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Abstract The isostable coordinate system, which
encodes for level sets of the slowest decaying eigen-
modes of the Koopman operator, provides an effective
framework with which to represent the dynamics of
a general nonlinear system using a low-order basis.
When the underlying model equations are known,
transformation to an isostable-coordinate-based reduced
order model is relatively straightforward. In a data-
driven setting, where only time series measurements of
observables are available, robust, accurate, and general
strategies for inference of these reduced order models
have yet to be developed. To this end, in this work we
reframe the reduced order isostable coordinate dynam-
ics of a general nonlinear dynamical system in the
basin of attraction of a stable fixed point in terms of
the composition of a set of known nonlinear functions
and unknown linear functions. This framing allows
for the use of an artificial neural network to identify
the weights of the unknown linear functions without
any need of prior estimation of the isostable coordi-
nates. Once learning is completed, these weights can
be extracted to yield a nonlinear reduced order model
that is independent of the artificial neural network.
The proposed technique is illustrated in a collection
of models including one that considers the dynamics
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of a synaptically coupled population of tonically firing
conductance-based neurons.
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1 Introduction

Recent years have seen a surge of interest in the devel-
opment of data-driven strategies for inference of low-
dimensional, predictive dynamicalmodels [7,19]. Such
techniques attempt to determine an appropriate set
of equations that can accurately reflect model out-
put in response to general inputs without prespeci-
fying any underlying dynamical structure. This data-
driven model identification paradigm represents a sig-
nificant departure from more conventional strategies
that build models from the bottom up, first deciding
on the underlying dynamical mechanisms and subse-
quently fitting model parameters to experimental data,
for example, as was the approach of Hodgkin and Hux-
ley [14]. In contrast to bottom-up model identifica-
tion approaches, implementation of data-driven model
identification techniques generally does not require any
domain-specific knowledge. Indeed, data-driven strate-
gies are particularly well-suited for use in applications
where the underlying dynamical mechanisms that give
rise to observed model behaviors are not well under-
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stood and in situations where there is not a clear map-
ping between state variables and model observables.

Many well-established reduced order model identi-
fication strategies employ modal decomposition tech-
niques which attempt to extract a subset of dynam-
ically important features from an available dataset.
Proper orthogonal decomposition (POD) [5,15,45] is
one such algorithm that yields an optimal set (in an
L2 energy sense) of orthogonal reduced order modes.
Alternatively, dynamic mode decomposition (DMD)
[19,36,41] identifies modes with associated growth,
decay, or oscillation rates from temporally ordered
pairs of snapshot data. Both POD and DMD are well
suited to high-dimensional datasets where the less
important modes can be truncated. If the underlying
equations are known, they can be projected onto a rep-
resentative set of modes in order to yield a reduced
order model in a process commonly referred to as
Galerkin projection [15,27]. If the underlying equa-
tions are unknown, it is generally not straightforward
to identify an associated dynamical model, especially
for systems with fundamentally nonlinear behavior.

A variety of other data-driven model identifica-
tion strategies have been developed with the ability
to explicitly account for non-negligible nonlinearities.
Among these are techniques that attempt to learn the
associated model equations themselves, automatically
selecting terms from a prespecified function library that
best reproduce the training data [8,22,31,40]. These
typically promote sparsity to avoid overfitting and can
be particularly useful when the model behavior can be
accurately represented with a relatively simple set of
dynamical equations. Alternatively, the theory of spec-
tral submanifolds [10,12], which represent an exten-
sion of linear modal subspaces to nonlinear systems,
has shown promise in the analysis of nonlinear vibra-
tions [33,43]. Generally, when using the spectral sub-
manifold approach, asymptotic dynamics can be accu-
rately captured by considering a subspace spanned by a
collection of the slowest modes allowing for analysis in
terms of a reduced order model. Additionally, reduced
order methods that incorporate adaptive parameter sets
[53–55,57] attempt to capture salient features of the
nonlinear system by including a set of nonstatic param-
eterswith an associated parameter update rule designed
to limit truncation errors.

Methods based on Koopman analysis have also
gained traction for model identification purposes.
Koopman operator theory allows for the representa-

tion of a generally nonlinear dynamical system in terms
of a linear, but possibly infinite dimensional opera-
tor [9,25,26]. The critical challenge of implementing
Koopman analysis is in finding afinite dimensional rep-
resentation for this infinite dimensional operator. In a
data-driven setting, this can be accomplished by find-
ing representative eigenmodes of the Koopman oper-
ator; learning-based approaches have shown promise
for this task [11,17,21,61]. Koopman operator theory
has a close connection to DMD [36] which can also be
used to approximate Koopman eigenmodes. Such algo-
rithms typically work best when high-dimensional data
is available but can also be implemented in conjunc-
tion with lifting functions [46], for instance using delay
embedding of time series data [3,4,6,49]. How to best
accommodate external inputs when using Koopman-
based approaches is still an open question. Authors of
[18] and [34] consider least-squares fitting approaches
to obtain linear predictors for the behavior in response
to input. Alternatively, [32] considers the identification
of a set of Koopman reduced order models that cor-
respond to a finite set of constant controls, ultimately
yielding a switching time optimization problem.

In this work, we focus on model identification
techniques that leverage isostable coordinates [24,
58], which represent level sets of the slowest decay-
ing eigenmodes of the Koopman operator. Because
isostable coordinates can be defined in the basin of
attraction of a fixed point, this coordinate framework
can be used to accurately capture fully nonlinear behav-
iors in the corresponding dynamical system. If the
underlying dynamical equations are known, it is pos-
sible to compute the necessary terms of the isostable-
based reduced order models to high orders of accu-
racy using strategies described in [50] and [52]. In a
data-driven setting (i.e., when the model equations are
unknown) it is not as clear how to proceed. References
[56] and [52] propose a least-squares model fitting
approach using the steady state response to periodic
forcing. However, this strategy specifically requires
sinusoidal inputs to be used for model fitting, limiting
its practical utility in many settings. Here we suggest a
different approach: by lifting to a higher dimensional
state space, we reframe the isostable-coordinate-based
input–output dynamics in terms of the composition of
a set of known nonlinear functions and unknown lin-
ear functions. We design an artificial neural network
that can learn the weights associated with the unknown
linear functions from training data. Once learning is
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completed, the weights can be extracted to yield a non-
linear reduced order model that is independent of the
artificial neural network.

Various approaches highlighted in different research
works also employ novel variations of the artificial neu-
ral networks in order to infer dynamics of nonlinear sys-
tems. For instance, reference [29] investigates the use
of modular neural networks in obtaining chaotic time-
delay system dynamics and compares results to those
obtained using feed-forward neural networks. Addi-
tionally, reference [28] introduces the idea of orthog-
onal neural networks to predict the solution of numer-
ous time-dependent and independent systems follow-
ing singular Emden-Fowler dynamics whose behavior
can be described by either an ordinary or partial differ-
ential equation. To identify the dynamic model of two
specific processes in an automotive engine, [44] uses
external recurrent neural networks for model identifi-
cation.

Other previous works focus on utilizing feed for-
ward artificial neural networks in order to tackle model
identification of nonlinear dynamics. Authors in [23]
use the notion of dynamic neurons in feed-forward neu-
ral networks in order to capture system nonlinearities.
Also, [30] focuses on using feed-forward neural net-
works for long-time predictive modelling of nonlinear
dynamical systems by augmenting Jacobian regular-
ization in the network’s loss function. Both of these
approaches differ from our work through the fact that
our approach structures the artificial neural network
according to our reduced isostable coordinate dynam-
ics rather than just utilizing the network as a black-box.
Another approach, presented in [60], is based upon
the equivalency of feed-forward neural networks to
Volterra series; the authors use this idea to compute
Volterra kernel representations for dynamical systems
through the internal parameters of the network.

A new class of neural networks, physics informed
neural networks (PINNs), have been gaining promi-
nence in inferring dynamics of systems governed by
nonlinear partial differential equations (PDEs) [35].
Prior knowledge based on these PDE’s is embedded
into the neural network training process in order to
allow the training algorithm to capture the right solu-
tion more efficiently without needing large amounts
of training data. Given a set of noisy measurements
from the dynamical system, PINNs can be modified to
solve both the forward and inverse problems for PDEs.
Although our proposed approach also utilizes output

measurements in order to infer model dynamics, there
are two important distinctions between PINNs and our
approach. Unlike PINNs, our approach does not rely on
any prior domain knowledge of any physical laws per-
taining to the set of equations governing the dynamical
system in consideration.Moreover, our approach lever-
ages the isostable based reduced order model dynam-
ics for structuring the neural network whereas PINN’s
structure is typically based on the type of system at
hand.

The organization of this paper is as follows: Sect. 2
provides necessary background on the isostable coor-
dinate framework and previously developed isostable-
coordinate-based model order reduction frameworks.
Section3 describes the mathematical formulation that
allows for the implementation of the model identi-
fication strategy using artificial neural networks and
discusses practical matters related to implementation.
Results are given in Sect. 4 where we illustrate the pro-
posed technique in two simple dynamical models along
with a more complicated illustration in a model that
captures neural spiking behavior. Sect. 5 provides a dis-
cussion of the proposed strategy in the context of the
results and Sect. 6 gives concluding remarks.

2 Background

2.1 Isostable coordinates

Consider a general ordinary differential equation of the
form

ẋ = F(x,U (t)),

y = H(x), (1)

where x ∈ R
N is the state, F sets the dynamics,U (t) ∈

R
P is a general control input, y ∈ R is an observable

defined by H . Suppose the system admits a stable fixed
point F(xss,Uss) = 0 with yss = H(xss). Let A =
∂F
∂x (i.e., the Jacobian) evaluated at the fixed point and
let λk be an eigenvalue of A with associated left and
right eigenvectorswk and vk , respectively. Eigenvalues
will be ordered so that Re(λk) ≥ Re(λk+1). Recall
that xss is stable so that λ1 corresponds to the slowest
decaying eigenmode of the linearized system. Provided
λ1 is not defective, an associated isostable coordinate
can be defined in the basin of attraction of the fixed
point as
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ψ1(x) = lim
t→∞

(
wT
1 (φ(t, x) − xss) exp(−λ1t)

)
, (2)

whereψ1 ∈ C. Here,φ(t, x) denotes the flowof Eq. (1)
under the constant application ofUss and T denotes the
vector transpose. In the definition fromEq. (2), the term
wT
1 (φ(t, x) − xss) captures the slow decay to the fixed

point and the term exp(−λ1t) grows at a corresponding
rate in the limit as time approaches infinity (note that
−λ1 > 0) so that the right hand side of (2) converges to
the isostable coordinate. As discussed in [24], isostable
coordinates represent level sets of the slowest decaying
eigenmodes of the Koopman operator [9,25]. Equation
(2) provides an explicit definition for the slowest decay-
ing isostable coordinate. Such an explicit definition is
not guaranteed for the faster decaying isostable coor-
dinates [20], which can instead be defined implicitly as
level sets of Koopman eigenfunctions with decay rates
that are governed by an associated λk .

2.2 Model order reduction using isostable coordinates

When taking U (t) = Uss, each isostable coordinate
evolves in time according to

ψ̇k = λkψk, (3)

resulting in a simple exponential decay. This prop-
erty, as described below, allows for the use of an
isostable-based reduced order coordinate system that
captures input–output relationships for general nonlin-
ear dynamical systems. For simplicity, in this work
it will be assumed that U (t) is a rank-1 input, i.e.,
U (t) = Bu(t) where B ∈ R

P and u(t) ∈ R. With
this in mind, let Uss = Buss. It will also be assumed
that u(t) − uss = O(ε) where 0 < ε � 1. Asymptotic
expansion of Eq. (1) about the fixed point, neglecting
higher-order terms, yields

ẋ = F(x, Buss) + ∂F

∂U
B(u(t) − uss), (4)

where the partial derivatives are evaluated at x(t) and
Uss. Transforming Eq. (4) towork in a basis of isostable
coordinates ψ1, . . . , ψβ , from the chain rule, one finds

ψ̇k = ∂ψk

∂x
· dx
dt

= ∂ψk

∂x
· F(x, Buss) + ∂ψk

∂x
·
(

∂F

∂U
B(u(t) − uss)

)

= λkψk + ∂ψk

∂x
·
(

∂F

∂U
B

)
(u(t) − uss), (5)

for k = 1, . . . , β. Above, the dot denotes the dot prod-
uct and all partial derivatives are once again evaluated
at the fixed point. Additionally, in the third line we use
the fact that ψ̇k = λψk when U = Uss.

Equation (5) is still a function of the state preclud-
ing its direct use as a reduced order representation of
Eq. (1). Instead, as suggested in [50] and [52], one can
assume that the truncated fast decaying isostable coor-
dinates are well approximated by zero. Adopting this
strategy and following the formulation from [52] yields
a reduced order model of the form

ψ̇k = λkψk + Ik(ψ1, . . . , ψβ)(u(t) − uss),

k = 1, . . . , β,

y(t) − yss = G(ψ1, . . . , ψβ), (6)

where Ik(ψ1, . . . , ψβ) ∈ C provides a good approxi-
mation for ∂ψk

∂x · ( ∂F
∂U B) and G(ψ1, . . . , ψβ) ∈ R pro-

vides a good approximation for H(x) − yss. Taylor
expanding each Ik and G in a basis of the nontrun-
cated isostable coordinates centered at the fixed point
(i.e., for which ψ1 = ψ2 = · · · = ψβ = 0) yields

In(ψ1, . . . , ψβ) ≈ I 0n +
β∑

k=1

[
ψk I

k
n

]

+
β∑

j=1

j∑

k=1

[
ψ jψk I

jk
n

]

+
β∑

i=1

i∑

j=1

j∑

k=1

[
ψiψ jψk I

i jk
n

]
+ . . . , (7)

G(ψ1, . . . , ψβ) ≈
β∑

k=1

[
ψkg

k
]

+
β∑

j=1

j∑

k=1

[
ψ jψkg

jk
]

+
β∑

i=1

i∑

j=1

j∑

k=1

[
ψiψ jψkg

i jk
]

+ . . . , (8)

for n = 1, . . . , β. By computing the terms gi jk... and
I i jk...n to a desired order of accuracy in the isostable
coordinate expansion, a reduced order model can be
obtained that accurately replicates nonlinear behaviors
of the underlying system (1). This general isostable-
based approach for model order reduction has been
used previously to characterize dynamics associated
with memory in entrained oscillations [1], to investi-
gate the emergence of coupling-induced oscillations in
nominally non-oscillatory systems [51], and to develop
nonfeedback control strategies to stabilize chaotic
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dynamics [48]. Note that in the reduced ordermodel (6)
given above, it is often assumed that both u(t)−uss and
each isostable coordinate ψ1, . . . , ψβ are order O(ε)

terms. As such, it is conventional to refer to I 0n , I
k
n ,

I jkn from the expansion (7) as first-, second-, third-
order terms, respectively, of the reduced order model.
Likewise gk , g jk , gi jk from the expansion (8) will be
referred to as the first-, second-, and third-order terms,
respectively, with this pattern continuing for higher
orders.

3 Problem formulation and general approach

3.1 Problem description

If the underlying model equations from (1) are known,
it is possible to directly solve for each gi jk... and I i jk...n

as described inAppendixAof [52]. If instead themodel
equations are unknown, the necessary terms must be
identified using data-driven methods. Reference [56]
suggests a strategy for accomplishing this task by mea-
suring the steady-state output in response to sinusoidal
inputs applied over a range of frequencies and using
this information to infer linear approximations for each
Ik and G from Eq. (6). This strategy was expanded in
[52] to infer nonlinear terms in the expansions from
(8) and (7). This previous approach requires a substan-
tial amount of data, must use purely sinusoidal inputs
for training, and requires measurements of the steady-
state response; each of these requirements represents a
potential limitation that may preclude implementation
in an experimental setting.

In this work we employ an alternative approach.
Specifically, for a general system of the form of
Eq. (1), given a collection of output measurements
y1(t), y2(t), . . . , yn(t) that result from the application
of an arbitrary collection of applied inputs u1(t), u2(t),
. . . , un(t), we seek to accurately infer the unknown
constants from Eqs. (7) and (8) to arbitrary orders of
accuracy in the expansion of isostable coordinates. Our
proposed strategy accomplishes this task using gradi-
ent descentmethods on an artificial neural networkwith
implementation details described below.

3.2 Reframing the nonlinear dynamics

To reframe the problem in a manner that is amenable to
a solution using artificial neural networks, we consider

an isostable-coordinate-based reduction of the form (6)
with initial conditions ψ1(t0), . . . , ψβ(t0) correspond-
ing to output y(t0) = G(ψ1(t0), . . . , ψβ(t0)). For sim-
plicity of exposition, we will take uss = 0. Letting
� = [ψ1, . . . , ψβ ]T and considering the dynamics
mandated by Eq. (5), using a forward Euler method of
solution with a timestep of	t , the isostable coordinate
and corresponding outputs at t = t0 + 	t are

ψk(t0 + 	t) = fk(�(t0), u(t0))

= (1 + λk	t)ψk(t0)

+ Ik(�(t0))u(t)	t,

k = 1, . . . , β,

y(t0 + 	t) − yss = G(�(t0 + 	t)). (9)

Above, the functions f1, . . . , fβ take the current
isostable coordinates and input andmap to the isostable
coordinates 	t time units later. To proceed, notice that
each fk with associated Ik , defined according to the
Taylor expansion in (7), is linear in a basis of lifted coor-
dinates comprised of the state and input. For instance,
when using only one isostable coordinate (i.e., when
β = 1), one can write

ψ1(t0 + 	t) = (1 + λ1	t)[ψ1(t0)]
+ [u(t0)]I 01	t + [ψ1(t0)u(t0)]I 11	t

+ [ψ2
1 (t0)u(t0)]I 111 	t

+ [ψ3
1 (t0)u(t0)]I 1111 	t + . . . , (10)

where the brackets are used to denote elements of a
lifted basis. With this in mind, we will consider each
fk as the composition of two functions

fk = wk ◦ nI , (11)

for k = 1, . . . , β, where nI : C
β × R → C

γ ,
wk : C

γ → C, and γ is the size of the lifted basis.
For example, when β = 1 and taking the asymptotic
expansion to third order of accuracy,

nI (ψ1, u) =

⎡

⎢
⎢
⎣

ψ1
u

ψ1u
ψ2
1u

⎤

⎥
⎥
⎦ , w1 = nI (ψ1, u)T

⎡

⎢
⎢
⎣

1 + λ1	t
I 01	t
I 11	t
I 111 	t

⎤

⎥
⎥
⎦ .

(12)

Note here that u andψ1 are both O(ε) so that the terms
ψ3
1u and I 1111 and above are truncated at third order of
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accuracy. Likewise, we consider G as the composition
of two additional functions

G = wG ◦ nG , (13)

where nG : Cβ → C
ζ and wG : Cζ → R and ζ is

the size of the lifted basis. For example, when β = 1
and taking the asymptotic expansion to third order of
accuracy,

nG(ψ1) =
⎡

⎣
ψ1

ψ2
1

ψ3
1

⎤

⎦ , wg = nG(ψ1)
T

⎡

⎣
g1

g11

g111

⎤

⎦ . (14)

In the context of the data-driven model identification
strategies considered in this work, for a general system
of the form (1), the functions nI and nG are nonlin-
ear but are known once the number of isostable coordi-
nates and order of accuracy are specified. The functions
w1, . . . , wβ and wG are linear and contain unknown

coefficients (i.e., the terms gi jk... and I i jk...n from Eqs.
(7) and (8)). Identification of these unknown coeffi-
cients specifies the isostable coordinate update rule
from Eq. (9).

3.3 A data-driven approach for model
identification using artificial neural networks

Using the formulation described in the previous sec-
tion, for a general dynamical system, our goal is to
learn the unknown terms of the asymptotic expan-
sions from Eqs. (7) and (8) that comprise the output
update rule from Eq. (9). These functions themselves
are split into compositions given by Eqs. (11) and
(13) where terms of the form nX are known nonlin-
ear functions which lift the state to a higher dimension
and terms of the form wX are linear functions of the
lifted state with undetermined coefficients. Using dis-
crete sets of recorded observable measurements y j =
[y j (t0), y j (t0+	t), . . . , y j (t0+η	t)] that resultwhen
applying inputs u j = [u j (t0), u j (t0+	t), . . . , u j (t0+
(η − 1)	t)] to the system for j = 1. . . . , ν, the goal
is to infer the unknown coefficients from Eqs. (7) and
(8), along with the decay rates λ1, . . . , λβ , ultimately
yielding a reduced order model of the form in Eq. (6).

The reduced order isostable coordinate based rep-
resentation is implemented using a multi-layer simple
feed forward network architecture, devised for model
learning purposes. The network structure is based on
themathematical formulation fromSect. 3.2with a rep-
resentation shown in Fig. 1. The input layer accepts a

concatenation of the isostable coordinates �(t0) and
the applied input u(t0). Next, a nontrainable function
layer lifts the input to a higher dimension implement-
ing the (known) function nI . This lifted state is fed
through a hidden layer that implements the linear func-
tions w1, . . . , wβ to yield an updated isostable coordi-
nate�(t0+	t). This output is then fed through another
nontrainable function layer which implements the lift-
ing described by nG , and the lifted state is fed through a
fully connected trainable output layer that implements
wG .

We denote the estimate of the observable at a given
time as ŷ j (t) and compare with a system measurement
y j (t) that results from the application of the inputu j (t).
For a given set of input–output measurements y j and
u j , we use the current approximation for the update
function from Eq. (9) to yield a set of approximations
ŷD = [ŷ j (t0), ŷ j (t0 + 	t), . . . , ŷ j (t0 + η	t)]. A loss
function is defined as the mean squared error (MSE)

MSE = 1

νη

ν∑

j=1

η∑

i=1

(y j (t0 + i	t) − ŷ j (t0 + i	t))2.

(15)

Recall that ν is the number of inputs and η is the number
of timesteps for each input. Theweights of the trainable
layers that implement w1, . . . , wβ and wG are updated
duringbackpropagation. For all sets of inputs and corre-
sponding outputs, we take the initial condition to corre-
spond to xss so thatψ1(t0) = ψ2(t0) = · · · = ψβ(t0) =
0 and y(t0) = yss. This is done so that the initial con-
dition is known and can be accomplished by allowing
the system to approach the stable steady-state solution
before applying the test input. Training the neural net-
work using mini-batch gradient descent allows us to
train on multiple inputs simultaneously, thus allowing
the network to learn a solution that accurately captures
the response for general inputs.

The unknown functions in the network described
above are linear. As such, we use a linear activation
function in the artificial neural network. After training
is finished, a nonlinear reduced ordermodel of the form
(6) can be recovered from the learned weights of the
network. Importantly, the resulting model is indepen-
dent of the artificial neural network allowing for sub-
sequent application of standard nonlinear control and
analysis techniques. As a final point of emphasis, in Eq.
(9) In is multiplied by	t for n = 1, . . . , β; as such, the
learned coefficients I 0n , I kn , . . . will be proportional to
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Fig. 1 General architecture for the proposed neural network based strategy

	t . Conversion between the discrete time update rule
(9) and the continuous reduced order model (6) will
require an appropriate scaling of the learned weights.

The layer level diagram given in Fig. 1 represents
the general architecture comprising the neural network
employed in this work. The input layer consists of
the value of the isostable coordinates at the current
timestep, i.e., �(t), as well as the set of inputs, u(t).
Both parts of the input layer are then passed through
a nontrainable function layer, nI , that transforms these
components to the lifted coordinate basis. The isostable
coordinate update rule from Eq. (9) is then emulated by
multiplying the lifted coordinate basis with the coeffi-
cients comprising w1, . . . , wβ ; these coefficients are
the weights associated with the hidden layer in the
neural network and are learned through training. The
resulting update to the isostable coordinates,�(t+	t),
is implemented by a hidden layer in the neural network
architecture. The isostable updates are recursively fed
back into the input layer of the network to generate fur-
ther updates at successive timesteps.Once all the essen-
tial isostable coordinate values have been generated,
these are passed throughnG , to transform�(t+	t) to a
second set of lifted coordinates and implementedwith a
second nontrainable function layer. The mapping from
the isostable coordinates to the state fromEq. (9) corre-
sponds to the output layer. Here wG contains the asso-
ciated weights. The predicted outputs [ŷ(t0), ŷ(t0 +

	t), ŷ(t0 + 2	t) . . . ] are identified recursively and
compared with the full model output [y(t0), y(t0 +
	t), y(t0 + 2	t) . . . ] to compute the prediction error.
This error is used for training through backpropagation.
Specific steps required for the training process and the
network implementation are described below.

3.4 Implementation of the model-identification
strategy using a neural network

The implementation of the artificial neural network
based approach for model identification is described
in Sect. 3.3; the network structure is feedforward with
no recurrent connections. This neural network is imple-
mented and built using Keras, a deep learning applica-
tion programming interface (API)written in python and
built on top of Tensorflow, a machine learning platform
within python.Additionally, unlike conventional super-
vised learning methods which have the training data
readily available, the training data has to be generated
online as the learning proceeds. This model identifica-
tion strategy can be performed using the procedure out-
lined below. This procedure assumes that a represen-
tative collection of outputs y1(t), . . . , yn(t) generated
by inputs u1(t), . . . , un(t) has been measured. Each of
themeasured outputs are assumed to start at the steady-
state solution yss so that the initial isostable coordinates
are equal to zero.
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Step (1) Specifyβ, the number of isostable coordinates
to use. It is generally better to use the fewest
isostable coordinates possible to avoid over-
fitting. Define functions for the non-trainable
function layers that implement the lifting func-
tions nI and nG from (11) and (13).

Step (2) Define the structure of the artificial neural
network based on the order of accuracy (in
the expansion in isostable coordinates) of the
functions f1, . . . , fβ and G from Eq. (9).
Linear activation functions are used so that
the learned weights correspond directly to
the coefficients in the Taylor expansions from
Eqs. (7) and (8)

Step (3) Define an auxiliary function that implements
the forward Euler step from Eq. (9) using the
current networkweights. This function is used
in order to generate the output approximations
ŷD(t) used for training.

Step (4) Initialize network weights, specify an opti-
mizer, a loss function, and a learning rate. In
this work, we used the mean square error loss
from (15).

Step (5) Each epoch is comprised of two loops. For
a given input u(t), the first loop implements
the forward Euler update rule from Eq. (9)
to calculate the isostable coordinate update.
The second loop updates the weights of the
trainable layers by training using the data gen-
erated by the first loop. As discussed ear-
lier, it is assumed that each ψk(t0) = 0 for
k = 1, . . . , β, i.e., the system starts at its
steady-state solution; all subsequent isostable
coordinate updates are generated while train-
ing without the need of direct measurements.
An outer loop is implemented to iterate over
the epochs until the training loss converges.

Step (6) The weights in the trained artificial neural net-
work correspond to coefficients of the Taylor
expansions from Eqs. (7) and (8) along with
decay rates. These weights can be extracted to
yield a reduced order model of the form (6)
that can be analyzed independent of the artifi-
cial neural network.

Below, we provide a few general notes about the
implementation of the training procedure specified
above. First, the proposed model identification strat-
egy tends to perform poorly if the initialization of the

weights from Step 4 yields a model that does not pro-
vide a good representation of the training data. To cir-
cumvent this issue, it can be useful to initially train
using small magnitude inputs so that the influence of
the higher-order terms is suppressed and obtain amodel
that is valid to linear order by finding coefficients of
the form I 0n and gn from (7) and (8), as well as the
decay rates λn for n = 1, . . . , β. Subsequently, one
can train higher-order models using additional training
data obtained from larger magnitude inputs and also
using the coefficients of the first-order model in the ini-
tialization from Step 4 in the procedure above. Since
these weights have already been fit to the lower-order
model, regularization can be used to ensure that they
do not drift too far from the initialized values during
learning for the higher-order weights.

To first-order accuracy, ∂ψn/∂x is given by the left
eigenvector of the Jacobian, A, as defined below Eq.
(1). As such, in the definition of isostable coordinates
from Eq. (2), the scaling for the left eigenvector w1

can be chosen arbitrarily. A practical consequence of
this fact is that each term I 01 , . . . , I 0β can each be scaled
by an arbitrary constant. Some scaling must be chosen
to implement the proposed model identification algo-
rithm; in this work, we scale so that each of these terms
is penalized for being far from 1.

In order to train the network, the total number of
timesteps for each input–output pair are treated as a sin-
gle batch in the mini-batch stochastic gradient descent
algorithm. The complete dataset is thus comprised of
multiple of these batches corresponding to the different
inputs. Training on all inputs in each epoch is impor-
tant for the network to find a solution which can gen-
eralize to novel inputs. Since the inputs for subsequent
timesteps depend on the network itself, periodically
updating the dataset is necessary. Here it is done after
each epoch using the current learned weights. There is
no need in reaching convergence before updating since
the inputs themselves are based on incorrect weights.
However, waiting for an entire epoch allows the train-
ing to occur on all input–output pairs, thus providing a
more generalizable solution.

3.5 Handling complex-valued isostable coordinates

Artificial neural networks perform best when using real
valued weights while training. Nonetheless, it is gener-
ally possible for isostable coordinates to come in com-
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plex conjugate pairs [47], necessitating the identifica-
tion of complex-valued weights in the expansions from
(7) and (8). Some extensions of the traditional feed for-
ward neural network structure have been proposed to
handle complex-valued weights [13,39,42]. Here, we
take an alternative approach by transforming a network
that requires complex-valued weights to an equivalent
network that only requires real-valued weights.

To begin, as discussed in [47], isostable coordinates
that take complex-values always come in complex-
conjugate pairs. As such, consider a reduced order
model with two complex-conjugate isostable coordi-
nates, i.e.,

ψ2 = ψ∗
1 , (16)

where ∗ denotes the complex-conjugate. Considering
the isostable coordinate update rule from (10) taken to
second-order accuracy, one can write

ψ1(t0 + 	t) = (1 + λ1	t)[ψ1(t0)] + [u(t0)]I 01	t

+[ψ1(t0)u(t0)]I 11	t

+[ψ∗
1 (t0)u(t0)]I 21	t. (17)

Separating the real and imaginary components from
(17) the following relations are obtained

Re(ψ+
1 ) = Re(ψ1)(1 + Re(λ1)	t))

− Im(λ1)Im(ψ1)	t + Re(I 01 )u	t

+ [Re(I 11 )Re(ψ1) − Im(I 11 )Im(ψ1)]	tu

+ [Re(I 21 )Re(ψ1) + Im(I 21 )Im(ψ1)]	tu,

Im(ψ+
1 ) = Im(ψ1)(1 + Re(λ1)	t))

+ Im(λ1)Re(ψ1)	t + Im(I 01 )u	t

+ [Im(I 11 )Re(ψ1) + Re(I 11 )Im(ψ1)]	tu

+ [Im(I 21 )Re(ψ1) − Re(I 21 )Im(ψ1)]	tu,

(18)

where the + is used to denote the value at the next
timestep, for instance, Re(ψ+

1 ) = Re(ψ1(t0+	t)) and
the explicit time dependence on each of the isostable
coordinates has been suppressed for convenience of
notation. Notice that in the above equations, all terms
are real-valued. Additionally, the state of the second
isostable coordinate does not need to be explicitly con-
sidered since it is simply the conjugate of the first
isostable coordinate.

A similar transformation can be used for the map
from the isostable coordinates to the output. Once

again, considering a two isostable coordinate model
where ψ1 and ψ2 are complex-conjugate, the Tay-
lor expansion of the output equation from (8) can be
expressed to second-order accuracy as

y = yss + ψ1g
1 + ψ∗

1 g
2 + ψ2

1 g
11

+ψ1ψ
∗
1 g

12 + (ψ∗
1 )2g22. (19)

Noting that the output is real-valued so the expan-
sion at all orders of accuracy must also be real-valued,
g1 = g2

∗
and g11 = g22

∗
. Writing (19) in terms of the

real-valued components yields

y(t) = 2Re(ψ1)Re(g
1) − 2Im(ψ1)Im(g1)

+ 2Re(ψ1)
2Re(g11) − 2Im(ψ1)

2Re(g11)

− 4Re(ψ1)Im(ψ1)Im(g11)

+ Re(ψ1)
2Re(g12) + Im(ψ1)

2Re(g12). (20)

Additionally, considering the imaginary components of
(19), one finds Im(g12) = 0. Equations (18) and (20)
can be decomposed in a manner similar to the decom-
position suggested by Eqs. (11) and (13). For instance,
considering Eq. (18), the lifted state would contain the
elements Re(ψ1), Im(ψ1), u,Re(ψ1)u, Im(ψ1)u with
the remaining coefficients incorporated in the trainable
weights of the artificial neural network.

FromEq. (18), one can see thatRe(ψ+
1 ) and Im(ψ+

1 )

have shared coefficients. For instance, (1+Re(λ1)	t))
is common to both of the update rules. Hence, for
complex-conjugate isostable coordinates, two separate
sets of weights are considered: shared and distinct. In
order to implement these two sets of weights, we use
an additional dense layer in the neural network; two
instances of this dense layer are created in the network
for the corresponding input terms from both the real
and imaginary isostable coordinate updates. The update
rules from Eq. (18) also contain distinct coefficients.
For instance, Re(I 01 ) and Im(I 01 ) are present only in real
and imaginary isostable coordinate updates, respec-
tively. Distinct coefficients are implemented with their
own separate layer in the neural network. The output
from both the shared and distinct layers are summed
to yield the update for both Re(ψ+

1 ) and Im(ψ+
1 ).

The resulting network structure is shown in Fig. 2
where wsh represents the shared weights, and wdt,Re

(resp.,wdt,Im) is used to denote the distinctweights that
comprise the update rule for the real (resp., imaginary)
components of the isostable coordinates.
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Fig. 2 A modified architecture is necessary when consider-
ing complex-valued isostable coordinates. Separate layers are
required to implement the shared and distinct weights that com-
prise the isostable coordinate update rule. Compared with the
structure illustrated in Fig. 1, the primary difference is that shared

weights,wsh are used to update both the imaginary and real com-
ponents of the isostable coordinates at the next timestep. Distinct
weights wdt,Re and wdt,Im are used to update the real and imag-
inary components of the isostable coordinates, respectively

The above equations provide a transformation that
can be used to consider a system with two complex-
valued isostable coordinates in terms of their real and
imaginary components; this transformation eliminates
the need for complex-valued weights in the neural
network. Similar computations can be performed for
higher-order accuracy models. Additionally, this strat-
egy can be straightforwardly implemented with differ-
ent combinations of complex-valued and real-valued
isostable coordinates. Because of the increasing com-
plexity at higher orders of accuracy, it is preferable to
compute the required relations using a symbolic com-
putational package.

4 Results

4.1 Illustration in a simple two-dimensional model

As a preliminary illustration of the proposed model
identification strategy, we consider the simple 2-
dimensional system

ẋ1 = μx1 + u(t),

ẋ2 = σ(−x1 + x2 + x21 + x31),

y = x2(t), (21)

where the state is x = [x1, x2], the output is given by y,
u(t) is the input, and constants are taken to be σ = −1,
μ = −0.05. This system was also considered in [52]
using a different model identification strategy. When
taking u(t) = 0, the system settles to a stable equilib-
rium at x1 = x2 = 0 and we use the model identifica-
tion strategy detailed in Sect. 3 to infer a reduced order
model with a single isostable coordinate from output
measurements in response to a variety of inputs. Start-
ing with the first order of accuracy, the neural network
model has three weights corresponding to the λ1, I 01
and g1. Additional terms from the asymptotic expan-
sions from (7) and (8) are estimated as the order of
accuracy considered increases.

For training the model, adaptive moment estima-
tion (ADAM) is used as an optimizer using the MSE
loss from (15) with a learning rate of 0.01. The gen-
eral architecture of the model is shown in Fig. 1.
The training is implemented as described in Sect. 3.4.
The timestep for the update rule from (9) is taken
to be 	t = 0.05. Ten inputs are used for train-
ing, of the form u(t) = ε sin(2εt), taking ε =
{0.001, 0.002, 0.003, ...., 0.010} for t ∈ [0, 50]. Note
that on the timescales used for training, these training
inputs are similar to ramp functions. The corresponding
outputs are used for training. As discussed in Sect. 3.4,
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all trials start from the stable fixed point so that the
initial value of ψ1 is 0. The number of outer loop iter-
ations is set to ensure that the training loss converges;
for first-order accuracy, they are set to 300.

For the first-order accuracy approximation, the arti-
ficial neural network identifies coefficient values of
λ1 = −0.073, I 01 = 1 and g1 = 1.09. For compar-
ison, the actual coefficient values can also be obtained
by utilizing the underlying model equations and com-
puting the partial derivatives as described in [52]; these
areλ1 = −0.05, I 01 = 1 and g1 = 1.05. Both the actual
and the learned coefficients are nearly identical. These
learned first-order coefficients are then used for initial-
ization and regularized for subsequent training of mod-
els up to third order of accuracy. For each of the higher-
order models, both the optimizer and loss functions are
the same as first order, however, the learning rate is var-
ied to ensure convergence. Also, in order to drive the
model past the linear regime, a larger magnitude input
set of the form u(t) = (0.20+ ε) sin((0.05+ ε/2)t) is
used for t ∈ [0, 50] where ε ∈ {0.01, 0.02, . . . , 0.10}.

For convergence during training, outer loop itera-
tions and the learning rate are set to 300 and 0.005
respectively for the second-order model. The third-
order accuracy is trained with a 0.001 learning rate
for 600 iterations. Training the higher-order models
results in the following set of learned coefficients:
λ1 = −0.073, I 01 = 1, g1 = 1.09, I 11 = −0.001,
I 21 = 0.0003, g2 = −0.95 and g3 = −0.95. The actual
coefficient values are λ = −0.05, I 01 = 1, g1 = 1.05,
I 11 = 0, I 21 = 0, g2 = −1.11 and g3 = −1.17. Train-
ing the first-, second-, and third-order reduced model
took 157, 283, and 513s, respectively, using a desktop
computer with a midgrade processor.

For validation, two Gaussian pulses of the form

u(t) = 5√
200π

exp
−(t − 30)2

200

+ 5√
200π

exp
−(t − 100)2

200
(22)

are applied. Note that this test input is different from
the training inputs. Results are illustrated in Fig. 3.
Panel A compares the full model simulations to the
isostable-based model taken to first, second, and third
orders of accuracy. Panel B shows the corresponding
error, and panel C shows the test input. The accuracy of
the reduced order isostable-basedmodel improves sub-

stantially as more orders of accuracy are considered.
The first-order accuracy model fails to emulate the two
dips characteristic of the full model output shown in
Fig 3.Moving on to second-order accuracy, the reduced
model output improves significantly but it is still unable
to fully capture the behavior of the full model. Finally,
the third-order reducedmodel predicts an output almost
identical to the full model as illustrated by both panel
A and B in Fig3.

4.2 Illustration in a model with dynamics near a hopf
bifurcation

Next, we illustrate the proposed model identification
strategy on a modified version of the radial isochron
clock [59].

ẋ1 = σ x1(μ − x21 − x22 ))

− x2((1 + ρ(x21 + x22 − μ))) + u(t),

ẋ2 = σ x2(μ − x21 − x22 ))

+ x1((1 + ρ(x21 + x22 − μ))),

y(t) = x1(t), (23)

where u(t) is an external input applied directly to the
x1 variable. Above, we choose constants σ = 0.1,
ρ = 0.1, andμ = −0.2. Hereμ is a bifurcation param-
eter with a stable limit cycle emerging as a result of a
Hopf bifurcation when μ > 0. Because μ < 0 in this
example, the stable fixed point has two complex con-
jugate eigenvalues. As such, the isostable coordinates
will also be complex-valued necessitating the use of
the transformation described in Sect. 3.5.

We train a model using two complex-conjugate
isostable coordinates; the general architecture for the
model is shown in Fig. 2. The ADAMoptimizer is used
with an MSE loss of the form (15) and a learning rate
of 0.005. The training is implemented as described
in Sect. 3.4. The timestep for the update rule from
(9) is taken to be 	t = 0.05. Inputs of the form
u(t) = ε(1−θ(t−ts)) for t ∈ [0, 50] are used for train-
ing where θ(t) is the Heaviside step function, ε sets the
magnitude of the input, and ts controls the duration of
the input application. Ten training inputs are used tak-
ing ε = 0.1 + 0.01n and ts = 0.5n for n = 1, . . . , 10.

After learning is completed, the first order of accu-
racy coefficients are: λ1,2 = −0.042 ± 1.027i , I 01,2 =
0.9998 and g1,2 = 0.4972 ± 0.0245i . Ground truth
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Fig. 3 The proposed model
identification algorithm is
applied to the simple
two-dimensional model
from (21). A single
isostable coordinate is
considered and models of
the form (6) are obtained
that are valid to first-,
second-, and third-order
accuracy in the expansion of
the isostable coordinates.
After training is completed,
panel A shows the response
to the two Gaussian pulses
described by Eq. (22) and
shown in Panel C. Panel B
shows the corresponding
error between the full and
reduced order models.
Qualitatively similar results
are observed for other test
inputs (not shown)

values for these coefficients obtained using methods
discussed in [52] are λ1,2 = −0.02 ± 1.02i , I 01,2 = 1
and g1,2 = 0.5. For subsequent training of higher-order
models up to fifth order of accuracy, the first-order coef-
ficients are used for initialization and fixed through reg-
ularization. For training the higher-order models, the
learning rate is varied to ensure convergence.

The second-order model is trained with the same
set of inputs as first order. For other models up to
fifth order, a step input set of ten trials of the form
u(t) = ε(1 − θ(t − ts)) for t ∈ [0, 50] is used where
ε = 0.2+ 0.01n with ts = 0.5n taking n = 1, . . . , 10.
These larger magnitude inputs are used here to drive
the state farther from the fixed point to better capture
the contribution from nonlinear terms. These learned
higher-order coefficients are close to their actual val-
ues obtained directly from the model equations. Train-
ing the first-, second-, third-, fourth-, and fifth-order
reduced model takes 123, 149, 210, 424, and 647s,
respectively, to achieve convergence using a desktop
computer with a midgrade processor. The increased
learning time for the higher-order accuracy models can
be attributed to the growing number of coefficients at
higher orders of accuracy, i.e., that comprise the Taylor
expansions from Eqs. (7) and (8).

Learned models are validated using test stimuli
u(t) = α sin(0.5t) for α = 0.15 and 0.3. Note that

these are different than the training stimuli. Panel
A of Fig. 4 shows output in response to the inputs
u(t) = 0.15 sin(0.5t) and u(t) = 0.30 sin(0.5t). Panel
B shows the associatedmagnitudeof the error andPanel
C shows the applied input for reference. For the lower
magnitude inputs, third-, fourth-, and fifth-order mod-
els have substantially smaller errors than the first-order
accurate models. Larger errors are observed for larger
magnitude inputs. Additionally, there is little differ-
ence between the third-, fourth-, and fifth-order accu-
rate models indicating diminishing returns at higher
orders of accuracy. Further elaborating on the results
depicted in Fig 4, one can see that for the smaller mag-
nitude test input results shown in Panel A, the predicted
outputs for all orders of accuracy are nearly identical to
the full model output. However, the difference between
1st-, 2nd- and higher-order accuracy predicted outputs
is more apparent in Panel B; error for first-order accu-
racy is the highest followed by second order. The same
pattern is observed in Panel E for the larger test input
with identical errors observed for higher-order accu-
racy predicted outputs even though the magnitude of
errors in Panel E is higher.

Additional validation for the learned models is done
by applying step function inputs of the form u(t) =
0.01(1 − θ(t − 10)). Results are shown in Fig. 5. Pan-
els A and Panel B follow the same pattern as observed
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Fig. 4 The proposed model identification algorithm is applied
to Eq. (23). Two complex-conjugate isostable coordinates are
considered and models of the form (6) are obtained that are valid
to first through fifth orders of accuracy in the expansion of the
isostable coordinates. Panels A and B compare outputs from full
and isostable-coordinate-based models when applying the low

amplitude sinusoidal input from panel C. Panels D and E com-
pare results from the full and isostable-coordinate-based mod-
els when applying a larger magnitude sinusoidal input shown in
panel F. Note that these test inputs are different than the step
function inputs used for training

in Fig4. First-order accuracy model is able to replicate
the characteristics of the full model output to a cer-
tain extent albeit with a large difference in magnitude
when input from Panel C is applied to the system. The
second-order accuracy model is more accurate. Even
higher-order accuracy models generate outputs almost
identical to the full model with little difference between
third, fourth and fifth order.

4.3 Spike rates of neural populations

As a final example, we consider the proposed model
identification strategy on a more complicated system
that captures neural spiking rates in a large, coupled
population of neurons in response to external inputs.
Model equations are based on a model for thalamic
neurons from [37]:

CV̇i = −IL(Vi ) − INa(Vi , hi ) − IK(Vi , hi ) − IT(Vi , ri )

+ I bi − gsyn
N

N∑

j=1

s j (Vi − Esyn) + √
2Dηi (t) + u(t),

ḣi = (h∞(Vi ) − hi )/τh(Vi ),

ṙi = (r∞(Vi ) − ri )/τr (Vi ),

ṡi = a(1 − s)

1 + exp(−(Vi − VT )/σT )
− bsi . (24)

Here, we consider N = 1000 total neurons in the popu-
lation, Vi , hi , and ri represent the transmembrane volt-
age and two gating variables, respectively, that deter-
mine the ionic currents for neuron i , si is a variable
that governs the synaptic coupling with the conduc-
tance gsyn = 0.4mS/cm2 determining the coupling
strength, Esyn = −100 mV is the reversal potential of
the neurotransmitter so that coupling is inhibitory, and
C = 1μF/cm2 is the membrane capacitance. Param-
eters a = 3, Vt = −20 mV, σT = 0.8 mV, and b = 1
determine the synaptic current. Noise is incorporated
with independent and identically distributed zero-mean
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Fig. 5 Panels A and B
compare outputs from full
and isostable-coordinate-
based models when
applying a step function
input as shown in panel C.
As shown in Fig 4, results
from first to fifth order of
accuracy are presented in
the figure with results
following the same trend as
observed before

white noise
√
2Dηi (t) added to the voltage variable of

each neuron taking D = 1 to be the noise intensity. The
baseline current of the i th neuron, I bi , is drawn from a
normal distribution with a mean of 5 and a variance
of 1μA/cm2. u(t) represents a transmembrane current
applied identically to each neuron. Reference [37] con-
tains a full description of the remaining ionic currents
and gating variables. A different isostable-coordinate-
based model identification technique was also consid-
ered in [52]. For the neural model (24), we consider
using the firing rate as the observable defined accord-
ing to

y(t) = Number of action potentials on the interval [t − W, t]
W

,

(25)

where W = 5 ms is the width of the window and an
action potential is defined to occur the moment that the
transmembrane voltage crosses −25 mV with a posi-
tive slope.

In the absence of coupling, noise, and input, each
neuron from (24) is in the tonically firing regime with
action potentials that occur with an interspike inter-
val of 8.4 milliseconds. When considering the aggre-
gate behavior of (24) when u(t) = 0, coupling is not
strong enough to overcome noise so that the distribu-
tion of neural phases approaches a steady state and the

firing rate settles to a steady value of 91.6 action poten-
tials per millisecond. The firing rate can be modulated
through the application of input with behavior qualita-
tively similar to a stable sink, i.e., with two complex-
conjugate eigenvalues. As such, we apply our pro-
posedmodel identification strategy using two complex-
valued isostable coordinates necessitating the use of the
transformation described in Sect. 3.5. The form of the
inferred reduced order model is identical to the one
obtained in Sect. 4.2; the important difference here is
that the data used for training comes from a systemwith
substantially higher dimension.

We train a model using two complex-conjugate
isostable coordinates accurate to various orders of accu-
racy. The network is based upon the architecture rep-
resented in Fig. 2. Inputs of the form u(t) = ε(1 −
θ(t − ts)) for t ∈ [0, 50] are used for training where
θ(t) is theHeaviside step function, ε sets themagnitude
of the input, and ts controls the duration of the input
application. Ten trials are considered for training tak-
ing ε = 2+ 0.1n and ts = 10+ 2n for n = 1, . . . , 10.
The presence ofGaussian noise in the dynamicalmodel
(24) interferes with the training leading to slower con-
vergence. In order to mitigate the effects of noise, the
stimuli described above are applied for ten identical tri-
als and the model output y(t) is taken to be the average
over the set of trials. Once these representative outputs
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have been obtained, the ADAM optimizer is used with
an MSE loss of the form (15) taking the learning rate
to be 0.005. The timestep for the update rule from Eq.
(9) is taken to be 	t = 0.05 ms. The training is imple-
mented as described in Sect. 3.4.

Due to the complexity of the underlying equations
that comprise the model (24), it is not possible to com-
pute the ground truth for the approximation of the coef-
ficients for the Taylor expansions from (7) and (8).
Instead,wemust compare the predicted output between
the full order model and the inferred reduced order
model in order to gauge accuracy using inputs that are
distinct from those that were used for training. As done
for the previous two models, the first-order coefficients
are obtained first and subsequently used for initializa-
tion when training models to second- and third-order
accuracy. As described in Sect. 3.5, for training the
learnedweights are categorized into shared and distinct
weights. Training the first-, second-, and third-order
reduced model took 82, 105, and 1139s, respectively,
to achieve convergence using a desktop computer with
a midgrade processor. The jump between the second
and third order of accuracy models is related to the use
of a smaller learning rate for the third-order model in
order to achieve convergence.

Learned models are validated using a test stimu-
lus u(t) = 0.3(sin(0.1t) + cos(0.23t) + sin(−0.49t)).
Results are shown in Fig. 6. Panel A shows the first-,
second-, and third-order reduced order model output
compared to the full order model output in response
to the input from panel C. Note that the reduce order
models do not account for noise. Panel B shows the
associated error. The first-order accuracy model has a
MSE value of 9.2; 2nd-order accuracy subsequently
reduces the MSE to 6.1 with 3rd-order reduced model
giving the lowest error value of 5.5.

5 Discussion

As evidenced by the results from previous sections,
the proposed framework performs well in emulating
the full model dynamics and requires relatively little
data. For all the three examples shown, themodelswere
trained on a set of ten inputs highlighting the method’s
ability to learn from limited data in an efficient manner.
We emphasize that for each model, qualitatively differ-
ent inputs were used for testing and training.Moreover,
the isostable coordinates, as functions on state space

incorporatedwithin the neural network structure, donot
need any prior estimates; instead, the initial isostable
coordinate is assumed to be zero for the steady-state
solution, i.e., at the fixed point. Subsequent isostable
coordinate estimates are generated and optimized iter-
atively using the isostable-based neural network struc-
ture as the training proceeds.

There are a number of extensions that would be
worthwhile to consider in future work for improving
the accuracy and effectiveness of the presentedmethod.
Foremost, herewe only considerMSE for the loss func-
tion as defined in Eq. (15) for training the artificial neu-
ral network.While this loss function provides adequate
performance in the examples considered here, it does
have a few notable shortcomings. For instance, pre-
dicted outputs that are qualitatively similar but slightly
time shifted with respect to the true outputs are heavily
penalized. This presents an issue in situations where
the input causes oscillations in the full model. When
the reduced order model is unable to perfectly match
the oscillation frequencies, a slight timing shift can
yield a significant increase in the MSE even though
the qualitative behavior is nearly identical. It may be
possible to mitigate this issue by investigating other
loss functions that directly consider the frequency or
amplitude of these forced oscillations. Additionally,
during implementation of the inner loop during train-
ing, i.e. where relation (9) is evaluated recursively to
obtain ŷ(t), initial errors at early timestepswill be prop-
agated and potentially amplified at later timesteps. It
would likely be worthwhile to modify the cost func-
tion with an additional weighting term, for instance,
using

∑η
i=1 υ(i)(y(t0 + i	t) − ŷ(t0 + i	t))2 where

υ(i) confers additional importance to initial solutions
in order to limit this subsequent error propagation.

There are also improvements which are worth con-
sidering from a deep learning perspective. For exam-
ple, for the three dynamical systems considered in this
work, there was no normalization applied to either the
inputs nor the outputs of the neural network. It has
been shown in various works that batch normaliza-
tion [16,38] not only makes the neural network’s con-
vergence faster but also more stable during training.
This could be useful for more complex dynamical sys-
tems with additive noise (such as the neural popula-
tion example considered in this work). The existence of
additive noise alongside the inherent model complex-
ities, potentially makes it more difficult for the neural
network optimizer used in training to learn an opti-
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Fig. 6 The proposed model
identification algorithm is
applied to the neural model
from Eq. (24) with output
(25). Two complex-con-
jugate isostable coordinates
are considered and models
of the form (6) are obtained
that are valid to first,
second, and third orders of
accuracy in the expansion of
the isostable coordinates.
Panel A shows the response
to the applied input from
panel C. Panel B shows the
corresponding error
between the full and
reduced order models. Note
that the applied input here is
different from the step
function inputs used for
training

mal set of coefficients for minimizing the loss. Thus,
a workaround could be devised to incorporate normal-
ization into the presented framework without altering
the isostable based network structure helping to tackle
the convergence problem. In addition, even though the
method is able to give accurate results with a limited
amount of training data for the examples considered in
this work, it would certainly be worthwhile to extend
the training data-set to include more samples in future
work, especially when more complicated models are
considered.

The proposed model identification strategy uses
an asymptotic approximation in a basis of isostable
coordinates to capture the nonlinear dynamics of the
reduced order model (6). While this strategy can be
useful to obtain models that are more accurate than
their linear counterparts, diminishing returns at higher
orders of accuracy and the growing combinatorial com-
plexity of this expansion at higher orders limit the abil-
ity to consider the behavior in response to exceedingly
large inputs. It may be of interest to employ adaptive
isostable-coordinate-based strategies [57] which con-
sider the dynamical behavior in reference to a con-
tinuous family of fixed points in conjunction with the
proposed model identification algorithm to circumvent
the need for taking the expansion to particularly large
orders of accuracy. Furthermore, as mentioned earlier,

the current model identification algorithm is only valid
for systems with fixed point dynamics. It may be pos-
sible to adapt the phase-isostable-based model order
reduction strategies discussed in [50] for use with the
model identification algorithms proposed in this work
with an ultimate goal of considering systemswithmore
complicated dynamics. Finally, the efficacy of the pre-
sented strategy might further improve if the isostable
coordinates themselves could be inferred from the out-
put (i.e., the observable y) and then used in conjunc-
tion with the neural network for learning the coeffi-
cients. A related strategy has been used for extracting
the isostable coordinate components in [1,49]with time
delay embeddings of observables and it may be worth-
while to incorporate these approaches into the proposed
model identification strategy.

6 Conclusion

In this work, we propose a strategy for inferring non-
linear dynamical models for general nonlinear dynam-
ical system in the basin of attraction of a stable fixed
point. Representing the dynamics using a transformed
basis of isostable coordinates according to Eq. (6), the
rapidly decaying isostable coordinates are truncated
allowing for a low-order representation. The gradient of
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the remaining isostable coordinates and the isostable-
to-output relationships are represented according to the
asymptotic expansions from Eqs. (7) and (8), respec-
tively. We subsequently reframe the state update rules
for this reduced order model in terms of the composi-
tion of known nonlinear functions and unknown linear
functions. This reframing allows for the use of an artifi-
cial neural network to identify an accurate approxima-
tion for the unknownweights of the linear relationships
from training data. We illustrate the model identifica-
tion strategy in a collection of nonlinear models includ-
ing a synaptically coupled population of conductance
based neurons.

We emphasize that while the approach used here
considers an asymptotic expansion in the basis of
isostable coordinates centered at a fixed point, the
underlying model dynamics themselves do not neces-
sarily need to approach a fixed point. This subtle point
is illustrated in the example from Section (4.3). When
synaptic coupling is small, because of noise, the distri-
bution of neural phases tends to approach a stable sta-
tionary solution that is reflected in the aggregate behav-
ior captured by the firing rate, i.e., the output from Eq.
(25). As such, the proposed model identification algo-
rithm learns a representation for this aggregate behavior
and not the behavior of the individual oscillators.

In contrast to methods that learn sparse represen-
tations for governing model equations [8,22,31,40],
the proposed method assumes a universal underlying
model structure of the form (6) which is valid for sys-
tems with stable fixed points and does not require the
specification of a library of candidate functions. In con-
nection to other Koopman-based model identification
algorithms such as Koopman model predictive con-
trol [2,18], extended DMD [46], and strategies that
use delay embeddings [3,49], the proposed strategy
explicitly considers a subset of the slowest decaying
Koopman eigenmodes in the fitting procedure helping
to mitigate issues associated with overfitting. Indeed,
the resulting reduced order models accurately predict
response to inputs that were not used for training, for
instance, the coupled neuron model was trained using a
collection of step function inputs but the learned model
accurately reflects the behavior in response to a contin-
uous input.

A related model identification technique was con-
sidered in previous work [52], where relationships
between the coefficients of the expansions from (7)
and (8) and the steady-state output in response to sinu-

soidal forcing were identified and subsequently used
to infer nonlinear isostable-based models using least-
squares fitting techniques. The strategy proposed in this
work improves on the strategy from [52] in two impor-
tant ways: first, the proposed learning-based strategy
evaluates the performance of the learned models by
comparing the output of the learned model directly to
the output obtained from training data. By contrast,
the method from [52] considers the steady-state ampli-
tude of various Fourier modes in response to purely
sinusoidal forcing. The amplitudes of these modes can
be quite sensitive to noise or other uncertainties, espe-
ciallywhen considering high accuracy expansions from
Eqs. (7) and (8); small errors in the inference of these
higher-order terms can have profound impacts on the
overall accuracy of the resulting models. Second, the
proposed model identification strategy can be imple-
mented using inputs of any form for training. Con-
versely, the strategy from [52] requires the steady-state
response to sinusoidal inputs which would limit practi-
cal utility in situations where sinusoidal inputs cannot
feasibly be applied and in situationswhere convergence
to steady state is slow.

Thismaterial is basedonwork supportedbyNational
Science Foundation Grant No. CMMI-1933583. The
datasets generated during and/or analysed during the
current study are available from the corresponding
author on reasonable request.
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