Na]\mathrm{o} and [K]\mathrm{i} are chosen, the overall
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PHASE-BASED REDUCED BURSTING NEURONS 195

Figure 3. Panels A--D show the voltage traces of three reduced order models (green, red, and blue lines)
compared to the full order model (black line) in response to the series of transmembrane current impulses in
panel E. Panel F shows the phase as a function of time for the full model, extended phase reduction model,
and the single spike phase reduction (with each additional 2\pi in phase corresponding to an additional spike).
Panels G and H show the slow variable ion concentration dynamics for each model as a function of time.

dynamics of the single spike phase reduction do not provide a good representation of the full
model dynamics. While the burst cycle phase reduction does demonstrate bursting mediated
by the slow variable dynamics, it is the least accurate in terms of capturing the timing of the
transition between bursting and quiescence. These results are consistent with those from [44]
and [30], demonstrating considerable phase sensitivity in models of the form (15), precluding
their practical use as a tool for understanding the behavior of perturbed bursters. As a final
note, the results from Figure 3 illustrate an error in the total number of spikes that slowly
accumulate over time. This is directly related to the fact that the input \mu is comprised of
both weak input and slowly varying input in the results from Figure 3 (instead of just the
weak input considered in the results from Figure 2). The slowly varying input provides an
additional source of error that ultimately results in a small discrepancy in the total spike
count. Nonetheless, the timing of the onset and offset of bursting over time remains accurate.

4. Reduced order modeling for subHopf/fold cycle (elliptic) bursters. SubHopf/fold
cycle bursting (i.e., elliptic bursting) is characterized by the loss of resting stability through
a subcritical Hopf bifurcation and a subsequent termination of spiking through a fold limit
cycle bifurcation [22], [12]. Such bursters have a region of bistability between the resting and
spiking states and often exhibit pronounced subthreshold oscillations near the critical point of
the Hopf bifurcation. The Hodgkin--Huxley model [16] given in Appendix B produces elliptic
bursting taking I\mathrm{e}\mathrm{x}\mathrm{t} as the bifurcation parameter (the case where bursting is mediated by a slow
variable will also be considered in section 4.4). Black lines in panels A and B of Figure 4 show
a bifurcation diagram, with a subcritical Hopf bifurcation occurring at I\mathrm{e}\mathrm{x}\mathrm{t} = 9.78\mu A/cm2. In
panel A, example trajectories are plotted for constant values of I\mathrm{e}\mathrm{x}\mathrm{t}. For I\mathrm{e}\mathrm{x}\mathrm{t} greater than the
critical value, these trajectories are taken to be the resulting limit cycle. For I\mathrm{e}\mathrm{x}\mathrm{t} less than the
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196 DAN WILSON

Figure 4. Treating I\mathrm{e}\mathrm{x}\mathrm{t} as a bifurcation parameter, black lines give the bifurcation diagram associated with
the Hodgkin--Huxley model from (B1) as shown in panels A and B. This model has a subcritical Hopf bifurcation
occurring at I\mathrm{e}\mathrm{x}\mathrm{t} = 9.78\mu A/cm2. Solid lines (resp., dashed) lines correspond to stable (resp., unstable) fixed
points or periodic orbits. In each panel, the red line shows the voltage during a simulation for which I\mathrm{e}\mathrm{x}\mathrm{t}(t) =
10 - 0.6t \mu A/cm2. In this simulation, the system transitions between a periodically spiking and quiescent regime.
In panel A, a collection of reference trajectories are plotted with different colors corresponding to a constant
value of I\mathrm{e}\mathrm{x}\mathrm{t}. Section 4 describes a strategy to capture the behavior of a subHopf/fold cycle burster relative to
a set of reference trajectories such as those shown in panel A.

critical value, these trajectories are nonperiodic. The red line represents a simulation of the
Hodgkin--Huxley model equations (B1) for which I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 10 - 0.6t. Panel B is a projection of
panel A into the I\mathrm{e}\mathrm{x}\mathrm{t} - V plane. Even though the bifurcation parameter traverses through its
critical value, the red line stays close to the reference trajectories. In this section, the proposed
model order reduction represents the behavior of a subHopf/fold cycle burster relative to a
set of reference trajectories such as those shown in panel A of Figure 4.

4.1. Mathematical approach for reduction of subHopf/fold cycle bursters. Consider a
general dynamical system

\.x= F (x,u),(16)

where x \in \BbbR N is the state, and u \in \BbbR is an input. Suppose that the system (16) has a
Hopf bifurcation at u = uH . In neuroscientific applications, a subcritical Hopf bifurcation
typically leads to spiking, but the following strategy could also be applied for a supercritical
Hopf bifurcation. The goal here is to represent the behavior of (16) relative to a collection
of reference trajectories. Towards achieving this goal, consider a set of reference trajectories
x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) that are solutions to the ordinary differential equation

\.x\mathrm{r}\mathrm{e}\mathrm{f} = F (x\mathrm{r}\mathrm{e}\mathrm{f}, p),

x\mathrm{r}\mathrm{e}\mathrm{f}(0, p) = \nu (p),(17)

where p is held constant on the interval t= [0, T (p)]. Above, \theta \in [0,2\pi ] is a time-like variable
where \theta = 2\pi t/T (p) along solutions of (17). This set of trajectories will be used to define
a reference state x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) where p and \theta are reduced order coordinates that will be used to
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PHASE-BASED REDUCED BURSTING NEURONS 197

characterize the dynamics of the full order system (16). The key here is to determine how p
and \theta should change in time to accomplish this task. With this in mind, suppose that

x(t) = x\mathrm{r}\mathrm{e}\mathrm{f}(\theta (t), p(t)) +\Delta x(t),(18)

where | | \Delta x| | =O(\epsilon ). In order for x\mathrm{r}\mathrm{e}\mathrm{f}(t) to be a good approximation of x(t), \theta (t) and p(t) must
be chosen carefully so that \Delta x(t) remains an order \epsilon term. To this end, Taylor expansion of
(16) yields

\.x= F (x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) +\Delta x,u)

= F (x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p), p) + Fu(u - p) + Fx\Delta x+O(| | \Delta x| | 2) +O(| | u - p| | 2).(19)

Above, Fx = \partial F
\partial x , Fu = \partial F

\partial u , all partial derivatives are evaluated at x = x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p), and u = p.
Next, direct differentiation of x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) yields

\.x\mathrm{r}\mathrm{e}\mathrm{f} =
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\theta +
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p.(20)

From (18), \Delta \.x= \.x - \.x\mathrm{r}\mathrm{e}\mathrm{f}. Substituting the results from (19) and (20) yields

\Delta \.x= Fx\Delta x+ r(\theta , p, \.\theta , \.p,u - p) +O(| | \Delta x| | 2) +O(| | u - p| | 2),(21)

where

r(\theta , p, \.\theta , \.p,u - p) = F (x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p), p) + Fu(u - p) - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\theta  - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p.(22)

Recall that the goal is to choose \.\theta and \.p appropriately to keep \Delta x small so that x\mathrm{r}\mathrm{e}\mathrm{f}(t) is a
good approximation of the full order dynamics. To gain insight on how these terms can be
chosen, first suppose that both | | \Delta x| | and | | u - p| | from (21) are order \epsilon terms. Let (\lambda j , vj ,wj)
be an eigenvalue, right eigenvector, left eigenvector triple of Fx with the normalization | | vj | | 2 =
wTj vj = 1. Note that Fx is a function of x(t) so that these eigenvalue-eigenvector pairs are
all time-varying. It will be assumed that all eigenvalues of Fx are simple, i.e., with algebraic
multiplicity of 1. Using the coordinate transformation yi =wTi \Delta x, one can write

\.yi = \.wTi \Delta x+wTi \.x

= \.wTi \Delta x+wTi (Fx\Delta x+ r)

= \.wTi \Delta x+ \lambda iyi +wTi r.(23)

Above, the second line is obtained by substituting (21) and truncating the order \epsilon 2 terms. As
shown in Appendix D, if \lambda i =O(1/\epsilon ) at all times, i.e., if the decay in that direction is rapid,
then | yi| = O(\epsilon ). Alternatively, if \lambda i = O(1), then provided wi(t)

T r(t) = O(\epsilon ) uniformly in
time, yi(t) =O(\epsilon ) on timescales t\sim 1/ log(\epsilon ). With this in mind, ideally it would be possible
to find \.\theta and \.p such that r= 0 so that

0 = F (x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p), p) + Fu(u - p) - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\theta  - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p.(24)

In general, however, one must settle for a least-squares minimizer. To this end, first notice
that F (x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p), p) =

\partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial \theta 
2\pi 
T (p) . As such, letting

\~\theta = \theta  - 2\pi t/T (p), one can rewrite (24) as
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198 DAN WILSON

0 = Fu(u - p) - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\~\theta  - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p.(25)

The following update rule for
\.\~\theta and \.p is then considered:\Biggl[ 

\.p
\.\~\theta 

\Biggr] 
=

\biggl( 
exp(\alpha Re(\Lambda ))W

\biggl[ 
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\biggr] \biggr) \dagger \bigl[ 
exp(\alpha Re(\Lambda ))WFu

\bigr] 
(u - p)

=

\biggl[ 
I(\theta , p)
Z(\theta , p)

\biggr] 
(u - p),(26)

where, in the first line, W \in \BbbC N\times N with left eigenvectors wTi comprising its rows, \Lambda is a
diagonal matrix of corresponding eigenvalues, \alpha is a positive constant, and \dagger denotes the
pseudoinverse. In second line the terms Z(\theta , p) and I(\theta , p) are defined appropriately by noting
that all the relevant terms in the first line are functions of both \theta and p. Intuitively, (26)
chooses \.\theta and \.p in order to minimize r(\theta , p, \.\theta , \.p,u  - p). The additional terms exp(\alpha Re(\Lambda ))W
are chosen to prioritize directions that are decaying less rapidly. Working in the coordinates
\theta and p, the reduced order dynamics become

\.\theta = \omega (p) +Z(\theta , p)(u - p),

\.p= I(\theta , p)(u - p),(27)

where \omega (p) = 2\pi /T (p).

4.2. Reduced order modeling of the Hodgkin--Huxley model. The proposed reduction
strategy will be illustrated for the Hodgkin--Huxley model [16] with equations and parameters
given in Appendix B. To implement the reduction, u from (16) is taken to be the baseline
current, I\mathrm{e}\mathrm{x}\mathrm{t}. Considering the bifurcation diagram from panel B of Figure 4, letting IH denote
the external current for which the Hopf bifurcation occurs, for I\mathrm{e}\mathrm{x}\mathrm{t} > IH , x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) will be
taken to be the resulting periodic orbit. For x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) for which p < IH , the initial conditions
for the reference trajectories are chosen so that \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial p is continuous. Likewise, the time scaling

on x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) for p < IH is taken to be T (p) = T (uH)+(p - uH)T
\prime (uH), where

\prime is the derivative
with respect to p so that T (p) is continuously differentiable. This strategy gives the resulting
periodic orbits, shown as a function of \theta in panel A of Figure 5. Z(\theta , p) and I(\theta , p) are
computed as defined in (26) taking \alpha = 0.4. In order to avoid infinitely large values of I and
Z, when taking the pseudoinverse in this computation, all singular values smaller than 0.1 are
truncated. Panels B and C show both Z(\theta , p) and I(\theta , p) associated with the p= 1 reference
trajectory. Note that this trajectory approaches a fixed point for the latter values of \theta . These
curves are consistent with results discussed in section 4.3.2 after (45); as trajectories approach
the stable fixed point associated with a Hopf bifurcation, Z(\theta ) and I(\theta ) resemble the cosecant
and cotangent functions, respectively. Panels D and E give the same information for the
p = 15\mu A/cm2 reference trajectory, which is a periodic orbit. Additional information about
the local decay rates along these trajectories is given in Figure 6. Panels A and C show the
real components of the eigenvalues of the Jacobian as a function of \theta for the p= 1 \mu A/cm2 and
p= 15 \mu A/cm2 trajectories, respectively. Panels B and D show the residual defined according
to (22) in the associated eigenvector basis. When computing Z(\theta , p) and I(\theta , p) as defined in
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PHASE-BASED REDUCED BURSTING NEURONS 199

Figure 5. Trajectories x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) used in the reduced order representation of the Hodgkin--Huxley model are
shown in panel A for p \in [ - 8,30] \mu A/cm2. Panels B and C (resp., D and E) show the terms Z(\theta ) and I(\theta )
computed according to (26) for the p= 1 \mu A/cm2 (resp., p= 15 \mu A/cm2) trajectory.

Figure 6. Panels A and C show the real component of the eigenvalues of the Jacobian as a function of \theta 
for the p = 1 and p = 15 \mu A/cm2 reference trajectories, respectively. Panels B and D give the corresponding
residual defined according to (22) in a basis of eigenvectors when choosing \.\theta and \.p as mandated by (27). For
Re(\lambda i) that is negative and large in magnitude, the associated residual can be large because the decay is fast
in that direction. Otherwise the residual must be small to limit the magnitude of the errors in the resulting
reduced order model. The functions Z(\theta , p) and I(\theta , p) as defined in E(26) are designed to accommodate this
requirement.

(26), minimization of the residual in a given eigendirection is balanced against the decay rate,
as gauged by the real component of the associated eigenvalue.

Figure 7 illustrates the accuracy of the reduced order modeling strategy in comparison
with a standard phase reduction approach [12, 22] discussed in section 2. To implement
the standard phase reduction, the periodic orbit x\gamma (\theta ,12) = x\mathrm{r}\mathrm{e}\mathrm{f}(\theta ,12) is used to define
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200 DAN WILSON

Figure 7. The three inputs shown as black lines in panels B, D, and F are applied to the full order Hodgkin--
Huxley model from (B1), the proposed reduced order model from (27), and the standard phase reduction of the
form (4). Horizontal lines denoting the value at which the Hopf bifurcation and fold cycle bifurcation occur (IH
and IF , respectively) are provided for reference. Corresponding traces of the transmembrane voltage are shown
in panels A, C, and E. Traces of p for simulations of the proposed strategy are shown in grey in panels B, D, and
F. In general, standard phase reduction provides a reasonably accurate approximation of the model dynamics
when the input stays in the tonically firing regime. However, for transitions between firing and quiescence, only
the proposed reduction strategy accurately captures the behavior.

isochrons (3); when writing the Hodgkin--Huxley equations from (B1) in the same form as
(2), I\mathrm{e}\mathrm{x}\mathrm{t}(\mu ) = 12 + \mu . The terms of the phase response curve are computed numerically via
the adjoint method [31]. Panel A of Figure 7 shows both the phase reduction and the pro-
posed reduction strategy in response to the input I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 13 + 3sin(0.35t) \mu A/cm2 shown
in panel B. This input is chosen purposely so | \mu | remains relatively small when implementing
the phase reduction (4). In this case both the phase reduction and proposed reduced order
model provide a good approximation of the full order dynamics with both models correctly
predicting entrainment to the external input. Panel C shows the same results for an input
I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 12 + 5sin(0.1t) \mu A/cm2 from panel D which briefly drops below IH = 9.78\mu A/cm2

(the value at which the Hopf bifurcation occurs). In response to this input, spiking tem-
porarily stops when I\mathrm{e}\mathrm{x}\mathrm{t}(t) nears its lowest point. In this case, the phase reduction does not
accurately capture the transition from spiking to quiescence, while the proposed model does;
conversely the proposed model provides a near perfect representation of the model. A third
stimulus shown in panel F gradually decreases I\mathrm{e}\mathrm{x}\mathrm{t}(t) below IF = 6.26\mu A/cm2 (the value at
which the fold cycle bifurcation occurs) in order to transition from firing to quiescence. For
t > 40, I\mathrm{e}\mathrm{x}\mathrm{t}(t) = 5 + 0.1(t  - 40) + 0.5 sin(0.63t). The resonance with the added sine wave
input yields an action potential before the crossing of IH , which is accurately reflected by the
proposed reduced order model. Once again, the phase reduced model fails to replicate the full
order dynamics for this input.

4.3. Coexistence of stable attractors in the reduced order model characterizing sub-
Hopf/fold cycle bursters. Results from Figure 7 illustrate the ability of the reduced or-
der model (27) to replicate both periodic firing and quiescence observed in the full order
model (16). The analysis below illustrates that with appropriate technical constraints on the
full order model and with a careful choice of reference trajectories, x\mathrm{r}\mathrm{e}\mathrm{f}(\theta ), stable periodic
orbits and fixed points that capture the transitions between periodic firing and quiescence are
guaranteed to exist in the reduced order model (27).
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PHASE-BASED REDUCED BURSTING NEURONS 201

4.3.1. Existence and stability of periodic orbits of the reduced order equations. Sup-
pose that x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p0) for a constant p0 is chosen as a stable periodic orbit x\gamma p0(\theta ) of the dy-
namical system (16) with period \omega (p0) = 2\pi /T (p0). The stability of x\gamma p0 can be characterized
by considering the Floquet exponents \kappa 1, . . . , \kappa N associated with linearization of (16) about
the periodic orbit [23]. Let \Delta x(t) = x(t) - x\gamma p0(\theta (t)), where x(t) evolves according to the full
system of equations (16). When | | \Delta x| | is small, using Floquet theory [23], one can write

\Delta x(t) =

N\sum 
j=1

cjgj(t) exp(\kappa jt) +O(| | dx| | 2),(28)

where g1(t), . . . , gN (t) are T (p0)-periodic Floquet eigenfunctions, and the constants c1, . . . , cN
are chosen to satisfy initial conditions. The Floquet exponents will be ordered so that \kappa 1 = 0
(corresponding to translation along the periodic orbit so that g1(t) =

\partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial \theta ). Because x\gamma p0 is
stable, the remaining Floquet exponents \kappa 2, . . . , \kappa N have negative real component. We will
assume that exp(\kappa jT (p0)) = O(\epsilon ) for j \geq 3 so there is at most one slowly decaying Floquet
eigenfunction.

Considering the form of the reduced order equations from (27) and recalling the choice
x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p0) = x\gamma p0(\theta ), clearly this transformed system contains the periodic orbit (\theta \gamma (t), p\gamma (t)) =
(\omega (p0)t + \theta 0, p0), where \theta 0 is a constant offset. Towards determining the stability of the
periodic orbit of the reduced order equation (27), consider a small perturbation \Delta \theta = \theta (t) - 
\theta \gamma (t) and \Delta p = p(t)  - p\gamma (t). Considering (27), suppose that the conditions given above
(24) are satisfied (i.e., for every \lambda i(t) from i = 1, . . . ,N , either \lambda i(t) = O(1/\epsilon ) for all t or
wi(t)

T r(t) =O(\epsilon ) for all t). Then x\mathrm{r}\mathrm{e}\mathrm{f}(t) = x(t) +O(\epsilon ) and one can write

x(t) = x\mathrm{r}\mathrm{e}\mathrm{f}(\theta 
\gamma (t) +\Delta \theta , p\gamma (t) +\Delta p) +O(\epsilon )

= x\mathrm{r}\mathrm{e}\mathrm{f}(\theta 
\gamma (t), p\gamma (t)) +

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\Delta \theta (t) +
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\Delta p(t),(29)

where the second line results from Taylor expansion after truncating O(\epsilon ), O(| \Delta \theta | 2), and
O(| \Delta p| 2) terms. Noting that x\mathrm{r}\mathrm{e}\mathrm{f}(\theta 

\gamma (t), p\gamma (t)) = x\gamma p0(\theta (t)), rearranging (29) yields

\Delta x(t) =
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\Delta \theta (t) +
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\Delta p(t)

= (\Delta \theta (t) + a1\Delta p(t))g1(t) + a2\Delta p(t)g2(t) +

N\sum 
j=3

aj\Delta p(t)gj(t).(30)

Above, the second line is obtained by writing \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial \theta and \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial p in a basis of Floquet eigen-

functions; here, \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial \theta = g1(t) and \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial p =
\sum N

j=1 ajgj(t). Applying (28) to (30), recalling that
exp(\kappa jT (p0)) =O(\epsilon ), one finds

\Delta x(T ) = (\Delta \theta (0) + a1\Delta p(0))g1(T ) + a2 exp(\kappa 2T )\Delta p(0)g2(T ) +O(\epsilon ).(31)

Considering (31) and evaluating (30) at t= T , matching the coefficients in front of g1(t) and
g2(t), and dropping O(\epsilon ) terms, one finds
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202 DAN WILSON\biggl[ 
\Delta \theta (T )
\Delta p(T )

\biggr] 
=

\biggl[ 
1 a1(1 - exp(\kappa 2T ))
0 exp(\kappa 2T )

\biggr] \biggl[ 
\Delta \theta (0)
\Delta p(0)

\biggr] 
=\Phi 

\biggl[ 
\Delta \theta (0)
\Delta p(0)

\biggr] 
.(32)

Equation (32) provides a good approximation of the monodromy matrix, \Phi , associated with
the linearization of the periodic orbit (\theta \gamma (t), p\gamma (t)) = (\omega (p0)t+\theta 0, p0) of (27). Since Re(\kappa 2)< 0,
the nonunity eigenvalues of this periodic orbit are inside the unit circle and the periodic orbit
is stable.

4.3.2. Existence of fixed points of the reduced order equations. In addition to the
existence of stable periodic orbits, one can also prove the existence of stable fixed points in
the reduced order model of the form (27) when the parameter p is close to the Hopf bifurcation.
To begin, consider a trajectory x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) for which x\mathrm{r}\mathrm{e}\mathrm{f}(2\pi ,p) - x\mathrm{s}\mathrm{s}(p) =O(\epsilon ), where x\mathrm{s}\mathrm{s}(p) is
a stable fixed point of (16), i.e., for which F (x\mathrm{s}\mathrm{s}, p) = 0. For states close enough to the fixed
point, the state is well approximated by

x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) =

N\sum 
j=1

si exp(\lambda j\theta /\omega )vj ,(33)

where (\lambda j , vj) are an eigenvalue-eigenvector pair of the Jacobian, Fx evaluated at x\mathrm{s}\mathrm{s}, si gives
the coordinate in the basis of eigenvectors, and t= \theta /\omega along the trajectories x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p). Also
let wi be a corresponding left eigenvector with the normalization wTi vi = 1. Along reference
trajectories,

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

=

N\sum 
j=1

si\lambda i
\omega 

exp(\lambda i\theta /\omega )vj .(34)

Considering a nearby trajectory x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p + \Delta p) with \Delta p = O(\epsilon ), as illustrated in Figure 8,
provided \theta /\omega is large enough,

Figure 8. For p close to a Hopf bifurcation, if a reference trajectory x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) approaches a stable fixed point
x\mathrm{s}\mathrm{s}(p) of the underlying system \.x= F (x, p), the system can be considered in terms of its linearization about x\mathrm{s}\mathrm{s}.
Note above that eT1 = [1 . . . 0].
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PHASE-BASED REDUCED BURSTING NEURONS 203

x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p+\Delta p) - x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p) = x\mathrm{s}\mathrm{s}(p+\Delta p) - x\mathrm{s}\mathrm{s}(p) +O(\epsilon 2).(35)

Towards simplifying (35) further, note that at each fixed point, 0 = F (x\mathrm{s}\mathrm{s}(p+\Delta p), p+\Delta p) =
F (x\mathrm{s}\mathrm{s}(p), p). With this in mind, 0 = F (x\mathrm{s}\mathrm{s}(p) + (x\mathrm{s}\mathrm{s}(p + \Delta p)  - x\mathrm{s}\mathrm{s}(p), p + \Delta p), which can
subsequently be Taylor expanded and rearranged to yield

Fx(x\mathrm{s}\mathrm{s}(p+\Delta p) - x\mathrm{s}\mathrm{s}(p)) = - \partial F

\partial u
\Delta p+O(\epsilon 2).(36)

Through diagonalization of Fx and subsequent manipulation of (36), one can obtain

x\mathrm{s}\mathrm{s}(p+\Delta p) - x\mathrm{s}\mathrm{s}(p) = - \Delta p

N\sum 
j=1

wTj
\partial F
\partial u

\lambda j
vj +O(\epsilon 2).(37)

Considering (37), for \theta large enough, along reference trajectories,

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

= - 
N\sum 
j=1

wTj
\partial F
\partial u

\lambda j
vj .(38)

Next, let \lambda 1,2 be the complex-conjugate eigenvalues responsible for the Hopf bifurcation or-
dered so that Im(\lambda 1) > 0. Additionally, let the associated eigenvectors be scaled so that
v1 = v\ast 2, where

\ast denotes the complex-conjugate. Assume that p \approx uH so that the system is
close to the Hopf bifurcation and Re(\lambda 1) is small. Considering the definition of Z and I from
(26), with \alpha large enough one finds\biggl[ 

Z(\theta , p)
I(\theta , p)

\biggr] 
=

\biggl( 
exp(\alpha Re(\Lambda ))W

\biggl[ 
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\biggr] \biggr) \dagger \biggl[ 
exp(\alpha Re(\Lambda ))W

\partial F

\partial u

\biggr] 
=

\biggl[ 
A
\epsilon C1

\biggr] \dagger \biggl[ 
B
\epsilon C2

\biggr] 
,(39)

where

A=

\biggl[ 
exp(\alpha Re(\lambda 1)) 0

0 exp(\alpha Re(\lambda 2))

\biggr] \bigl[ 
w1 w2

\bigr] T \biggl[ \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\biggr] 
\in \BbbC 2\times 2,

B =

\biggl[ 
exp(\alpha Re(\lambda 1)) 0

0 exp(\alpha Re(\lambda 2))

\biggr] \bigl[ 
w1 w2

\bigr] T \partial F

\partial u
\in \BbbC 2\times 1,(40)

and C1 and C2 are both in \BbbC N - 2\times 2 containing order \epsilon terms because \alpha Re(\lambda i) =O(\epsilon ) for i > 2
(i.e., for the faster decaying terms). Further manipulating A from (40), substituting (34) and
(38) for \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial \theta and \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial p yields

A=

\biggl[ 
exp(\alpha Re(\lambda 1)) 0

0 exp(\alpha Re(\lambda 2))

\biggr] \left[   - wT1
\partial F
\partial u /\lambda 1

T (p)
2\pi s1\lambda 1 exp(\lambda 1\theta /\omega )

 - wT2
\partial F
\partial u /\lambda 2

T (p)
2\pi s2\lambda 2 exp(\lambda 2\theta /\omega )

\right]  
=

\biggl[ 
exp(\alpha Re(\lambda 1)) 0

0 exp(\alpha Re(\lambda 2))

\biggr] \biggl[ 
\mu \zeta exp(\lambda 1\theta /\omega )
\mu \ast \zeta \ast exp(\lambda \ast 

1\theta /\omega )

\biggr] 
,(41)
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204 DAN WILSON

where \mu = - wT1
\partial F
\partial u /\lambda 1 and \zeta = s1\lambda 1

T (p)
2\pi . Provided A is full rank,\biggl[ 

A
\epsilon C1

\biggr] \dagger 
=

\biggl( \bigl[ 
AH \epsilon CH

1

\bigr] \biggl[ A
\epsilon C1

\biggr] \biggr)  - 1 \bigl[ 
AH \epsilon CH

1

\bigr] 
=
\bigl( 
AHA+ \epsilon 2CH

1 C1

\bigr)  - 1 \bigl[ 
AH \epsilon CH

1

\bigr] 
= ((AHA) - 1 +O(\epsilon 2))

\bigl[ 
AH \epsilon CH

1

\bigr] 
=
\bigl[ 
A\dagger 0

\bigr] 
+O(\epsilon )

=
\bigl[ 
A - 1 0

\bigr] 
+O(\epsilon ).(42)

Above, H denotes the Hermitian transpose, line 3 is obtained noting that \epsilon 2BHB is a small
perturbation, the zero in line 4 is an appropriately sized matrix of zeros, and line 5 follows
because A is full rank. Substituting (42) into (39) and neglecting O(\epsilon ) terms yields\biggl[ 

Z(\theta , p)
I(\theta , p)

\biggr] 
=
\bigl[ 
A - 1 0

\bigr] \biggl[ B
0

\biggr] 
=

1

\mu \zeta exp(\lambda \ast 
1\theta /\omega ) - \mu \ast \zeta exp(\lambda 1\theta /\omega )

\biggl[ 
\zeta \ast exp(\lambda \ast 

1\theta /\omega )  - \zeta exp(\lambda 1\theta /\omega )
 - \mu \ast \mu 

\biggr] \biggl[ 
 - \mu \lambda 1

 - \mu \ast \lambda \ast 
1

\biggr] 
=

 - 1

Im(\mu \ast \zeta exp(\lambda 1\theta /\omega ))

\biggl[ 
Im(\mu \ast \lambda \ast 

1\zeta exp(\lambda 1\theta /\omega ))
| \mu | 2Im(\lambda 1)

\biggr] 
=

 - 1

| \mu \zeta | exp(Re(\lambda 1)\theta /\omega ) sin(\angle (\mu \ast \zeta ) + Im(\lambda 1\theta /\omega ))

\times 
\biggl[ 
| \mu \zeta \lambda 1| exp(Re(\lambda 1)\theta /\omega ) sin(\angle (\mu \ast \zeta \lambda \ast 

1) + Im(\lambda 1\theta /\omega ))
| \mu | 2Im(\lambda 1))

\biggr] 
,(43)

where \angle (\cdot ) and | \cdot | denote the argument and magnitude of a given complex number. Finally,
simplifying (43), one can write

I(\theta , p) =
 - | \lambda 1| sin(\angle (\mu \ast \zeta \lambda \ast 

1) + Im(\lambda 1\theta /\omega ))

sin(\angle (\mu \ast \zeta ) + Im(\lambda 1\theta /\omega ))
,(44)

Z(\theta , p) =
 - | \mu | Im(\lambda 1)

| \zeta | exp(Re(\lambda 1)\theta /\omega ) sin(\angle (\mu \ast \zeta ) + Im(\lambda 1\theta /\omega ))
.(45)

Noting that \angle (\lambda 1)\approx \pi /2, I(\theta , p) is well approximated by the cotangent function while Z(\theta , p)
is well approximated by the cosecant which is consistent with results shown in panel C of
Figure 5; note that this approximation is only valid for larger values of \theta . Considering the
form of the reduced order equations (27) and the terms I(\theta , p) and Z(\theta , p) obtained in (44) and
(45), respectively, when u= \=u is held constant, (27) has fixed points at (\=\theta , \=p) where I(\=\theta , \=p) = 0
with corresponding

Z(\=\theta , \=p) = - \omega (\=p)

\=u - \=p
.(46)

4.3.3. Stability of fixed points of the reduced order equations. The stability of this
fixed point can be determined by examining the Jacobian of the linearization of (27),

Jr =

\biggl[ 
Z\theta (u - p) \omega p +Zp(u - p) - Z
I\theta (u - p) Ip(u - p) - I

\biggr] 
,(47)
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PHASE-BASED REDUCED BURSTING NEURONS 205

where the notation Zp, for instance, denotes the partial derivative taken with respect to p with
all partial derivatives evaluated at \theta = \=\theta and p = \=p. Recalling that I = 0 at the fixed point,
considering the numerator of (44), \angle (\mu \ast \zeta \lambda \ast 

1) + Im(\lambda 1\theta /\omega ) = k\pi for some integer value of k.
As such the denominator of (44) is given by sin(\angle (\lambda 1) + k\pi ). Recalling that the parameter
set is chosen near the Hopf bifurcation so that \angle (\lambda 1) = \pi /2, | sin(\angle (\lambda 1) + k\pi )| \approx 1 meaning
that I(\theta , p) and its partial derivatives are O(1) terms. Recalling the assumption below (22)
that u - p is an order \epsilon term, considering (46), Z(\theta , p) and its partial derivatives are O(1/\epsilon )
terms. The eigenvalues of the Jacobian from (47) can be computed directly according to

\lambda r =
Tr(Jr)\pm 

\sqrt{} 
Tr(Jr)2  - 4Det(Jr)

2
,(48)

where Tr(Jr) and Det(Jr) are the trace and determinant of Jr, respectively. Using this relation,
ignoring O(\epsilon ), one finds

\lambda r =
Z\theta (u - p)\pm 

\sqrt{} 
(Z\theta (u - p))2  - 4ZI\theta (u - p)

2
.(49)

Recalling that at at the fixed point, sin(\angle (\mu \ast \zeta ) + Im(\lambda 1\theta /\omega )) = sin(\angle (\lambda 1) + k\pi ), where k is
an integer, straightforward differentiation of (45) and subsequent simplification using trigono-
metric identities yields

Z\theta (\=\theta , \=p) =
 - 2Re(\lambda 1)Z(\=\theta , \=p)

\omega 
,(50)

I\theta (\=\theta , \=p) =
 - | \lambda 1| 2

\omega 
.(51)

Substituting (50), (51), and (46) into (49) and simplifying yields

\lambda r =Re(\lambda 1)\pm Imag(\lambda 1)i,(52)

i.e., the fixed point is stable with identical eigenvalues to the slowest decaying terms of the
full order model.

4.4. SubHopf/fold cycle bursting with slow variable dynamics. It is relatively straight-
forward to explicitly include slow variable dynamics in the reduction approach from section 4.1.
To do so, consider a general system

\.x= f(x, y,u),

\.y= \epsilon g(x, y),(53)

where x\in \BbbR N and y \in \BbbR k denote the fast and slow variables with dynamics governed by f and
g, respectively, and u \in \BbbR is an input. Such a system could describe, for instance, a neuron
where the bursting is mediated by the slow variable dynamics that also receives an additional
synaptic current from an external source. Following the approach from section 4.1, one can
define a set of reference trajectories x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}) that are solutions to

\.x\mathrm{r}\mathrm{e}\mathrm{f} = f(x\mathrm{r}\mathrm{e}\mathrm{f}, p, y\mathrm{r}\mathrm{e}\mathrm{f}),

x\mathrm{r}\mathrm{e}\mathrm{f}(0, p, y\mathrm{r}\mathrm{e}\mathrm{f}) = \nu (p, y\mathrm{r}\mathrm{e}\mathrm{f}),(54)
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206 DAN WILSON

where both p and y\mathrm{r}\mathrm{e}\mathrm{f} are held constant on the interval t= [0, T (p)]. Once again, \theta \in [0,2\pi ] is
a time-like variable where \theta = 2\pi t/T (p) along solutions of (54). Notice that (54) is identical to
(17) with the addition of the term y\mathrm{r}\mathrm{e}\mathrm{f}. Using the trajectories obtained from (54) for reference,
allowing \theta , p, and y\mathrm{r}\mathrm{e}\mathrm{f} to change in time and taking the total time derivative of x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})
yields

\.x\mathrm{r}\mathrm{e}\mathrm{f} =
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\theta +
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p+
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial y\mathrm{r}\mathrm{e}\mathrm{f}

\.y\mathrm{r}\mathrm{e}\mathrm{f}.(55)

Mirroring the arguments from (17) to (21), one can define \Delta x = x  - x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}) and
\Delta y= y - y\mathrm{r}\mathrm{e}\mathrm{f}. Taylor expansion of (53) relative to x\mathrm{r}\mathrm{e}\mathrm{f} and y\mathrm{r}\mathrm{e}\mathrm{f} yields

\.x= f(x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}), y\mathrm{r}\mathrm{e}\mathrm{f}, p) + fu(u - p) + fx\Delta x+O(| | \Delta x| | 2) +O(| | u - p| | 2) +O(| | \Delta y| | ),
\.y= \epsilon g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}) +O(\epsilon | | \Delta x| | ) +O(\epsilon | | \Delta y| | ),(56)

where fx \equiv \partial f
\partial x , fu \equiv 

\partial f
\partial u , each evaluated at x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}, and p. Combining (55) and (56), one can

write

\Delta \.x= fx\Delta x+ r(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}, \.\theta , \.p, \.y\mathrm{r}\mathrm{e}\mathrm{f}, u - p) +O(| | \Delta x| | 2) +O(| | u - p| | 2) +O(| | \Delta y| | 2),(57)

\Delta \.y= \epsilon g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}) - \.y\mathrm{r}\mathrm{e}\mathrm{f} +O(\epsilon | | \Delta x| | ) +O(\epsilon | | \Delta y| | ),(58)

where

r(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}, \.\theta , \.p, \.y\mathrm{r}\mathrm{e}\mathrm{f}, u - p) = f(x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f}), y\mathrm{r}\mathrm{e}\mathrm{f}, p) + fu(u - p)

 - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\.\theta  - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\.p - \partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial y\mathrm{r}\mathrm{e}\mathrm{f}

\.y\mathrm{r}\mathrm{e}\mathrm{f}.(59)

Provided \Delta x and \Delta y are small, x\mathrm{r}\mathrm{e}\mathrm{f} and y\mathrm{r}\mathrm{e}\mathrm{f} provide good approximations for x and y from
the underlying system (53). Considering the \Delta y dynamics from (58) first, taking

\.y\mathrm{r}\mathrm{e}\mathrm{f} = \epsilon g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f})(60)

eliminates all but the O(\epsilon | | \Delta x| | ) and O(\epsilon | | \Delta y| | ) terms from (58). Following the strategy from
section 4.1, considering (57) the growth of \Delta \.x can be limited by minimizing r(t) and priori-
tizing directions that decay less rapidly as gauged by the eigendecomposition of fx. Mirroring
the arguments from (21) to (26), letting \~\theta = \pi  - 2\pi t/T (p), an update rule that accomplishes
this task is\Biggl[ 

\.p
\.\~\theta 

\Biggr] 
=

\biggl( 
exp(\alpha Re(\Lambda ))W

\biggl[ 
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\biggr] \biggr) \dagger \bigl[ 
exp(\alpha Re(\Lambda ))Wfu

\bigr] 
(u - p)

 - 
\biggl( 
exp(\alpha Re(\Lambda ))W

\biggl[ 
\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial p

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial \theta 

\biggr] \biggr) \dagger \biggl[ 
exp(\alpha Re(\Lambda ))W

\partial x\mathrm{r}\mathrm{e}\mathrm{f}
\partial y\mathrm{r}\mathrm{e}\mathrm{f}

\biggr] 
\.y\mathrm{r}\mathrm{e}\mathrm{f}

=

\biggl[ 
I(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})
Z(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})

\biggr] 
(u - p) - 

\biggl[ 
\~I(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})
\~Z(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})

\biggr] 
\.y\mathrm{r}\mathrm{e}\mathrm{f},(61)

where in the first line (as in section 4.1) W \in \BbbC N\times N with left eigenvectors of fx comprising
its rows, \Lambda is a diagonal matrix of corresponding eigenvalues, \alpha is a positive constant, and \dagger 
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PHASE-BASED REDUCED BURSTING NEURONS 207

Figure 9. With minor modifications described in the text, the Hodgkin--Huxley model from Appendix B
displays elliptic bursting mediated by the slow variable h. In a representative simulation taking I\mathrm{e}\mathrm{x}\mathrm{t} = 0, the
transmembrane voltage and slow variable are shown in panels A and B, respectively.

denotes the pseudoinverse. In the second line the terms Z, \~Z, I, and \~I are defined appropri-
ately by noting that all relevant terms in the first line are functions of \theta , p, and y\mathrm{r}\mathrm{e}\mathrm{f}. Using in
the coordinates \theta , p, and y\mathrm{r}\mathrm{e}\mathrm{f}, combining (60) and (61), the reduced order dynamics become

\.\theta = \omega (p) +Z(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})(u - p) - \epsilon \~Z(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}),

\.p= I(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})(u - p) - \epsilon \~I(\theta , p, y\mathrm{r}\mathrm{e}\mathrm{f})g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}),

\.y\mathrm{r}\mathrm{e}\mathrm{f} = \epsilon g(x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}),(62)

where \omega (p) = 2\pi /T (p) and (x\mathrm{r}\mathrm{e}\mathrm{f}, y\mathrm{r}\mathrm{e}\mathrm{f}) provide a good approximation for (x, y). The original
equation (53) has N+k states, while the reduced order equation (62) has 2+k states. Also no-
tice that in the limit in which \epsilon \rightarrow 0 the corrections from the slow dynamics become negligible
and (62) relaxes to (27) with a constant y\mathrm{r}\mathrm{e}\mathrm{f}.

This general approach is illustrated for the Hodgkin--Huxley model with minor modifica-
tions described in panel A of Figure 1.10 from [21] so that the model exhibits elliptic bursting
mediated by the slow variable h. Specifically, all equations and parameters are identical to
those given in Appendix B with the exception that \alpha n and g\mathrm{N}\mathrm{a} are decreased by half, \alpha h is
increased by a factor of 4, \beta n = 0.125exp( - V/10), and the equation for \.h is multiplied by
0.008 so that h is the slow variable. With these modifications, as shown in Figure 9, the model
displays elliptic bursting with a period of approximately 1000ms with h\in [0.41,0.7]. Following

the fast/slow formulation from (53), x =
\bigl[ 
V n m

\bigr] T
, y = h, and u = I\mathrm{e}\mathrm{x}\mathrm{t}. Reference tra-

jectories x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p,h) are obtained with a strategy similar to the one described in section 4.2:
choosing an h \in [0.40,0,7] the value of I\mathrm{e}\mathrm{x}\mathrm{t} at which the Hopf bifurcation occurs, IH(h), is
computed; for p > IH(h), the resulting periodic orbit is taken to be x\mathrm{r}\mathrm{e}\mathrm{f}(\theta , p,h); for p < IH(h)
the initial conditions for the reference trajectories are chosen so that \partial x\mathrm{r}\mathrm{e}\mathrm{f}

\partial p is continuous. Like-

wise, the time scaling for p < IH(h) is taken to be T (p) = T (IH(h)) + (p - IH(h))T
\prime (IH(h)),

where \prime is the derivative with respect to p so that T (p) is continuously differentiable. This
process is repeated for multiple constant values of h in order to numerically approximate the
necessary partial derivatives from (61). Z, I, \~Z, and \~I are computed as defined in (26) taking
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208 DAN WILSON

Figure 10. Reduction of a model with elliptic bursting with both fast and slow variable dynamics. As
described in the text, a reduced order model of the form (62) is obtained for the Hodgkin--Huxley model equations
from Appendix B, modified so that h is a slow variable. Panels A, B, and C give a comparison between the full
and reduced order models with near-perfect agreement. For the simulation of (62), panel D compares traces of
I\mathrm{e}\mathrm{x}\mathrm{t} and p. Transitions between spiking and quiescence are preceded by rapidly growing oscillations in p.

\alpha = 0.4. In order to avoid infinitely large values of I and Z, when taking the pseudoinverse
in this computation, all singular values smaller than 0.005 are truncated.

A representative simulation of the resulting reduced order model (62) in response to the
input I\mathrm{e}\mathrm{x}\mathrm{t} = 1.5 sin(2\pi t/300)+

\surd 
2D\eta (t) is shown in Figure 10. Here \eta (t) is a zero-mean white

noise process where D= 0.002 sets the noise intensity. This additional small magnitude white
noise process is added so that the model transitions through the subcritical Hopf bifurcation
from quiescence to firing more quickly. Panels A, B, and C show that the transmembrane
voltage, slow variable, and phase, respectively, are nearly identical between the reduced or-
der model and the full Hodgkin--Huxley model. Simulations are performed using the Euler--
Mayamara method [13]. For the full order model, the phase is inferred by incrementing the
phase by 2\pi at every action potential and linearly interpolating at all intermediate times.
Panel D shows the parameter p plotted against I\mathrm{e}\mathrm{x}\mathrm{t}. These values are similar to each other in
the spiking regime but settle to a constant offset in the quiescent regime. Note that in the ab-
sence of noise (i.e., taking D= 0), transition from quiescence to spiking is delayed moderately
for the full model but only slightly for the reduced order model; this can likely be attributed
to the fact that interpolation errors in the reduced order model perturb the system away from
the unstable fixed point once the threshold for the Hopf bifurcation has been crossed.

5. Future considerations for the development of reduced order models for fold/
homoclinic bursters (square wave bursters). Sections 3 and 4 illustrate strategies for re-
duced order modeling of parabolic and elliptic bursters. A third commonly observed topo-
logical class of bursting is known as square wave bursting, where resting stability is lost as
the result of a saddle-node bifurcation and spiking is subsequently arrested as the result of
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PHASE-BASED REDUCED BURSTING NEURONS 209

Figure 11. The Hindmarsh--Rose model from (63) displays square wave bursting. Panel A gives a trace V
versus time, and panel B shows the same trajectory plotted in three dimensions. The key difficulty in developing
reduced order modeling strategies for square wave bursters (as well as for other topological classifications of
bursters) is that the quiescent regime (shown in red) is located in a different region of phase space from the
periodically firing regime (shown in blue). Future work will consider the development of strategies to capture
the transition between these two regimes.

a saddle homoclinic orbit bifurcation. The Hindmarsh--Rose model [15] is a canonical model
that exhibits square wave bursting

\.V = n - V 3 + bV 2  - h+ I,

\.n= c - dV 2  - n,(63)

\.h= r(s(V  - Vr) - h).

This model can be viewed as a phenomenological representation of the Hodgkin--Huxley equa-
tions. Here, V is a dimensionless transmembrane potential, n is an auxiliary variable, h
modulates the adaptation current, and I = 1.4 represents a constant baseline current. Other
parameters are taken to be s = 4, Vr =  - 1.6, b = 3, c = 1, d = 5, and r = 10 - 3. Allowing
transients to decay, the system settles to a stable bursting limit cycle shown in Figure 11.
Panel A shows V as a function of time, and panel B shows the evolution in three dimensions.

A key aspect of the square-wave bursting displayed by the model (63) is that the spiking
and quiescent regimes exist in different regions of phase space. This is different from parabolic
bursters, where the invariant circle persists in the quiescent state. For elliptic bursters, the
transition between the limit cycle and the stable fixed point is handled by carefully choosing
an appropriate set of reference trajectories, x\mathrm{r}\mathrm{e}\mathrm{f}, and defining reduced order variables \theta and p
to accommodate the transition between attractors. It is conceivable that a similar approach
of choosing a reference set of trajectories to capture the transition between spiking and qui-
escence for square wave bursters could be implemented. Note, however, that care would need
to be taken in the definition of the associated reduced order coordinates so that the char-
acteristics of the fixed points and periodic orbits of the fast equations are preserved under
this transformation. The development of reduced order modeling strategies for other types of
neural bursters will be the subject of future work.

6. Discussion and conclusion. This work considers the development and analysis of
phase-based model order reduction techniques for both parabolic and elliptic bursting neurons.
In contrast to strategies that exploit separation of fast and slow timescales [3], [53], [38], [24],
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210 DAN WILSON

[2], or use standard phase-based reduction techniques [44], [30], the proposed model order re-
duction strategies can accurately capture the transition between bursting and spiking regimes
in response external forcing such as an applied transmembrane current or synaptic current
from an upstream neuron. Future work will use these reduction techniques to investigate
emergent behaviors in coupled networks of bursting neurons.

The dynamical mechanisms responsible for the transition from quiescence to bursting are
different for the two topological classes of neurons considered in this work, necessitating the
use of different reduction approaches. For parabolic bursters, the fast variables remain close to
an invariant circle in both quiescence and firing. This allows for the definition of an extended
phase as a function of both the fast and slow variables and ultimately the straightforward im-
plementation of the extend phase reduction [26] as described in section 3. For elliptic bursters,
the dynamics can be considered relative to a carefully chosen set of reference trajectories as
described in section 4. Provided that the dynamics are rapidly contracting in some directions,
as gauged by the eigenvalues of the Jacobian evaluated locally along trajectories, the resulting
reduced order model (27) has both periodic orbits and fixed points (reflecting periodic firing
and quiescence, respectively) and accurately captures the transition between the two regimes.

The approaches used in this work are different from methods that use contraction theory
[27], [51] or master stability functions [36], [47]. In the approaches proposed in this work,
the errors between the full order and reduced order models will generally accumulate over
time, while techniques that involve contraction theory or master stability functions are typ-
ically focused on the the asymptotic convergence of a state to some underlying trajectory
or attractor. Error accumulation is generally unavoidable when considering reduced order
modeling of oscillatory systems owing to the unity Floquet multiplier present in all periodic
orbits. The reduced order modeling approach for elliptic neurons is related to the strategy
considered in [55]. The main difference between these two approaches is that the proposed
strategy considers the local decay of reference solutions (as gauged by the Jacobian evaluated
along trajectories), while the strategy in [55] considers the aggregate decay (as determined
by the state transition matrix) to define the set of reduced order coordinates and ultimately
arrive at a reduction. This subtle distinction is important for the purposes of implementation;
the approach from [55] struggles when the eigenvalues of the state transition matrix are not
continuous with respect to parameter perturbations, ultimately necessitating the approach
described in section 4.

These reduced order modeling strategies for parabolic and elliptic bursting neurons are
promising and serve as a starting point for further development of phase-based reduced or-
der modeling for bursting neurons. However, there are still many questions to investigate.
In [20], Izhikevich identified 120 different topological classes of bursting neurons that result
from codimension-1 bifurcations. Through the use of fast-slow decomposition and bifurcation
analysis of the resulting fast dynamics [22], [12], the mechanisms that underlie the transition
between spiking and quiescence are well understood for the codimension-1 bursters (and many
of the codimension-2 bursters). Nonetheless, general mathematical strategies for studying the
dynamics of coupled bursters have been slow to materialize, with analytical studies confined
to relatively low-dimensional phenomenological models [1], [7], [48], [43], [40], [41], [19]. The
results contained in this work represent a step towards addressing the gap for two common
classes of bursters. The key challenge for other types of bursters will be in the definition of
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PHASE-BASED REDUCED BURSTING NEURONS 211

an appropriate reduced order coordinate system that can accurately capture the transitions
between firing and quiescence. Insight gained from the approaches presented here can serve
as a starting point for the continued development of reduced order modeling techniques for
other topological classes of neural bursters.

Appendix A. Neural model for Circle/Circle bursting. In this work, the conductance-
based neural model presented in [8] is used when considering Circle/Circle bursting. This
model has six state variables with relevant dynamical equations given below:

Cm \.V = I\mathrm{N}\mathrm{a} + I\mathrm{K} + I\mathrm{C}\mathrm{l} + I\mathrm{e}\mathrm{x}\mathrm{t}(t),

\.n= \phi [\alpha n(1 - n) - \beta nn] ,

\.h= \phi [\alpha h(1 - h) - \beta hh] ,

\.[Ca]\mathrm{i} = - 0.002g\mathrm{C}\mathrm{a}(V  - V\mathrm{C}\mathrm{a})/ [1 + exp( - (V + 25)/2.5)] - [Ca]\mathrm{i}/80,

[ \.K]o = - 1.55IK  - 2\beta I\mathrm{p}\mathrm{u}\mathrm{m}\mathrm{p}  - I\mathrm{g}\mathrm{l}\mathrm{i}\mathrm{a}  - I\mathrm{d}\mathrm{i}ff,

[ \.Na]\mathrm{i} =
1.55

\beta 
I\mathrm{N}\mathrm{a}  - 3I\mathrm{p}\mathrm{u}\mathrm{m}\mathrm{p}.(A1)

Here, V represents the transmembrane voltage of the neuron, Cm represents the cell membrane
capacitance, n and h are gating variables, [Ca]\mathrm{i}, [Na]\mathrm{i}, and [K]\mathrm{o} represent intracellular calcium,
intracellular sodium, and extracellular potassium concentrations, respectively, and I\mathrm{e}\mathrm{x}\mathrm{t} is a
external current that could, for instance, account for the influence of synaptic current or a
direct current injection from a patch clamp. In the equations for the potassium and sodium
concentrations, the factor 0.31 mM cm2/\mu coul converts current density to rate-of-change of
concentration. In this work, the variables [K]\mathrm{o} and [Na]\mathrm{i} are taken to be slow variables with
the remaining variables comprising the fast equations. Supporting ionic functions are

I\mathrm{N}\mathrm{a} = - g\mathrm{N}\mathrm{a}m
3
\infty h (V  - V\mathrm{N}\mathrm{a}) - g\mathrm{N}\mathrm{a}(V  - V\mathrm{N}\mathrm{a}),

I\mathrm{K} = - 
\biggl( 
g\mathrm{K}n

4 +
g\mathrm{A}\mathrm{H}\mathrm{P}[Ca]\mathrm{i}
1 + [Ca]\mathrm{i}

\biggr) 
(V  - V\mathrm{K} ) - g\mathrm{L}(V  - V\mathrm{K} ),

I\mathrm{C}\mathrm{l} = - gL(V  - VL),

I\mathrm{d}\mathrm{i}ff = \epsilon ([K]\mathrm{o}  - k\mathrm{o},\infty ),

I\mathrm{p}\mathrm{u}\mathrm{m}\mathrm{p} =

\biggl( 
\rho 

1 + exp((25 - [Na]\mathrm{i})/3)

\biggr) \biggl( 
1

1 + exp(5.5 - [K]\mathrm{o})

\biggr) 
,

I\mathrm{g}\mathrm{l}\mathrm{i}\mathrm{a} =
G\mathrm{g}\mathrm{l}\mathrm{i}\mathrm{a}

1 + exp((18 - [K]\mathrm{o})/2.5)
,

V\mathrm{N}\mathrm{a} = 26.64 log

\biggl( 
[Na]\mathrm{o}
[Na]\mathrm{i}

\biggr) 
,

V\mathrm{K} = 26.64 log

\biggl( 
[K]\mathrm{o}
[K]\mathrm{i}

\biggr) 
,

[Na]\mathrm{o} = 144+ \beta (18.0 - [Na]\mathrm{i}),

[K]\mathrm{i} = 140+ (18.0 - [Na]\mathrm{i}).(A2)
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212 DAN WILSON

Supporting rate equations are

m\infty = \alpha m/(\alpha m + \beta m),

\alpha m = 0.1(V + 30)/(1 - exp( - 0.1(V + 30))),

\beta m = 4exp( - (V + 55)/18),

\alpha n = 0.01(V + 34)/(1 - exp( - 0.1(V + 34))),

\beta n = 0.125exp( - (V + 44)/80),

\alpha h = 0.07exp( - (V + 44)/20),

\beta h = 1/(1 + exp( - 0.1(V + 14)))).(A3)

Other constants are as follows: Cm = 1\mu F/cm2, g\mathrm{A}\mathrm{H}\mathrm{P} = 0.01mS/cm2,g\mathrm{N}\mathrm{a} = 100mS/cm2,g\mathrm{K} =
40mS/cm2,g\mathrm{L} = 0.05mS/cm2,g\mathrm{N}\mathrm{a} = 0.0175mS/cm2, \phi = 3s - 1,V\mathrm{L} =  - 81.93mV,g\mathrm{C}\mathrm{a} =
0.1mS/cm2,V\mathrm{C}\mathrm{a} = 120mV, \beta = 7, \rho = 5mM/s,k\mathrm{o},\infty = 8mM, \epsilon = 20/3s - 1,G\mathrm{g}\mathrm{l}\mathrm{i}\mathrm{a} = 333mM/s.

Appendix B. Hodgkin--Huxley model equations. The Hodgkin--Huxley model equations
[16] and associated parameters used in this work are provided below:

Cm \.V = - g\mathrm{N}\mathrm{a}m
3h(V  - V\mathrm{N}\mathrm{a}) - g\mathrm{K}n

4(V  - V\mathrm{K}) - g\mathrm{L}(V  - V\mathrm{L}) + I\mathrm{e}\mathrm{x}\mathrm{t}(t),

\.n= \alpha n(1 - n) - \beta nn,

\.m= \alpha m(1 - m) - \beta mm,

\.h= \alpha h(1 - h) - \beta hh,(B1)

where V is the transmembrane potential, and n,m, and h\in [0,1] are gating variables. Maximal
membrane conductances are

g\mathrm{N}\mathrm{a} = 120mS/cm2,

g\mathrm{K} = 36mS/cm2,

g\mathrm{L} = 0.3mS/cm2,(B2)

with

V\mathrm{N}\mathrm{a} = 115mV,

V\mathrm{K} = - 12mV,

V\mathrm{L} = 10.599mV(B3)

being the reversal potentials of the associated ion channels. Cm = 1\mu F/cm2 is the membrane
capacitance, and I\mathrm{e}\mathrm{x}\mathrm{t} is a baseline current in \mu A/cm2. The rate constants are functions of the
transmembrane voltage

\alpha n = 0.01(10 - V )/(exp((10 - V )/10) - 1),

\beta n = 0.125exp( - V/80),

\alpha m = 0.1(25 - V )/(exp((25 - V )/10) - 1),

\beta m = 4exp( - V/18),

\alpha h = 0.07exp( - V/20),

\beta h = 1/(exp(( - V + 30)/10) + 1).(B4)
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PHASE-BASED REDUCED BURSTING NEURONS 213

Appendix C. Preservation of SNIC bifurcation in the transformation to phase
coordinates. Following the analysis from [10] and [5], consider a conductance based neuron
of the general form (2). Using x\in \BbbR N to denote the full system state, one can write

\.x= F (x,p0) + eT1 I\mathrm{e}\mathrm{x}\mathrm{t}(\mu ),(C1)

where e1 =
\bigl[ 
1 0 . . . 0

\bigr] T
, p0 \in \BbbR M is a constant collection of parameters, \mu \in \BbbR modulates

the value of the external current I\mathrm{e}\mathrm{x}\mathrm{t}, and T denotes the vector transpose. Suppose that
the system (C1) has a saddle node on an invariant circle (SNIC) bifurcation at \mu = \mu S with
F (xS , p0)+ eT1 I\mathrm{e}\mathrm{x}\mathrm{t}(\mu s) = 0. Suppose also the when \mu > \mu S the system is in the tonically firing
regime. Holding \mu constant at \mu = \mu S +\Delta \mu > \mu S , where \Delta \mu = O(\epsilon 2) with 0\leq \epsilon \ll 1, Taylor
expansion of (C1) about the saddle node yields

\Delta \.x= Fx\Delta x+
1

2

\left[   \Delta xTH1

...
\Delta xTHN

\right]   \Delta x+ e1
\partial I\mathrm{e}\mathrm{x}\mathrm{t}
\partial \mu 

\Delta \mu ,(C2)

where \Delta x \equiv x  - xS , Fx denotes the Jacobian, Hk denotes the Hessian associated with the
kth entry of x, and all partial derivatives are evaluated at the SNIC bifurcation. As discussed
in [11], the dynamics of (C1) near the SNIC bifurcation can be understood in terms of the
behavior associated with the zero eigenvalue of the fixed point. Specifically, let vS and wS be
right and left eigenvectors of Fx associated with the \lambda S = 0 eigenvalue with the scaling | | vS | | 2
and wTS vS = 1. As in [10], the dynamics of (C2) are governed by

\.y= ky2 + \zeta \Delta \mu ,(C3)

where \zeta = wTS e1
\partial I\mathrm{e}\mathrm{x}\mathrm{t}
\partial \mu and k is an appropriately defined constant. A second change of coordi-

nates \Upsilon = ky yields the one-dimensional normal form of the saddle node bifurcation

\.\Upsilon =\Upsilon 2 + k\zeta \Delta \mu .(C4)

For k\zeta \Delta \mu > 0, solutions of (C4) escape to +\infty in finite time. As discussed in [10], these finite
time escapes to +\infty correspond to a neural spike, and one can immediately reset the solution
to  - \infty to make the system periodic with period T = \pi /

\surd 
k\zeta \Delta \mu and frequency \omega = 2

\surd 
k\zeta \Delta \mu .

Reference [10] immediately computes the solution to (C4), and following a transformation to
phase coordinates \theta \in [0,2\pi ) as defined by isochrons (3), computes the gradient of the phase
along solutions according to

\partial \theta 

\partial \Upsilon 
=

2

\omega 
(1 - cos(\theta )).(C5)

Considering the phase response curve from (C5), the phase reduction of (C4), valid when
\mu (t)\approx \mu S +\Delta \mu , takes the form

\.\theta = \omega +
2k\zeta 

\omega 
(1 - cos(\theta ))(\mu (t) - \mu S  - \Delta \mu ).(C6)
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214 DAN WILSON

Of particular interest, when taking \mu (t) = \mu S , one finds

\.\theta = \omega  - 2k\zeta \Delta \mu 

\omega 
(1 - cos(\theta ))

=
\omega 

2
(1 + cos(\theta )),(C7)

where the second line is obtained by noting that 2k\zeta \Delta \mu = 1
2\omega 

2. Considering (C7), we see that
(C6) also has a saddle node bifurcation that occurs when taking \mu (t) = \mu S .

Appendix D. Error bounds associated with the reduction of subHopf/fold cycle bursters.
Suppose that both | | \Delta x| | and | | u - p| | from (21) are order \epsilon terms. Assuming that the eigen-
values of Fx are simple for all x, i.e., they have algebraic multiplicity of 1, let (\lambda j , vj ,wj) be
an eigenvalue, right eigenvector, left eigenvector triple of Fx with the normalization | | vj | | 2 =
wTj vj = 1. Using the coordinate transformation yi =wT\Delta x, one can write

\.yi = \.wTi \Delta x+wTi \.x,

= \.wTi \Delta x+wT (Fx\Delta x+ r),

= \.wTi \Delta x+ \lambda iyi +wTi r.(D1)

Above, the second line is obtained by substituting (21) and truncating the order \epsilon 2 terms. Note
that Fx is a function of x(t), requiring the time derivative of wi in (23). Starting with the rela-
tion | yi| 2 = y\ast i yi where

\ast denotes the complex conjugate, taking time derivatives, one can write

2| yi| \.| yi| = yi \.y
\ast 
i + \.yiy

\ast 
i .(D2)

Substituting the time derivatives from (23) into the above equation yields

| yi| \.| yi| =Re(\lambda i)| yi| 2 +Re(y\ast i ( \.w
T
i \Delta x+wTi r))

\leq Re(\lambda i)| yi| 2 + | yi| (| | \.wi| | \cdot | | \Delta x| | + | wTi r| ),(D3)

so that

\.| yi| \leq Re(\lambda i)| yi| + | | \.wi| | \cdot | | \Delta x| | + | wTi r| ,(D4)

where | | \cdot | | denotes the two norm. Considering the evolution of (D4) over a given time frame
t \in [t0, t1], let \^\lambda i = maxt(Re(\lambda i)) < 0, \^\.wi = maxt(| | \.wi| | ), and \^ri = maxt(| wTi ri| ). It will be
assumed that \^\.wi =O(1). Equation (D4) can be rewritten as

\.| yi| \leq \^\lambda i| yi| + \^\.wi| | \Delta x| | + \^ri.(D5)

Considering an upper bound on \.| yi| , one finds that when | yi| \geq ( - \^\.wi| | \Delta x| |  - \^ri)/\^\lambda i, this implies
\.| yi| \leq 0. As such,

| yi| \leq 
 - \^\.wi| | \Delta x| |  - \^ri

\^\lambda i
,(D6)

provided | yi| < ( - \^\.wi| | \Delta x| |  - \^ri)/\^\lambda i at t= 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

4/
25

 to
 7

6.
23

4.
10

1.
43

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PHASE-BASED REDUCED BURSTING NEURONS 215

Considering (D6), if \^\lambda i = O(1/\epsilon ) and recalling that \^\lambda i < 0, i.e., with a very rapid decay,
then | yi| is no larger than O(\epsilon ). Suppose there are a total of \beta coordinates for which \^\lambda i =O(1)
and N  - \beta coordinates for which \^\lambda i = O(1/\epsilon ). For convenience, order yi so that \^\lambda i \geq \^\lambda i+1.
With this ordering, \^\lambda \beta +1, . . . , \^\lambda N correspond to the fast decaying directions for which the
bound (D6) applies. Letting \^y=maxj=1...\beta (| yj | ) and focusing on this specific coordinate with
the largest magnitude, considering (D5) as a starting point, one can write

\.\^y\leq max
j=1...\beta 

(\^\lambda j)\^y+ max
j=1,...,\beta 

( \^\.wj)| | \Delta x| | + max
j=1,...,\beta 

(\^rj)

= max
j=1...\beta 

(\^\lambda j)\^y+ max
j=1,...,\beta 

( \^\.wj)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
j=1

vjyj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| + max

j=1,...,\beta 
(\^rj)

= max
j=1...\beta 

(\^\lambda j)\^y+ max
j=1,...,\beta 

( \^\.wj)

N\sum 
j=1

| yj | + max
j=1,...,\beta 

(\^rj)

\leq max
j=1...\beta 

(\^\lambda j)\^y+ max
j=1,...,\beta 

( \^\.wj)

\left[  \beta \^y+ N\sum 
j=\beta +1

| yj | 

\right]  + max
j=1,...,\beta 

(\^rj).(D7)

Note that in the second line above, \Delta x =
\sum N

j=1 vjyj and in the third line, | | 
\sum N

j=1 vjyj | | \leq \sum N
j=1 | | vjyj | | =

\sum N
j=1 | yj | \cdot | | vj | | =

\sum N
j=1 | yj | since | | vj | | = 1 for all j. Manipulation of (D7)

yields

\.\^y\leq 
\biggl[ 
max
j=1...\beta 

(\^\lambda j) + max
j=1,...,\beta 

( \^\.wj)\beta 

\biggr] 
\^y+ max

j=1,...,\beta 
( \^\.wj)

N\sum 
j=\beta +1

| yj | + max
j=1,...,\beta 

(\^rj).(D8)

Provided \Delta x=O(\epsilon ) at t= 0, for the fast decaying coordinates y\beta +1, . . . , yN , using (D6), one

can write | yj | \leq  - \^rj/\^\lambda j + O(\epsilon 2) for j = \beta + 1 . . .N . Substituting this result into (D8) and
truncating O(\epsilon 2) terms yields

\.\^y\leq a\^y+ b,(D9)

where a and b are defined according to

a= max
j=1...\beta 

(\^\lambda j) + max
j=1,...,\beta 

( \^\.wj)\beta ,

b= max
j=1,...,\beta 

( \^\.wj) max
j=\beta +1,...,N

( - \^rj/\^\lambda j) + max
j=1,...,\beta 

(\^rj).(D10)

Equation (D9) has an explicit solution

\^y(t) =

\biggl( 
\^y(0) +

b

a

\biggr) 
exp(at) - b

a
.(D11)

Above, note that a is generally positive. Considering (D11), provided that b=O(\epsilon ), \^y remains
an O(\epsilon ) term on t \sim log(1/\epsilon ) timescales. Recalling the definition of b from (D10), b = O(\epsilon )
when maxj=1,...,\beta (\^rj) =O(\epsilon ).
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