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While phase reduction is a well-established technique for the analysis of perturbed limit cycle oscillators,
practical application requires perturbations to be sufficiently weak thereby limiting its utility in many situations.
Here, a general strategy is developed for constructing a set of phase-amplitude reduced equations that is valid to
arbitrary orders of accuracy in the amplitude coordinates. This reduction framework can be used to investigate the
behavior of oscillatory dynamical systems far beyond the weakly perturbed paradigm. Additionally, a patchwork
phase-amplitude reduction method is suggested that is useful when exceedingly large magnitude perturbations
are considered. This patchwork method incorporates the high-accuracy phase-amplitude reductions of multiple
nearby periodic orbits that result from modifications to nominal parameters. The proposed method of high-
accuracy phase-amplitude reduction can be readily implemented numerically and examples are provided where
reductions are computed up to fourteenth order accuracy.
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I. INTRODUCTION

Many physical, chemical, and biological systems exhibit
stable oscillations. Over the preceding decades, phase reduc-
tion has become an essential tool [1–7] for analyzing and
understanding these oscillatory behaviors in complicated and
high-dimensional dynamical systems. This strategy can be
used to represent the state of an N-dimensional oscillatory
system in terms of a single phase variable that gives a sense
of the timing of the oscillation. Phase reduction has facilitated
the discovery of fundamental mechanisms that govern com-
plex patterns emerging in populations of both weakly forced
and weakly interacting oscillators [8–12].

While phase reduction is a tremendously powerful tool, it
requires the dynamical system under study to remain close to
its unperturbed periodic orbit. As the magnitude of perturba-
tions increase, the applicability of the phase reduction begins
to degrade often leading to inaccurate predictions about the
dynamical behavior. Recent years have seen a sustained inter-
est in the development of phase reduction techniques that can
be used to understand oscillatory dynamical behavior beyond
the weakly perturbed paradigm. For instance, Refs. [13,14]
investigate phase reduced frameworks applicable to strongly
perturbed oscillators provided the applied perturbation varies
slowly. A related strategy [15] investigates strongly perturbed
oscillators in response to high-frequency forcing. Others have
focused on frameworks that can compute the phase coordi-
nates (i.e., isochrons) in the fully nonlinear basin of attraction
of the limit cycle [16,17], a strategy that only proves useful
in low-dimensional settings because it does not yield a re-
duction in dimensionality. Koopman operator based strategies
have shown promise [18]; however, it is not usually readily
apparent how to find a suitable basis to represent the system
observables. Others have investigated alternative definitions
of phase that correspond to some important feature of the
underlying dynamical system. The notions of local orthogonal
rectification [19], entrainment maps [20], operational phase

coordinates [21], functional phase response curves [22], and
stochastic phase [23] result from using different characteriza-
tions of phase; each has its own benefits and drawbacks, but
none are particularly well suited for studying system response
to strong perturbations.

In this work, the notion of isostable coordinates will be
used to develop a general phase-amplitude reduction frame-
work valid to arbitrary orders of accuracy. As compared to
standard phase reduction methods, increasing the order of
accuracy can make the resulting phase reduced equations
more applicable when considering large amplitude inputs. As
part of the proposed reduction strategy, isostable coordinates
will be used to characterize the transient behavior of solutions
in directions transverse to the periodic orbit. The notion
of isostable coordinates was first suggested for dynamical
systems with stable fixed points in the context of level sets
of the slowest decaying Koopman eigenfunction [24]; the
notion of isostables was subsequently adapted for periodic
orbits [25–27]. A defining feature of isostable coordinates
is that they have an exponential decay within the basin of
attraction of the limit cycle governed by the Floquet exponents
associated with the local linearization about the limit cycle.
In most high-dimensional systems, many isostable coordi-
nates decay rapidly allowing them to be effectively ignored
resulting in a significant decrease in dimensionality compared
to the original equation [5]. This phase-amplitude reduction
framework has been used previously to develop general re-
duction frameworks that provide second order corrections to
the standard phase reduced equations [28,29], but no general
strategy currently exists for computing reductions that are
valid to higher orders of accuracy. Related strategies have
been developed recently to compute phase reduced equations
that are valid to second and third order in the perturbation
strength [30,31], but these remain difficult to implement for
higher orders of accuracy in general models. The strategy
presented in this work can readily be implemented in dy-
namical systems with arbitrarily high dimension; examples to
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follow compute phase-amplitude reductions that are valid to
fourteenth order accuracy in the amplitude coordinates.

The organization of this paper is as follows: Section II
provides necessary background on the notions of phase,
isochrons, and isostable coordinates as used for phase-
amplitude reduction. Section III gives a general strategy for
implementing phase-amplitude reduction to arbitrary orders
of accuracy in the isostable coordinates. Section IV illustrates
a strategy that can be effective when working with particularly
large perturbations—a so-called patchwork phase-amplitude
reduction strategy is suggested whereby a high-accuracy
phase-amplitude reduction is computed for multiple nearby
orbits and the the nominal reduced dynamics seamlessly
switch between them. Section V provides two illustrative
examples highlighting the utility of this reduction framework,
and Sec. VI gives concluding remarks.

II. BACKGROUND ON PHASE-AMPLITUDE REDUCTION
USING ISOSTABLE COORDINATES

Consider a general ordinary differential equation of the
form

ẋ = F (x) + U (t ), (1)

where x ∈ RN is the state, F represents the underlying dy-
namics, and U (t ) represents a time-dependent perturbation.
Suppose that when U (t ) = 0 (i.e., in the absence of perturba-
tion) Eq. (1) has a stable T -periodic orbit denoted by xγ (t ). In
applications where timing of oscillatory behavior is of interest
(e.g., synchronization, entrainment, etc.), the notion of phase
is often used to work with (1) in a reduced setting. To do so,
for the moment taking U (t ) = 0, all locations on the periodic
orbit can be assigned a phase θ ∈ [0, 2π ) scaled so that
dθ/dt = ω with ω = 2π/T . Using the concept of isochrons
[1,32], the notion of phase can be extended to the basin of
attraction of the limit cycle Bγ , i.e., the set of all initial
conditions that approach the limit cycle as time approaches
infinity. In this manner, letting θ1 be the phase corresponding
to a(0) ∈ xγ , the θ1 isochron (i.e., level set of phase θ1) can be
defined as the set of all b(0) ∈ Bγ such that

lim
t→∞ ||a(t ) − b(t )|| = 0, (2)

where || · || can be any norm. By extending phase to the
basin of attraction of the limit cycle using isochrons, one
can show that when U (t ) = 0, the associated phase for any
trajectory x(t ) of (1) evolves in time according to dθ/dt = ω.
Intuitively, Eq. (2) encodes for the infinite time convergence to
the 1-dimensional periodic orbit. The notion of isochrons can
be used to perform a phase reduction that views the nominal
system in terms of the timing of its oscillations rather than the
underlying state. From this perspective, one can transform (1)
to a system of the form

θ̇ = ω + Z (θ ) · U (t ), (3)

where Z (θ ) is a phase response curve that represents the
gradient of the phase coordinates evaluated at xγ (θ ), and
the dot denotes the dot product. In the preceding decades,
phase reduction has been applied extensively to illuminate
the mechanisms driving complicated behaviors observed in
weakly perturbed oscillatory dynamical systems [1–4,6].

While phase reduction is a widely used strategy for study-
ing weakly perturbed oscillators, its assumptions break down
as the magnitude of U (t ) becomes larger and the state is driven
farther from the underlying limit cycle. In order to remedy
this and increase the accuracy of the phase dynamics for
larger perturbations, additional information about the transient
dynamics transverse to the limit cycle, often referred to as
amplitude coordinates, must be included. Many coordinate
frameworks have been developed to characterize the behavior
of amplitude coordinates [23,26,27,33–35]. This work will
use an isostable coordinate framework, which gives a sense
of the infinite time decay of perturbations transverse to the
limit cycle [26] (cf. [27,35]). To a linear approximation, an
isostable coordinate transformation can be identified using
Floquet theory [36]. To do so, let �x = x(θ ) − xγ (θ ) denote
the difference between some state and another state on the
periodic orbit with identical phase. To a linear approximation,
one can write

�ẋ = J�x, (4)

where J denotes the Jacobian evaluated at xγ (θ ). Note that the
Jacobian from (4) is time varying. Let � denote a fundamental
matrix such that x(T ) = �x(0) for initial solutions of x(0)
with phase θ . Provided � is diagonalizable, to a linear approx-
imation solutions near the periodic orbit can be characterized
according to

x(θ, ψ1, . . . , ψN−1)

= xγ (θ )+
N−1∑
k=1

ψkgk (θ ) + O
(
ψ2

1

)+ · · · + O
(
ψ2

N−1

)
, (5)

where gk (θ ) is a Floquet eigenfunction of (4), and ψk is an
isostable coordinate with unperturbed dynamics that follow
ψ̇k = κkψk with κk being a Floquet multiplier. Notice that
in (5), the isostable coordinates give a sense of the distance
from the periodic orbit. The characteristic feature of isostable
coordinates is that they decay at a constant exponential rate
in the absence of input. While Floquet theory can be used
to define N − 1 isostable coordinates in a neighborhood of
the periodic orbit, for some of the smallest magnitude Floquet
exponents, it is possible to explicitly define isostable coordi-
nates in the entire basin of attraction of the limit cycle using
the infinite time relaxation to the periodic orbit. Letting λ j =
exp(κ jT ) be an eigenvalue of the fundamental matrix, �,
with an associated left eigenvector w j , the slowest decaying
isostable coordinates can be explicitly defined according to
[26]

ψ j (x) = lim
k→∞

[
wT

j (ν
(
t k
�, x
)− x0) exp

(− κ jt
k
�

)]
, (6)

where t k
� denotes the time of the kth transversal of the �0

isochron and ν(t, x) is the unperturbed flow of (1). Equa-
tion (6) is defined in relation to the infinite time relaxation
to the periodic orbit. Intuitively, as k approaches infinity, the
growth rate of the term exp(−κkt k

� ) matches the decay rate
of wT

j (ν(t k
�, x) − x0) so that (6) converges to the isostable

coordinate.
For rapidly decaying isostable coordinates, there is no

constructive definition like (6). Rather, isostable coordinates
ψ j associated with larger magnitude κ j can be thought of as
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level sets of Koopman eigenfunctions with decay rates that are
governed by the Floquet exponents of the linearized system.
For a more detailed treatment of expansions of dynamical
systems in terms of Koopman eigenfunctions, the interested
reader is referred to [37,38]. Intuitively, isostables as consid-
ered in this work can be thought of as amplitude coordinates
of the periodic orbit that decay according to ψ̇ j = κ jψ j in the
absence of external perturbation.

While isochrons and isostables can be defined in the fully
nonlinear basin of attraction of the limit cycle, they can be
difficult to work with directly because they require knowledge
of θ and ψ j as functions of x. Additionally, direct compu-
tation of phase and isostable coordinates is challenging for
high-dimensional systems as the direct consequence of Bell-
man’s “curse of dimensionality”; practical examples comput-
ing isochrons directly have been limited to N = 4 dimensions
[17,35,39]. For this reason, closed-form asymptotic expan-
sions near the periodic orbit (which are the primary focus of
this work) are usually more useful. Previous work [26,28,29]
has investigated closed-form, reduced order equations that
characterize the perturbed dynamics of the phase and isostable
coordinates according to

θ̇ = ω +
[

Z (θ ) +
M∑

k=1

ψkBk (θ )

]
· U (t ),

ψ̇ j = κ jψ j +
[

I j (θ ) +
M∑

k=1

ψkC
k
j (θ )

]
· U (t ),

j = 1, . . . , M, (7)

where and M < N − 1. Here, Z (θ ) and I j (θ ) are often referred
to as phase and isostable response curves, respectively, and
represent the gradient of the phase and isostable coordinates
evaluated on the periodic orbit at phase θ . Computation of
these functions is usually accomplished identifying adjoint
eigenfunctions of (4) [25,40,41], and are the appropriately
normalized periodic solutions to

dZ

dt

∣∣∣∣
θ

= −JT Z (θ ),

dIk

dt

∣∣∣∣
θ

= (κkId − JT )Ik (θ ), (8)

where T denotes the matrix transpose and Id is an appropri-
ately sized identity matrix. The functions Bk (θ ) and Ck

j (θ )
provide second order corrections to the dynamics as the
state is perturbed from the periodic orbit, and have been
used to identify bifurcations resulting from nonlinear inter-
actions due to coupling [42] and to investigate how phase
response depends on prior perturbations [29]. Strategies for
computation of Bk (θ ) and Ck

j (θ ) are discussed in detail in
[28]. Many dynamical systems have Floquet exponents that
are negative and large in magnitude. In practice, it is often
possible to define some threshold κthresh > 0 and ignore any
isostable coordinates ψk with corresponding Floquet exponent
|κk| > κthresh since perturbations to those coordinates decay
rapidly yielding M < N − 1 isostable coordinates that must
be accounted for in the reduction (7).

III. PHASE AND ISOSTABLE REDUCTION WITH
ARBITRARY ACCURACY

While isostable coordinates provide a useful framework
from which to investigate the perturbed behavior of high-
dimensional dynamical systems, it still has many limitations,
primarily when particularly large perturbations are consid-
ered. While (7) provides a improvement over the linear
phase and isostable reduced equations, it is only accurate
to first order in the isostable coordinates. Previous authors
have developed strategies for computation of higher order
approximation of the phase coordinates (e.g., the terms of the
Hessian and beyond) near the periodic orbit [43,44]; however
these strategies are practically difficult to implement beyond
second order accuracy, and can only be used to characterize
perturbations starting from the limit cycle.

Below, a strategy is presented for computation of a reduced
set of equations of the form

θ̇ = ω + Z (θ, ψ1, . . . , ψM ) · U (t ),

ψ̇ j = κ jψ j + I j (θ, ψ1, . . . , ψM ) · U (t ),

j = 1, . . . , M,

x(θ, ψ1, . . . , ψM ) = xγ (θ ) + G(θ, ψ1, . . . , ψM ), (9)

which can be determined to arbitrary orders of accuracy in
the isostable coordinates. The necessary terms of (9) can be
identified using an asymptotic expansion of the gradient of
the phase and isostable coordinates near xγ (θ ). Ultimately, the
required terms can be calculated by solving equations with
computational complexity similar to (8) which is already used
in the computation of standard phase reductions.

A. Asymptotic expansion in terms of phase and isostable
coordinates

Before computing asymptotic expansions of the phase and
isostable coordinates near the periodic orbit, a higher order
expansion of x(θ, ψ1, . . . , ψM ) of the form

�x ≈
M∑

k=1

[ψkgk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkgjk (θ )]

+
M∑

i=1

i∑
j=1

j∑
k=1

[ψiψ jψkgi jk (θ )] + · · ·

= G(θ, ψ1, . . . , ψM ) (10)

must be obtained, where �x ≡ x(θ, ψ1, . . . , ψM ) − xγ (θ ).
Here, each gi jk...(θ ) is analogous to the Floquet eigenfunctions
gk (θ ) defined earlier in (5) and provide higher order correc-
tions to �x. In the above equation, while there are N − 1
possible isostable coordinates, it is assumed that some of these
coordinates decay rapidly so that only M < N − 1 isostable
coordinates need to be considered. Intuitively, (10) is an
asymptotic expansion of x on a hypersurface for which ψk = 0
for k > M. The goal of this section will be to compute the
necessary terms of G(θ, ψ1, . . . , ψM ) in the expansion (10)
from which high-accuracy approximations for the gradients
of the phase and isostable coordinates can be obtained.
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To begin, assuming for the moment that U (t ) = 0 so that θ̇ = ω and ψ̇k = κkψ , taking the time derivative of (10) yields

d�x

dt
=

M∑
k=1

[
dgk

dθ
ωψk + gkκkψk

]
+

M∑
j=1

j∑
k=1

[
dgjk

dθ
ωψ jψk + gjk (κ j + κk )ψ jψk

]

+
M∑

i=1

i∑
j=1

j∑
k=1

[
dgi jk

dθ
ωψiψ jψk + gi jk (κi + κ j + κk )ψiψ jψk

]
+ · · · . (11)

Above, the θ dependence on the g functions has been dropped for convenience of notation. Noting that θ (t ) = θ (0) + ωt so that
ω = dθ/dt , one can rewrite (12) as

d�x

dt
=

M∑
k=1

[
dgk

dt
ψk + gkκkψk

]
+

M∑
j=1

j∑
k=1

[
dgjk

dt
ψ jψk + gjk (κ j + κk )ψ jψk

]

+
M∑

i=1

i∑
j=1

j∑
k=1

[
dgi jk

dt
ψiψ jψk + gi jk (κi + κ j + κk )ψiψ jψk

]
+ · · · . (12)

Simultaneously, an expansion of (1) will be considered taking U (t ) = 0. Let F (x) = [ f1(x) . . . fN (x)]T . The notation from
[45] will be used below where ⊗ denotes the Kronecker product and vec(·) is an operator that stacks each column of a matrix
to form a single column vector. Letting f (0)

j (θ ) denote the evaluation of f j (x) at x(θ ), a series of matrices composed of partial
derivatives will be defined recursively as

f (k)
j (θ ) = ∂vec

(
f (k−1)

j

)
∂xT

∈ RN (k−1)×N , (13)

where all partial derivatives are evaluated at x(θ ) on the limit cycle. With this information, and using the relationship vec(ABC) =
(CT ⊗ A)vec(B) [45], a Taylor expansion of f j centered at x(θ ) is obtained:

f j (x(θ ) + �x) = f j (θ ) + f (1)
j (θ )�x +

∞∑
i=2

1

i!
[

i⊗�xT ]vec
(

f (i)
j (θ )

)
, (14)

where, for example, [
3⊗�xT ] = �xT ⊗ �xT ⊗ �xT ∈ R1×N3

. Substituting the expansion (14) into (1), one finds

d�x

dt
= J�x +

⎡
⎢⎣
∑∞

i=2
1
i! [

i⊗�xT ]vec
(

f (i)
1 (θ )

)

.

.

.∑∞
i=2

1
i! [

i⊗�xT ]vec
(

f (i)
N (θ )

)

⎤
⎥⎦ = J

⎡
⎣ M∑

k=1

[ψkgk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkgjk (θ )] + · · ·
⎤
⎦

+

⎡
⎢⎣
∑∞

i=2
1
i!

[ i⊗ [∑M
k=1[ψkgk (θ )] +∑M

j=1

∑ j
k=1[ψ jψkgjk (θ )] + · · · ]T ]vec

(
f (i)
1 (θ )

)
.
.
.∑∞

i=2
1
i!

[ i⊗ [∑M
k=1[ψkgk (θ )] +∑M

j=1

∑ j
k=1[ψ jψkgjk (θ )] + · · · ]T ]vec

(
f (i)
N (θ )

)

⎤
⎥⎦, (15)

where J is the Jacobian of the vector field F evaluated at x(θ ). Equations (15) and (12) are equivalent, and relationships between
each of the g functions of the expansion can be obtained by finding terms with matching powers in the isostable coefficients in
the two equations. For example, matching all terms that are proportional to ψk yields the relationships

dgk

dt
= (J − κkId)gk (θ ), k = 1, . . . , M. (16)

Matching all terms that are proportional to two isostable coordinates (i.e., ψkψ j) yields

dgjk

dt
= [J − (κ j + κk )Id]gjk (θ ) + 1

η

⎡
⎢⎣

gj T H1gk

...
gj T HN gk

⎤
⎥⎦, (17)

where Hi denotes the Hessian of fi and η = 1 if j �= k and η =
2 otherwise. Each of the Hessian terms in (17) are evaluated
at x(θ ). Relationships for higher order terms [i.e., gi jk (θ )] can
also be found by matching powers of each of the ψk terms in
(15) and (12). This task can be accomplished using a symbolic

computational package. A particularly useful pattern that
emerges is

dgi jk...

dt
= [J − (κi + κ j + κk + . . . )Id]gi jk...(θ ) + qi jk...(θ ),

(18)
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where qi jk...(θ ) is composed only of terms from lower terms of
the expansion [for example, q321(θ ) will only be a function of
terms including g1(θ ), g21(θ ), g31(θ ), etc., but will not contain
terms such as g111(θ )].

A brief note on computation and nonuniqueness of the
functions in the state expansion

Since J is evaluated on the periodic orbit, Eq. (16) is a
linear, periodic equation and gk (θ ) is its periodic solution. The
equation ġk = J (t )gk has a Floquet exponent of κk and so ġk =
[J (t ) − κkId]gk has a Floquet exponent of 0 and normalization
will be required. For all first order terms the normalization
wT

k gk (0) = 1 will be used, where wk is a left eigenvector of
the fundamental matrix of (4) associated with the eigenvalue
λk = exp(κkT ).

The general structure of (18) provides a strategy for com-
putation of the individual terms of the expansion. To begin, all
first order terms can be computed by finding the appropriately
normalized periodic solutions to (16). Once all lower order
terms of the expansion have been calculated, one can move
on to compute higher order terms to arbitrary order accuracy.
The expansion (10) resulting from this procedure will not be
unique in some instances. To illustrate how this can occur,
consider an expansion of (1) using two isostable coordinates
with Floquet multipliers κ1 = −0.25 and κ2 = −0.5. When
computing g11 according to (17), noting that 2κ1 = κ2, one

finds

dg11

dt
= (J − κ2Id)g11 + 1

2

⎡
⎢⎣

g1T
H1g1

...
g1T

HN g1

⎤
⎥⎦. (19)

Recalling dg11

dt = [J (t ) − κ2]g11 has a Floquet exponent of
zero, the solution to (19) can be written as

g11(θ ) = g11∗
(θ ) + βg2(θ ), (20)

where g11∗ is a particular solution to (19) and β ∈ R can
be chosen arbitrarily. In general, an expansion (10) to order
accuracy χ ∈ N will not be unique if there exists some
combination of αk ∈ N for which

α1κ1 + · · · + αMκM = κ j, (21)

with
∑M

k=1 αk � χ .

B. Asymptotic expansion and computation of the gradient of the
phase and isostable coordinates

Knowledge of the asymptotic expansion (10) allows for
efficient computation of the gradient of the phase and
isostable coordinates. To do so, one can start with an ex-
pansion of the gradient of the phase and isostable co-
ordinates. Letting ∂θ

∂x |
x(θ,ψ1,...,ψM )

≡ Z (θ, ψ1, . . . , ψM ) and
∂ψn

∂x |
x(θ,ψ1,...,ψM )

≡ In(θ, ψ1, . . . , ψM ), one can write

Z (θ, ψ1, . . . , ψM ) ≈ Z (θ ) +
M∑

k=1

[ψkZk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkZ jk (θ )] +
M∑

i=1

i∑
j=1

j∑
k=1

[ψiψ jψkZi jk (θ )] + · · · ,

In(θ, ψ1, . . . , ψM ) ≈ In(θ ) +
M∑

k=1

[
ψkIk

n (θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkI jk

n (θ )
]+

M∑
i=1

i∑
j=1

j∑
k=1

[
ψiψ jψkI i jk

n (θ )
]+ · · · . (22)

In the above equation, Z (θ ) and In(θ ) represent the gradient of
the phase and isostable coordinates evaluated on the periodic
orbit; these terms also appear in (7). Likewise, Zk (θ ) and
Ik

j (θ ) are equivalent to the terms Bk (θ ) and Ck
j (θ ), respec-

tively, from (7). Computation and utilization of these terms
has been discussed previously in [26,28]. Direct strategies
for the computation of the remaining terms Zi jk...(θ ) and
I i jk...
n (θ ) that provide higher order accuracy corrections have

not previously been developed. In the derivations to follow,
Secs. III B 1 and III B 2 give equations similar in struc-
ture to (18) that can be used to compute each Zi jk...(θ ) and
I i jk...
n (θ ). Section III B 3 provides an alternative strategy for

computing the gradient of the phase and isostable coordinates
directly from the relationship x(θ, ψ1, . . . , ψM ) = xγ (θ ) +
G(θ, ψ1, . . . , ψM ) which can be used under certain conditions.

1. Computing the terms for the gradient of the phase

To begin, computation of the terms of Z will be considered.
Consider any trajectory of (1) in the basin of attraction of
the periodic orbit given by x = xγ (θ ) + �x(θ, ψ1, . . . , ψM ).
Also consider a perturbed trajectory x1 which has been

initially shifted by an infinitesimal amount �x = O(ε) where
0 < ε 
 1. The shift in θ due to this initial perturbation is

�θ = �xTZ (θ, ψ1, . . . , ψM ). (23)

Taking the time derivative of (23) and noting that d�θ/dt = 0
in the absence of perturbation, one finds

0 = d�x

dt

T

Z + �xT dZ
dt

. (24)

Note that explicit dependence of Z on the phase and isostable
coordinates has been dropped for notational convenience.
Because �x is small, one can use Taylor expansion to write

d�x

dt
= ∂F

∂x

∣∣∣∣
x

�x + O(ε2). (25)

Substituting this result into (24), neglecting O(ε2) terms, and
rearranging yields

0 = �xT

[
∂F

∂x

T ∣∣∣∣
x

Z + dZ
dt

]
. (26)
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Since �x is arbitrary, it follows that the terms inside the
brackets of (26) must be equal to zero and thus

dZ
dt

= − ∂F

∂x

T ∣∣∣∣
x

Z. (27)

While the above derivation mirrors the derivation of the
adjoint equation (8) from [40], this derivation significantly
expands on it by considering a nominal trajectory x that has
already been perturbed from the periodic orbit.

Let JT ≡ ∂F
∂x

T = [ ∂ f1

∂x

T · · · ∂ fN

∂x

T ], where all partial
derivatives are evaluated along the periodic orbit. Along a

specific trajectory near the periodic orbit, it is possible to write
an asymptotic expansion

∂F

∂x

T ∣∣∣∣
xγ +�x

= JT + [a1 · · · aN ],

ai =
∞∑
j=1

1

j!
([

j⊗�xT ] ⊗ Id)vec
(

f ( j+1)
i

)
, (28)

where ai is a column vector and f (i+1)
i was defined in (13).

Recalling that dψk/dt = κkψk , time derivatives of (22) can
also be readily written in powers of the isostable coordinates:

dZ
dt

= dZ

dt
+

M∑
k=1

ψk

[
κkZk (θ ) + dZk

dt

]
+

M∑
j=1

j∑
k=1

ψ jψk

[
(κ j + κk )Z jk + dZ jk

dt

]

+
M∑

i=1

i∑
j=1

j∑
k=1

ψiψ jψk

[
(κi + κ j + κk )Zi jk + dZi jk

dt

]
+ · · · . (29)

Noticing that Eqs. (27) and (29) are identical, one can write

dZ

dt
+

M∑
k=1

ψk

[
κkZk (θ ) + dZk

dt

]
+

M∑
j=1

j∑
k=1

ψ jψk

[
(κ j + κk )Z jk (θ ) + dZ jk

dt

]
+ . . .

= −(JT + [a1 · · · aN ])

⎛
⎝Z (θ ) +

M∑
k=1

[ψkZk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkZ jk (θ )] + · · ·
⎞
⎠, (30)

where equations Z from (22) and ∂F
∂x

T |xγ +�x from (28) are substituted into the appropriate locations in (27). Finally, relationships
for each of the terms in the expansions (22) can be obtained by matching coefficients in orders of each of the isostable coordinates
in (30). For instance, matching terms up to second order accuracy in the isostable coordinate ψ j yields

ψ0
j :

dZ

dt
= −JT Z (θ ), (31)

ψ1
j :

dZ j

dt
= −(JT + κ jId)Z j (θ ) −

N∑
i=1

[
eT

i Z (θ ){[gj (θ )]T ⊗ Id}vec
(

f (2)
i

)]
, (32)

ψ2
j :

dZ j j

dt
=−(JT + 2κ jId)Z j j (θ ) −

N∑
i=1

[
eT

i Z j (θ ){[gj (θ )]T ⊗ Id}vec
(

f (2)
i

)+ 1

2
eT

i Z (θ ){[gj (θ )]T ⊗ [gj (θ )]T ⊗ Id}vec
(

f (3)
i

)]
,

(33)

where ei is the ith element of the standard unit basis. Matching
higher order powers of the appropriate isostable coordinates in
(30) can be accomplished efficiently with a symbolic compu-
tational package. Much like when computing the relationships
for the terms of (10), equations for the higher order terms of
the phase response equation follow the pattern

dZi jk...

dt
=−[JT + (κi+ κ j + κk + . . . )Id]Zi jk...(θ )+ qi jk...

θ (θ ),

(34)
where qi jk...

θ is composed of only lower order terms of the
expansion of Z (θ, ψ1, . . . , ψM ), [e.g., q113

θ (θ ) can contain
terms from Z1(θ ) and Z13(θ ) but will not contain terms such
as Z111(θ )]. The terms of the expansion Z (θ ), Z j (θ ), and
Z j j (θ ) are the periodic solutions to (31)–(33), respectively.
All higher order terms can be obtained by computing periodic

solutions to equations of the form (34). Due to the general
structure of (34), all terms of the expansion can be obtained
by first solving for the lowest order terms, and successively
moving to higher order terms.

In the above derivation, Eq. (8) is the standard adjoint equa-
tion (derived, e.g., in [40]) which gives the local gradient of
the phase coordinates along the periodic orbit. Noting that f (2)

i
is simply the Hessian of fi, Eq. (32) was previously derived in
[28]. Using the strategy detailed above, it is straightforward
to derive relationships for all other higher order corrections to
the phase reduction; relations of these higher order corrections
have not been previously obtained.

2. Computing the terms of the gradient of the isostable coordinates

Equations for computing the terms of the isostable reduc-
tion are very similar to those of the form (34). To derive these

022220-6



PHASE-AMPLITUDE REDUCTION FAR BEYOND THE … PHYSICAL REVIEW E 101, 022220 (2020)

equations, once again consider any trajectory of (1) in the
basin of attraction of the periodic orbit given by x = xγ (θ ) +
�x(θ, ψ1, . . . , ψM ). Also consider a perturbed trajectory x1

which has been initially shifted by an infinitesimal amount
�x = O(ε) where 0 < ε 
 1. The shift in ψn due to this
initial perturbation is

�ψn = �xTIn(θ, ψ1, . . . , ψM ). (35)

Taking the time derivative of (35) yields

κn�ψn = d�x

dt

T

In + �xT dIn

dt
, (36)

which can be manipulated to give

0 = −κn�xTIn + d�x

dt

T

In + �xT dIn

dt
. (37)

Substituting the Taylor expansion from (25) into (37) gives

0 = �xT

[(
∂F

∂x

T ∣∣∣∣
x

− κnId

)
In + dIn

dt

]
. (38)

Once again, since �x is arbitrary, the terms inside the brackets
of (38) must be zero so that

dIn

dt
= −

(
∂F

∂x

T ∣∣∣∣
x

− κnId

)
In. (39)

Equation (38) is nearly identical in structure to (27) except
for the extra term κnId. Repeating the arguments from the
previous section, one can Taylor expand (39) in powers of the
isostable coordinates to yield

dIn

dt
+

M∑
k=1

ψk

[
κkIk

n (θ ) + dIk
n

dt

]
+

M∑
j=1

j∑
k=1

ψ jψk

[
(κ j + κk )I jk

n (θ ) + dI jk
n

dt

]
+ · · ·

= −(JT + [a1 · · · aN ] − κnId)

⎛
⎝In(θ ) +

M∑
k=1

[
ψkIk

n (θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkI jk

n (θ )
]+ · · ·

⎞
⎠. (40)

Once again, matching coefficients in orders of each isostable coordinate from Eq. (40) yields relationships that can be used to
compute the terms of the isostable coordinate expansion from (22). For instance, matching terms up to second order accuracy in
ψ j one finds

ψ0
j :

dIn

dt
= −(JT − κnId)In(θ ), (41)

ψ1
j :

dI j
n

dt
= −[JT + (κ j − κn)Id]I j

n (θ ) −
M∑

i=1

[
eT

i In(θ ){[gj (θ )]T ⊗ Id}vec
(

f (2)
i

)]
, (42)

ψ2
j :

dI j j
n

dt
= −[JT + (2κ j − κn)Id]I j j

n (θ ) −
M∑

i=1

[
eT

i I j
n (θ ){[gj (θ )]T ⊗ Id}vec

(
f (2)
i

)

+ 1

2
eT

i In(θ )
{
[gj (θ )]T ⊗ [gj (θ )]T ⊗ Id

}
vec
(

f (3)
i

)]
. (43)

As before, matching powers of the appropriate isostable co-
ordinates to obtain equations for higher order relationships
of the expansion of the isostable response curve can be
performed using a symbolic computational package. Once
again, the general pattern for the isostable response equations
follows

dIi jk...
n

dt
= −[JT + (−κn + κi + κ j + κk + . . . )Id]

× I i jk...
n (θ ) + qi jk...

ψn
(θ ), (44)

where qi jk...

ψn
(θ ) is composed of only lower terms of the ex-

pansion of In(θ, ψ1, . . . , ψM ). The terms of the expansion
In(θ ), I j

n (θ ), and I j j
n (θ ) can be obtained by computing periodic

solutions to (41)–(43), respectively. All other terms can be
found by computing the periodic solutions to equations of the
form (44).

The relationships (41) and (42) were previously derived
in [25] and [28], respectively. The above strategy allows
for straightforward derivation for the relationships governing

even higher order corrections to the isostable reduced equa-
tions using (44) and can be obtained with a symbolic com-
putational package. These higher order relationships have not
been obtained previously.

A brief note on normalization of the terms of the phase and
isostable response expansion. Usually, the periodic solutions
of (34) and (44) are uniquely determined; however, for cer-
tain terms of the expansion, additional normalization will be
required. For example, consider any term of the form I j

j (θ ).
Using (44) one finds

dI j
j

dt
= −JT I j

j (θ ) + q j
ψ j

(θ ). (45)

Noting that (45) can be viewed as a periodically forced version
of the adjoint equation (31) used in the computation of Z (θ ),
periodic solutions of (45) can be written as

I j
j (θ ) = I j∗

j (θ ) + βZ (θ ), (46)
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where I j∗
j (θ ) is a particular solution and β is an arbitrary

constant. In this case, additional normalization is necessary.
To do so, recall from the definition of phase (resp., isostable)

coordinates, that dθ
dt = ω (resp., dψn

dt = κnψn) in the absence
of perturbations. Therefore, a normalizing condition can be
obtained from the relation

ω =
(

∂θ

∂x

)T dx

dt
=
⎡
⎣Z (θ ) +

M∑
k=1

[ψkZk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkZ jk (θ )] + · · ·
⎤
⎦

T[
F (xγ (θ )) + d�x

dt

]
, (47)

κnψn =
(

∂ψn

∂x

)T dx

dt
=
⎡
⎣In(θ ) +

M∑
k=1

[
ψkIk

n (θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkI jk

n (θ )
]+ · · ·

⎤
⎦

T[
F (xγ (θ )) + d�x

dt

]
. (48)

By substituting (15) into (47) and (48), one finds a nor-
malization condition for the terms of the expansion of the
phase response curve by matching powers of the isostable
coordinates. For instance, matching terms to leading order
ψ j in (48) yields the normalizing condition I j (θ )T Jgj (θ ) +
I j

j (θ )T F (xγ (θ )) = κ j providing a necessary normalization for
(46).

3. Inference of the expansion for the gradient of the phase
and isostable coordinates directly from the state expansion

Section III B illustrates a strategy for computing all of the
terms of Z and I j to arbitrary accuracy in the isostable coor-
dinates for use in the reduction (9). For certain systems, it is
possible to infer the terms Z , and I j directly from the relation-
ship x(θ, ψ1, . . . , ψM ) = xγ (θ ) + G(θ, ψ1, . . . , ψM ) thereby
bypassing the need to compute the terms of the asymptotic
expansion (22) directly. As explained below, this strategy
is generally only applicable for particularly small values of
ψ1, . . . , ψM .

To begin, recall that in the reduction (9) that it is assumed
that ψ j is well approximated by zero for j > M; i.e., the rela-
tion x(θ ) + G(θ, ψ1, . . . , ψM ) gives a hypersurface for which
ψ j = 0 for j > M. Letting x0 = [x1 . . . xN ]T be any ini-
tial condition on this hypersurface with corresponding phase
and isostable coordinates θ, ψ1, . . . , ψM , any infinitesimal
perturbation �x from this initial condition can be represented
to leading order according to

�x = A���, (49)

where �� ≡ [�θ �ψ1 . . . �ψN−1]T and

A� ≡
[(

∂xγ

∂θ
+ ∂G

∂θ

)
∂G
∂ψ1

. . .
∂G

∂ψM
gM+1(θ ) . . . gN (θ )

]

∈ RN×N , (50)

with all partial derivatives evaluated at θ, ψ1, . . . , ψM . Recall
here that each gj (θ ) is a Floquet eigenfunction of (4). While
the reduction (9) does not explicitly include contributions
from gM+1(θ ), . . . , gN (θ ), they are necessary here to allow
for perturbations �x in any direction. Provided the inverse of
A� as given by (50) exists, the change in phase and isostable
coordinates is given by

A−1
� �x = ��. (51)

Recall that Z (θ, ψ1, . . . , ψM ) and I j (θ, ψ1, . . . , ψM) are sim-
ply approximations of the gradient of the phase and isostable
coordinates, respectively. Therefore, the rows of A−1

� corre-
spond directly to Z and I j according to

Z (θ, ψ1, . . . , ψM ) = (
eT

1 A−1
�

)T
,

I j (θ, ψ1, . . . , ψM ) = (
eT

j+1A−1
�

)T
. (52)

The condition number of A� becomes an important considera-
tion when computing the phase and isostable response curves
using (52). For any θ , when ψ1 = ψ2 = · · · = ψM = 0, i.e.,
for states on the periodic orbit, A� is always invertible with

(
A� |ψ1=ψ2=···=ψM=0

)−1 = [Z1(θ ) I1(θ ) . . . IN (θ )]T .

(53)

The above relationship follows from (A2), (A7), and (A8) in
Appendix A. As the isostable coordinates increase, taking this
matrix inverse can amplify the effects of numerical error when
A� is ill conditioned and ultimately can prohibit the compu-
tation of the gradient of phase of the isostable coordinates. To
illustrate this, let

A� =
[(

∂xγ

∂θ
+ ∂G

∂θ

)
g1(θ ) . . . gN (θ )

]

+
[

0

(
∂G
∂ψ1

− g1(θ )

)
. . .

(
∂G

∂ψM
− gM (θ )

)
0 . . . 0

]
= A + E . (54)

In (54), the matrix A represents A� when evaluated on the
periodic orbit, and E represents a small perturbation for
nonzero isostable coordinates. Rewrite the perturbation as

E =
[

0

(
∂G
∂ψ1

− g1(θ )

)
. . .

(
∂G

∂ψM
− gM (θ )

)]
× IdM×M[IdM×M �M×N−M]

= W DV, (55)

where IdM×M and �M×N−M represent the identity matrix and a
matrix of zeros, respectively, with the size specified. Starting
with the Sherman-Morrison-Woodbury matrix identity [46],
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one finds

(A + E )−1 = (A + W DV )−1

= A−1 − A−1W (Id + VA−1W )−1VA−1

= A−1 − A−1W

⎛
⎝ ∞∑

j=0

(−VA−1W ) j

⎞
⎠VA−1

= A−1 + A−1
∞∑
j=1

(−EA−1) j, (56)

where the third line uses the relationship (Id − P)−1 = Id +∑∞
j=1 Pn which is valid for small matrix perturbations P, and

the fourth line follows from direct simplification. From (56)
it is immediately apparent how (52) can fail to accurately
provide the correct relationships for the desired functions.
Foremost, if the condition number of A� (i.e., the ratio of
the largest and smallest singular values) grows too large,
numerical issues will arise when computing the matrix inverse
as part of (52). The computation will suffer if at a given
value of θ the condition number of A = A� |ψ1=ψ2=···=ψM=0 is
large. In (56), (A + E )−1 can be approximated to nth order
accuracy in the isostable coordinates by taking the infinite
sum to n terms (provided that G is also approximated to at
least nth order in the isostable coordinates). If the condition
number of A−1 is particularly large, this will also result in
significant error in the numerical computation. This relation-
ship can be clearly seen in results from Fig. 5 for an example
system.

As a final note, because the final N − M − 1 columns of
the matrix A� are not used in the reduction (9), the terms
gM+1(θ ), . . . , gN (θ ) do not need to be explicitly computed.
Instead, by noting that the set {gM+1(θ ), . . . , gN (θ )} spans
the orthogonal complement of {Z1(θ ), I1(θ ), . . . , IM (θ )},
one can simply compute the orthogonal complement
of {Z1(θ ), I1(θ ), . . . , IM (θ )} and use it to replace
gM+1(θ ), . . . , gN (θ ) from (50). It is straightforward to
show that the first M + 1 rows of A� remain unchanged with
this modification.

In summary, Z and each I j can be computed to high-order
accuracy using (52), but the requirement of taking the matrix
inverse will lead to numerical issues when large isostable
coordinates are considered. Generally, it is better to compute
Z and each I j using strategies described in Sec. III B.

IV. PATCHWORK PHASE-AMPLITUDE REDUCTION

The methods detailed in the previous section can be used
to identify phase-amplitude reduced equations with respect to
a single periodic orbit. In some situations it can be useful
to consider a reduction based on multiple periodic orbits
obtained with different choices of nominal parameters. To
illustrate this idea, consider the differential equation

dx

dt
= F (x, p0) + U (t ), (57)

where x ∈ RN is the state, F (x, p) gives the unperturbed
dynamics where p ∈ R is a parameter, p = p0 is the nominal
value of this parameter, and U (t ) is a time-dependent input.

Here, Eq. (57) is identical to (1) except for the explicit
dependence on the parameter p. For any value of p, one can
rewrite (57) as

dx

dt
= F (x, p) + Up(x, p, t ), (58)

where Up(x, p, t ) ≡ F (x, p0) − F (x, p) + U (t ). Intuitively,
Eq. (58) illustrates that Eq. (57) can be analyzed with respect
to any periodic orbit xγ

p from the dynamical system ẋ =
F (x, p) as long as the effective input Up is defined appropri-
ately. In general, the asymptotic expansion (9) from the previ-
ous section works well provided the isostable coordinates are
small in magnitude. The so-called patchwork phase-amplitude
reduction proposed here actively switches between nominal
periodic orbits as necessary to keep the isostable coordinates
small.

A. Level sets of isostable coordinates of nearby periodic orbits

To begin, it will be necessary to show that the level sets
of isostable coordinates are similar between nearby periodic
orbits. Let xγ

p1 (θ ) and xγ
p2 (θ ) be stable periodic orbits obtained

when p = p1 and p = p2 = p1 + �p, respectively, where �p
is an O(ε) term. For the patchwork reduction considered here,
it will be assumed that all but one of the N − 1 Floquet
exponents associated with decay in directions transverse to
the periodic orbit are large in magnitude so that the dynamical
behavior can be well characterized with a single isostable
coordinate. Let θ p1 and ψ

p1
1 (resp., θ p2 and ψ

p2
1 ) be the phase

and isostable coordinates associated with the orbit xγ
p1 (resp.,

xγ
p2 ).

Using (9), one can represent the perturbed dynamical be-
havior near either of these periodic orbits as

θ̇q = ωq + Zq
(
θq, ψ

q
1

) · Up(x, q, t ),

ψ̇
q
1 = κ

q
1 ψ

q
1 + Iq

1

(
θq, ψ

q
1

) · Up(x, q, t ),

x
(
θq, ψ

q
1

) = xγ
q (θq) + Gq

(
θq, ψ

q
1

)
, (59)

where q = {p1, p2} is used to denote the functions and co-
ordinates associated with periodic orbits taking p1 = q or
p2 = q. The analysis to follow shows that for any value
of θ there exists some isostable coordinate α for which
xp1 (θ ) + G p1 (θ, α) ≈ xp2 (θ ) + G p2 (θ,−α), so that the level
sets of the isostable coordinates are approximately identical.
At these locations, it is possible to recompute the phase and
isostable coordinates of one orbit in terms of the other orbit.
Ultimately, this makes it possible to choose the orbit with the
lower isostable coordinates to limit the error in the resulting
reduction. This general idea is highlighted in Fig. 1. The
patchwork phase-amplitude reduction proposed here can be
performed by taking a large collection of orbits and actively
switching between them.

To continue, the phase and isostable dynamics of the
periodic orbit resulting from ẋ = F (x, q) will be analyzed in
response to a static parameter perturbation. For the moment
Up will be taken to be zero so that the static parameter
perturbation is the only input considered. Recall that p2 =
p1 + �p and consider a periodic orbit of ẋ = F (x, q + β�p)
where |β| < 1. The phase and isostable dynamics of θq and
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FIG. 1. Panel (a) shows a representation of two periodic orbits
of (57) in a two-dimensional cross section. xγ

p1
and xγ

p2
result when

using parameters p = p1 and p = p2 in (57) and are shown as solid
blue and red lines, respectively. Provided that p1 and p2 are close
enough in magnitude, there will be some isostable coordinate α =
ψ

p1
1 = −ψ

p2
1 at which the trajectories are close to each other. These

points provide switching points that can be used to keep the isostable
coordinates small, thereby limiting the magnitude of the amplitude
coordinates and allowing for a more accurate reduction. This general
idea is illustrated in panel (b): a trajectory starts nearby the blue orbit
and can represented by a phase-amplitude reduction (9) computed
for the blue orbit. As the trajectory is perturbed toward the red orbit,
the associated isostable coordinate starts to grow. At the switching
point, the phase and isostable coordinates are recomputed in terms
of a second reduction associated with the red orbit. As illustrated
in panel (c), this allows the isostable coordinates to remain small in
magnitude resulting in a better characterization of the full system
behavior. Multiple orbits can be stitched together in this fashion
to analyze the overall system to implement a so-called patchwork
reduction.

ψ
q
1 resulting from this static parameter perturbation are

θ̇q = ωq + β�pZq(θq) · ∂F

∂ p
+ O(ε2),

ψ̇
q
1 = κ

q
1 ψ

q
1 + β�pIq

1 (θq) · ∂F

∂ p
+ O(ε2), (60)

where ∂F/∂ p is evaluated at xγ
q (θq), and Zq (resp., Iq

1 )
gives the gradient of the phase (resp., isostable) coordinate
evaluated on the periodic orbit. It will be assumed that
ψ

q
1 is an O(ε) term because �p is O(ε). Let φq ≡ θ −

(ωq − βζ�p)t define a rotating reference frame where ζ ≡
1

T q

∫ 2π

0

∫ T q

0 [Zq(s + ωqt ) · ∂F
∂ p ]dtds. Here T q = ωq/2π is the

nominal period of oscillation for the periodic orbit when using
p = q. Changing coordinates of (60) to work in this rotating
reference frame and dropping the O(ε2) terms yields

φ̇q = β�p

[
−ζ + Zq(φq + (ωq − βζ�p)t ) · ∂F

∂ p

]
,

ψ̇
q
1 = κ

q
1 ψ

q
1 + β�pIq

1 (φq + (ωq − βζ�p)t ) · ∂F

∂ p
. (61)

Noticing that (61) is periodic in time, assuming that ψ
q
1 is

O(ε), formal averaging techniques [47,48] can be applied to
approximate (61) as

�̇q = β�p
[
W q

φ (�q) − ζ
]
,

�̇
q
1 = κ

q
1 �

q
1 + β�pW q

ψ (�q), (62)

where W q
φ (�q) = 1

T q,s

∫ T q,s

0 [Zq(�q + (ωq − ζβ�p)t ) · ∂F
∂ p ]dt ,

and W q
ψ (�q) = 1

T q,s

∫ T q,s

0 [Iq
1 (�q + (ωq − ζβ�p)t ) · ∂F

∂ p ]dt ,
with T q,s = 2π/(ωq − ζβ�p). Using a change of
variables t∗ = (ωq − ζβ�p)/ωq, one can show that
W q

φ (�q) = 1
T q

∫ T q

0 [Zq(�q + ωqt∗) · ∂F
∂ p ]dt∗ and W q

ψ (�q) =
1

T q

∫ T q

0 [Iq
1 (�q + ωqt∗) · ∂F

∂ p ]dt∗, and are not dependent on
�p. As explained in [47], fixed points of (62) correspond to
periodic orbits of (61) with the same stability. Noting that ζ is
the average of W q

φ (�q) and that W q
φ (�q) is periodic, provided

W q
φ is not constant there must be some value �

q
fp for which

W q
φ (�q

fp) − ζ = 0 and W ′q
φ (�q

fp) < 0, where ′ ≡ d/d�q.
With this value of �

q
fp, the bottom equation of (62) has a

stable fixed point at

�
q
fp = −β�pW q

ψ

(
�

q
fp

)
κ

q
1

. (63)

In light of (63), consider the periodic orbit xγ
p1 with a static

parameter change β�p. Additionally, consider the periodic
orbit xγ

p2 with a static parameter change (β − 1)�p. Using
(63), one can show that �

p1
fp = −�

p2
fp when

β = W p2
ψ

(
�

p2
fp

)
κ

p1
1

W p2
ψ

(
�

p2
fp

)
κ

p1
1 − W p1

ψ

(
�

p1
fp

)
κ

p2
1

. (64)

Note that (62) approximates the behavior of (61), and that the
output of (61) can be used in turn to approximate the state
using (59). Additionally, because the limiting behavior of both
orbits approximates the stable periodic orbit using p = p1 +
β�p, one finds that

xγ
p1

(θ p1 ) + G p1
(
θ p1 , �

p1
fp

) ≈ xγ
p2

(θ p2 ) + G p2
(
θ p2 ,−�

p1
fp

)
.

(65)

B. Converting phase and isostable coordinates between orbits

Equation (65) illustrates that the outputs using two nearby
periodic orbits overlap at predictable isostable coordinates.
This knowledge can be used to switch between the phase and
isostable coordinates as necessary in order to keep isostable
coordinates low thereby resulting in an accurate represen-
tation of the output behavior in situations where a single
periodic orbit is insufficient. In order to switch between orbits,
it is necessary to relate the phase and isostable coordinates
of adjacent orbits. Toward this end, first consider a hypersur-
face xγ

p2 (θ p2 ) + G p2 (θ p2 , ψ
p2
1 ). Let x0 = [x1 . . . xN ]T be

any initial condition on this hypersurface with corresponding
phase and isostable coordinates θ and ψ

p2
1 (with ψ

p2
j = 0 for

j � 2). Using Taylor expansion, any small perturbation �x
from this initial condition can be represented to leading order
according to

�x = Ap2
� �� p2 , (66)

where �� p2 ≡ [�θ �ψ1 . . . �ψN−1]T and

Ap2
� ≡

[(
∂xγ

p2

∂θ
+ ∂G p2

∂θ

)
∂G p2

∂ψ1
g2(θ p2 ) . . . gN−1(θ p2 )

]
,

(67)
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with all partial derivatives evaluated at θ p2 and ψ
p2
1 . Note

that the terms g2, . . . , gN−1 corresponding to perturbations to
the isostable coordinates ψ

p2
2 , . . . , ψ

p2
N−1 are not considered

in the reduction (9); however, they are necessary to allow for
perturbations in any direction from x0. Finally, provided Ap2

�

is invertible, the change in phase and isostable coordinates is
given by

�� = (Ap2
�

)−1
�x. (68)

From (53), when ψ
p2
1 = 0, Ap2

� is always invertible, with

(
Ap2

�

∣∣
ψ

p2
1 =0

)−1 = [Z1(θ ) I1(θ ) . . . IN−1(θ )]T , (69)

where Z1, I1, . . . , IN−1 are the phase and isostable response
curves for the periodic orbit xγ

p2 (θ ). Provided ψ
p2
1 is small

enough, Ap2
� will also be invertible.

Equation (68) can be used to convert coordinates between
periodic orbits. To do so, suppose that

xγ
p1

(θ p1 ) + G p1
(
θ p1 , ψ

p1
1

) ≈ xγ
p2

(θ p2 ) + G p2
(
θ p2 , ψ

p2
1

)
, (70)

with −ψ
p1
1 ≈ ψ

p2
1 . Noting that location on the periodic orbit

corresponding to θ p1 = 0 and θ p2 = 0 is arbitrary, it will be
assumed that these orbits have been appropriately aligned so
that θ p1 ≈ θ p2 . A more detailed discussion of this required
alignment is given in Appendix B. Equality in (70) can
be obtained by allowing for a perturbation to the isostable
coordinates with respect to the orbit xγ

p2 ,

xγ
p1

(θ p1 ) + G p1
(
θ p1 , ψ

p1
1

)
= xγ

p2
(θ p1 ) + G p2

(
θ p1 ,−ψ

p1
1

)+ Ap2
� ��, (71)

where Ap2
� is evaluated at ψ

p2
1 = −ψ

p1
1 and θ p2 = θ p1 . By

solving

�� = (
Ap2

�

)−1[
xγ

p1
(θ p1 ) + G p1

(
θ p1 , ψ

p1
1

)
− xγ

p2
(θ p1 ) − G p2

(
θ p1 ,−ψ

p1
1

)]
, (72)

one finds that the converted phase and isostable coordinates
are

θ p2 = θ p1 + �θ,

ψ
p2
1 = −ψ

p1
1 + �ψ1. (73)

As a final note, because �ψ2, . . . , �ψN−1 are not ex-
plicitly required, the terms g2(θ ), . . . , gN−1(θ ) do not need
to be computed. Instead, one can replace the columns
g2(θ p2 ), . . . , gN−1(θ p2 ) from (67) with a set of vectors span-
ning the orthogonal complement of the set {Z1(θ ), I1(θ )},
where the phase and isostable response curves are asso-
ciated with the periodic orbit xγ

p2 . Solving for �� using
this modified version of Ap2

� will have no influence on the
values of �θ and �ψ1 and eliminates the need to compute
g2(θ p2 ), . . . , gN−1(θ p2 ). Justification for this is given at the
end of Sec. III B 3.

V. EXAMPLES AND ILLUSTRATIONS OF THE
HIGH-ORDER REDUCTION STRATEGY

A. High-accuracy phase-amplitude reduction of the nonradial
isochron clock

Here the high-accuracy phase-amplitude reduction strategy
described in previous sections is applied to the nonradial
isochron clock,

ẋ/P = σx[1 − (x2 + y2)1/2]

− y{1 + ρ[(x2 + y2)1/2 − 1]} + u(t ),

ẏ/P = σy[1 − (x2 + y2)1/2]

+ x{1 + ρ[(x2 + y2)1/2 − 1]}, (74)

which has been modified from the radial isochron clock given
in [1] to include a radial dependence on the rate of rotation.
Here, u(t ) is an external perturbation and parameters P, σ ,
and ρ are taken to be 1, 0.08, and 0.12, respectively. For
this choice of parameters, when u(t ) = 0 the system settles
to a periodic orbit [x(t ), y(t )] = [cos(2πt ), sin(2πt )] with a
Floquet exponent κ1 = −1.005 and corresponding Floquet
multiplier λ1 = 0.366. Because (74) is planar, the phase-
amplitude equations (9) do not reduce the dimensionality of
the reduction (more complicated equations will be considered
in subsequent examples).

Toward computation of the necessary terms of the phase-
amplitude reduction (9), �x from (10) is taken to fourteenth
order accuracy in the isostable coordinate. The powers of
the isostable coordinates from (15) and (12) are matched to
find relations of the form (18) that are used to calculate the
necessary terms of the expansion (10). Likewise, the powers
of the isostable coordinates in the expansions (30) [resp.,
(40)] are matched to find relations of the form (34) [resp.,
(44)] that are used to compute the necessary terms of the
expansions in (22). This process of matching terms to identify
the relations from (18), (34), and (44) is performed with
a symbolic computational package. The resulting equations
are solved using strategies detailed in Sec. III. Panel (a) of
Figure 2 shows a surface plot of the Zx(θ, ψ1) ≡ ∂θ

∂x and
I1,x (θ, ψ1) ≡ ∂ψ1

∂x calculated to different orders of accuracy
in the isostable coordinate. The leftmost plots give zeroth
order approximations, which are simply sinusoids that have
no dependence on the amplitude coordinate. A much richer
description of the perturbed response results when higher or-
der accuracy approximations are computed. The reduction (9)
can be used to give an approximation of the isochrons of the
system as defined in (2). This is accomplished by computing
the terms of G(θ, ψ1) to desired accuracy and plotting the
level sets of the phase. Panel (b) shows the estimate of the
isochrons as colored lines obtained by taking the G(θ, ψ1)
to first, sixth, and fourteenth order. Black lines show the
true isochrons computed directly from (2). The first order
approximation estimates the isochrons to be straight lines,
with true values of the isochrons that diverge rapidly at larger
distances from the periodic orbit. Approximating G(θ, ψ1)
to higher orders of accuracy in ψ1 provides an increasingly
accurate estimate of the curvature of the isochrons.

The forced response of the phase-amplitude representa-
tion of the nonradial isochron clock (74) is also investigated
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FIG. 2. Panel (a) shows approximations of ∂θ

∂x and ∂ψ1
∂x that are valid up to fourteenth order in ψ1. Increasing the order of accuracy provides

a richer picture of the perturbed response. Panel (b) shows approximations of the isochrons obtained by computing G(θ, ψ1) to various orders
of accuracy. Black lines show the true isochrons for the nonradial isochron clock (74) computed directly from the definition (2).

with various types of perturbations. Representative results are
shown in Fig. 3. Panel (a) shows the output resulting from a
pulse u(t ) = 25 applied for 0.1 time units starting from the
periodic orbit. Note that the second order reduction initially
overshoots the response worse than the zeroth order reduc-
tion; the large inputs considered here take the lower order
reductions far beyond their regions of applicability making
the reduced model behavior unpredictable. Panel (c) shows
the limiting behavior in response to a sinusoidal input u(t ) =
25 sin(2πt/1.6). In each panel, the solid black line shows

FIG. 3. Panel (a) shows the transient behavior of the phase-
amplitude reduction (colored lines) and the full model equations of
the nonradial isochron clock (black line) in response to a short pulse.
Likewise, panel (c) shows the limiting behavior in response to a
large magnitude sinusoidal perturbation with the dashed black line
showing the unperturbed periodic orbit for reference. The top-right
axis in panel (c) highlights the order zero reduced response in relation
to the other curves. Panel (b) [resp., (d)] shows the resulting error
between the phase-amplitude reduction and the full equations from
panel (a) [resp., (c)] when using the reduction of the indicated order
of accuracy.

the response from the full equations (74) and colored lines
show the output from the phase-amplitude representation (9)
computed to various orders of accuracy in ψ1. Here, an order k
accuracy reduction takes both Z and I1 to kth order accuracy
in ψ1 and G to (k + 1)th order accuracy. This convention is
adopted so that the 0th order accuracy reduction corresponds
to a standard phase and isostable reduction in concert with
a standard implementation of Floquet theory. Panels (b) and
(d) correspond the error between the full model simulations
where X (t ) = [x(t ) y(t )]T for the full model simulations
and X ∗(t ) gives the corresponding output from the phase-
amplitude equations.

In each trial from Fig. 3, the overall error between the
phase-amplitude reduced equations and the full model equa-
tions decreases predictably as the order of accuracy is in-
creased. At fourteenth order accuracy, there is little discernible
error between the phase-amplitude reduced equations and the
full model simulations. When using the sinusoidal input, the
order 1 through 5 reductions do not converge to a periodic
solution and instead become unbounded as time increases (not
shown). While the 0th order phase-amplitude equations do
converge to a periodic solution, there is a large amount of
error as illustrated in the upper-right corner of panel (c) where
the axis has been rescaled to fit the resulting orbit; the order
0 phase-amplitude reduction is useless for the magnitude of
perturbations considered in the example.

B. Patchwork reduction illustrated in a model
for circadian oscillations

In this example, a model with relevance to circadian
rhythms will be considered and the high-order phase-
amplitude patchwork reduction strategy will be employed to
examine a control strategy for mitigation of circadian mis-
alignment. Over the course of many millennia, organisms have
developed highly tuned circadian rhythms to anticipate and
respond to predictable changes in their 24-hour environment
[49]. The free-running circadian cycles of most organisms
are close to 24 hours so that they can be stably entrained to
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a 24-hour light-dark cycle [50,51]. Circadian misalignment
represents a disruption to this steady entrainment; when the
disruption is caused by rapid transcontinental travel it is
referred to as jet lag [52,53].

Recently there has been a growing interest in understand-
ing dynamical mechanisms governing jet lag [20,29,54,55]
in order to develop control strategies to limit its negative
effects, [56–58]. Phase reduction has often been used as
a preliminary step in analyzing the underlying dynamics
of complicated oscillatory models, but as [20] points out,
phase reduction (and phase-amplitude reduction methods in
general) are difficult to implement because the exogenous
24-hour light cycle perturbations are usually large enough in
magnitude to drive the system far from its underlying limit
cycle thereby rendering the reduction invalid. Consequently,
it has been difficult to utilize phase reduction methods in
the development of control strategies for jet-lag mitigation.
Here, the high-accuracy phase-amplitude reduction and the
patchwork reduction strategy will be applied to a circadian
model to illustrate its utility as a reduction framework in the
aforementioned setting. The specific model characterizes gene
regulation [59] and has been used to model the mammalian
circadian cycle:

Ḃ = v1
Kn

1

Kn
1 + Dn

− v2
B

K2 + B
+ Lc + L(ts) + �L(t ),

Ċ = k3B − v4
C

K4 + C
,

Ḋ = k5C − v6
D

K6 + D
. (75)

Here, B, C, and D, are used to represent concentrations of
mRNA of the clock gene, associated protein, and nuclear form
of the protein, respectively. L(ts) incorporates the influence of
an external, 24-hour light-dark cycle taken to be

L(ts) = L0

[
1

1 + exp[−5(ts − 6)]
− 1

1 + exp[−5(ts − 18)]

]
,

where L0 is the nominal maximum intensity of light, ts =
mod(t, 24), sigmoidal functions are incorporated so that the
light intensity changes smoothly between its maximum and
minimum values, and �L(t ) will be used to implement a
light exposure or avoidance strategy in order to hasten re-
covery from circadian misalignment. Above, Lc is treated as
a variable parameter to implement the patchwork reduction
strategy from Sec. IV. Nominally Lc = 0, but can be modi-
fied when using the patchwork reduction to produce differ-
ent periodic orbits. From this perspective, U (t ) from (57)
is [[L(ts) + �L(t )] 0 0]T . When using the patchwork

reduction, Up(t ) = [[L(ts) + �L(t ) − Lc] 0 0]T . For the
model equations from (75), parameters are taken to
be n = 6, v1 = 0.84, v2 = 0.42, v4 = 0.35, v6 = 0.35, K1 =
1, K2 = 1, K4 = 1, K6 = 1, k3 = 0.7, and k5 = 0.7. Minor
changes in parameters are made compared to those given
in Fig. 1 of [59] so that in the absence of light (i.e., when
L0 = Lc = 0) the model has a stable limit cycle with period
24.2 hours.

For the moment, (75) will be analyzed taking �L(t ) = 0.
The resulting limit cycle is analyzed using the high-accuracy

phase-amplitude reduction framework with results shown in
Fig. 4. Panel (a) shows B(t ) plotted for the resulting limit cycle
taking L0 = Lc = 0. The orbit has two Floquet multipliers—
one with λ1 = 0.37 with corresponding Floquet exponent
κ1 = −0.041 and the other being close to zero so that it can
be ignored in the reduction. The blue curve in panel (b) shows
a three-dimensional representation of this orbit. Additionally,
the black lines in the panel show a subset of the 64 orbits that
will be used to implement the patchwork reduction obtained
by taking L0 = 0 and Lc ∈ [−0.0051, 0.0138]. Note that
Lc < 0 implies the application of negative light, which is not
possible in a physical sense, but does result in periodic orbits
in (75). Panel (c) of Fig. 4 shows surface plots of ZB(θ, ψ1) ≡
∂θ
∂B and I1,B(θ, ψ1) ≡ ∂ψ1

∂B for the blue curve from panel (b)
(i.e., the limit cycle obtained for L0 = Lc = 0) calculated to
various orders of accuracy in ψ1 using the methods described
in Sec. III B. Higher order approximations of ZB and I1,B

provide increasingly accurate representations of the perturbed
dynamical behavior which is reflected in the overall accuracy
of (9) in the examples to follow.

The reduced functions ZB and I1,B shown in Fig. 4 are
obtained by first computing �x from (10) to the desired
order of accuracy in ψ1 using equations of the form (18).
Subsequently, the phase and isostable gradients are calculated
to the desired order of accuracy using equations of the form
(34) and (44). As explained in Sec. III B 3, it is possible
to calculate ZB and I1,B directly from the expansion of
�x. Panels (a) and (b) of Fig. 5 compare the eighth order
response functions ZB(θ, ψ1) and I1,B(θ, ψ1) [as shown in
panel (c) of Fig. 4] to the inferred curves Z inferred

B (θ, ψ1)
and I inferred

1,B (θ, ψ1) as computed from (52) using the eighth
order accurate expansion of G(θ, ψ1). Because ZB(θ, ψ1)
and I1,B(θ, ψ1) are computed directly for the asymptotic
expansions (22) they are taken to be the ground truth for the
system. Correspondingly, ZB(θ, ψ1) − Z inferred

B (θ, ψ1) and
I1,B(θ, ψ1) − I inferred

1,B (θ, ψ1) give the error when using (52).
As predicted from the asymptotic expansion of (A� )−1 from
(56), for a given value of θ the accuracy of Z inferred

B (θ, ψ1)
and I inferred

1,B (θ, ψ1) depends strongly on the condition number
of A� |ψ1=0 shown in panel (c), with larger condition numbers
leading to larger errors.

In order to implement the patchwork phase-amplitude
reduction as described in Sec. IV, G(θ, ψ1), Z (θ, ψ1), and
I1(θ, ψ1) are computed for 64 limit cycles that result when
taking L0 = 0 and Lc ∈ [−0.0051, 0.0138]. In simulations of
the patchwork reduction, the state is initially assigned a nom-
inal periodic orbit xγ

Lc
(θ ) where the subscript Lc indicates the

value of light used to obtain the orbit. The reduced equations
(9) are simulated using the G(θ, ψ1), Z (θ, ψ1), and I1(θ, ψ1)
that correspond to the nominal orbit xγ

Lc
(θ ) taken to third order

accuracy in ψ1. At every time step in the simulation, �ψ1

and �θ from (73) are computed using adjacent periodic orbits
xγ

Lc−�Lc
(θ ) and xγ

Lc+�Lc
(θ ). If the conditions

| − ψ1 + �ψ1| < |ψ1|, |�ψ1| < 0.15, |�θ | < 0.05,

(76)

are all satisfied for either of the adjacent orbits, the state is
updated according to θupdate = θ + �θ and ψ

update
1 = −ψ1 +

�ψ1 and the nominal orbit is also updated accordingly.
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FIG. 4. Panel (a) shows a trace of B(t ) from the resulting limit cycle of (75) when taking L(t ) = �L(t ) = Lc = 0. The blue line in panel
(b) shows the same periodic orbit along with a family of periodic orbits (in black) that result when taking L(ts ) = �L(t ) = 0 and varying Lc.
These orbits are used to implement the patchwork reduction strategy. Surface plots in panel (c) show reduced functions from (9) to different
orders of accuracy in ψ1.

Switching between orbits in this manner allows the value of
the isostable coordinate to remain small even when using large
values for L0.

Figure 6 shows the results of simulations of (75) for var-
ious magnitudes of L0 in the 24-hour light-dark cycle. Three
different reductions are used. The first uses the eighth order

FIG. 5. Panel (a) [resp., (b)] gives a comparison of ZB(θ, ψ1)
[resp., I1,B(θ, ψ1)] computed using methods from Sec. III B versus
ZB(θ, ψ1)inferred [resp., I inferred

1,B (θ, ψ1)] which are calculated from
(52). Panel (c) illustrates that for a given value of θ the error
resulting in the inferred functions grows with the condition number
of A� |ψ1=0.

accurate version of (9). The second implements the patchwork
reduction strategy described above taking Z, I1, and G to third
order accuracy in ψ1 for each orbit. The third uses a standard
implementation of phase reduction (i.e., with Z , I1, and G
computed to zeroth, zeroth, and first order in ψ1, respectively).
The terms of the non-patchwork phase-amplitude reductions
are obtained using the limit cycle that results from taking Lc =
0. Panels (a), (b), and (c) of Fig. 6 illustrate results for L0 =
0.005, 0.010, and 0.015, respectively. In each simulation from
Fig. 6, the external light L(ts) is applied long enough so
that initial transients die out and the circadian cycle is fully
entrained. At t = 0, the external time ts is suddenly shifted by
−10 hours, simulating rapid westward travel through 10 time
zones and the subsequent reentrainment is illustrated in panels
(a1), (b1), and (c1). Panels (a2), (b2), and (c2) illustrate the
isostable coordinate ψ1 over the course of simulations and
panels (a3), (b3), and (c3) show the error between solutions
of the full equation and reduced equations where x(t ) =
[B(t ) C(t ) D(t )]T for the full model (75), and x∗(t ) is the
corresponding output from the phase-amplitude reduction. In
all simulations shown below, the reentrainment time is defined
as the amount of time required for the phase to return to within
one hour of its steady state behavior. In these simulations
L0 = 0.005 is a relatively small value for the magnitude of
external light and the unreduced model takes 208 hours before
reentrainment occurs after the −10 hour time shift. Despite
this, the standard reduction does not accurately characterize
the output during reentrainment, with errors ||x∗ − x||2 that
are always on the order of exp(−1). For L0 = 0.005, the
eighth order accurate reduction outperforms the patchwork
reduction. As the value of L0 increases, the patchwork re-
duction begins to significantly outperform all of the other
reductions. By allowing for the nominal orbit to switch as
that simulation progresses, the isostable coordinates remain
low resulting in an accurate representation of the model
output. For |ψ1| ≈ 1 when using the eighth order accurate,
non-patchwork reduction, the accuracy begins to degrade. It
is worth noting that the eighth order accurate non-patchwork
reduction only works for L0 = 0.005 when using negative
time shifts. Under the application of these perturbations the
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FIG. 6. Reentrainment of the circadian model (75) after a −10 hour time shift occurring at t = 0 hours. The output of three different
reduced order models for different values of external light intensity (L0) is shown in panels (a1), (b1), and (c1). Colored lines correspond
to the indicated reduced model and the black line gives the output from full model simulations. Alternating black and gray lines correspond
to the light-dark cycle, with gray corresponding to times for which L(ts ) < L0/2 (i.e., night time). Note that the order 8 reduction (red line)
completely breaks down for L0 = 0.010 and L0 = 0.015 at times when ψ1 > 1. Panels (a2), (b2), and (c2) show corresponding isostable
coordinates during each simulation and panels (a3), (b3), and (c3) show the error between the reduced model outputs and the full model
simulations. The patchwork reduction is the only viable reduced model for L0 > 0.010.

isostable coordinate tends to decrease during reentrainment.
For positive time shifts corresponding to eastward travel (not
shown), the isostable coordinate tends to increase ruining
the applicability of the resulting reduction. Conversely, the
patchwork phase-amplitude reduction accurately character-
izes the output for any time shift for the values of L0 con-
sidered here. For this reason, the patchwork phase-amplitude
reduction will be used exclusively for the remainder of this
example.

Finally, to demonstrate the utility of the patchwork re-
duction, a simple control strategy is implemented to speed
reentrainment after large shifts in ts. First, for a given value
of L0, the patchwork phase-amplitude reduction is simulated
long enough for all transients to die out. This fully entrained
solution is taken to define θ e(ts) and Le

c (ts) which gives the
phase and nominal limit cycle for the entrained solution. The
following control strategy is implemented:

L(ts) + �L(t ) =

⎧⎪⎨
⎪⎩

0, if θ − θtarg > 0 and Z (θ, ψ1) > 0,

L0, if θ − θtarg > 0 and Z (θ, ψ1) � 0,

L0, if θ − θtarg < 0 and Z (θ, ψ1) > 0,

0, if θ − θtarg < 0 and Z (θ, ψ1) � 0,

(77)
where θtarg = θ e(ts) − θs(Le

c (ts), Lc(t )). Intuitively, the control
strategy implements a light exposure or avoidance strategy
that always seeks to move the phase coordinate toward the
nominal entrained solution. For instance, if θ − θtarg > 0, the
current phase is ahead of its target and the oscillation needs
to be delayed. If Z (θ, ψ1) is also positive, then a positive
value of L(ts) + �L(t ) will advance the phase. As prescribed
by (77), under these conditions L(ts) + �L(t ) will be set to
zero (the lowest possible value) so that the phase advances as

slowly as possible. As explained in Appendix B, the additional
term θs(Le

c (ts), Lc(t )) from θtarg provides a small correction to
account for the possibility that the nominal orbit Le

c (ts) on the
entrained target solution may be temporally misaligned with
the nominal limit cycle Lc(t ) during the application of the
control strategy.

Figure 7 shows results from using the control strategy (77)
to recover from a sudden time shift. In these simulations,
L0 = 0.010. The model is initially fully entrained to L(ts) and
at t = 0, ts is shifted by −11 hours. The control is calculated
for the patchwork phase-amplitude model and shown in panel
(a) (blue line). Once |θ − θtarg| < 2π/24 ≈ 0.26, which cor-
responds to a one hour difference from the solution that is
fully entrained to the shifted L(ts), the control is turned off so
that only L(ts) remains. The light applied in the uncontrolled
case is shown in red. The resulting control is applied to the full
equations (75) with the output shown in blue in panel (b) of
Fig. 7. The uncontrolled recovery is shown by the red curve
and the fully entrained reference is given by a dashed line.
Reentrainment occurs at 81.8 hours after the initial shift in
time when the control strategy (77) is implemented. Without
control reentrainment takes 161.2 hours. Panel (c) shows the
nominal orbit used during the patchwork phase-amplitude re-
duction strategy as a function of time. Note that while Lc < 0
during the application of the control strategy, negative light is
never actually applied by (77). Rather, a negative value of Lc

indicates that the trajectory has made a close approach to a
periodic orbit that would result from taking Lc < 0. Finally,
panel (d) shows the phase with and without control compared
to the entrained target trajectory. Recovery from other time
shifts is improved most by the control strategy when the time
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FIG. 7. Reentrainment after a sudden shift in the day-light cycle.
The full model (75) is simulated until it is fully entrained to L(ts ).
At t = 0, ts is shifted by −11 hours. The patchwork phase-amplitude
reduction is used to determine the control from (77) to hasten reen-
trainment. The resulting control is shown in panel (a) (blue line) and
compared to the nominal light-dark cycle in the uncontrolled case
(red line). This control is applied to the full model with results shown
in panel (b). Panel (c) shows the nominal orbit during simulations of
the patchwork phase-amplitude reduction, and panel (d) shows the
phase during the controlled and uncontrolled recovery.

shifts are large. For shifts that advance time between 10 and 17
hours, the control strategy (77) reduces the recovery time by
at least 15 percent with the largest improvements in recovery
time resulting from time shifts near 13 hours (−11 hours).

Because the control strategy implemented in (77) is merely
a local strategy that attempts to reduce θ − θtarg at every
instant, one would expect that a more sophisticated control
strategy that attempts to minimize some global measure of
recovery time would perform better. There is an additional
challenge associated with the implementation of optimal con-
trol strategies using the patchwork phase-amplitude reduction
because the dynamics are inherently discontinuous. Problems
along these lines will be examined in future work.

VI. DISCUSSION AND CONCLUSIONS

In this work, a general strategy is developed for calculating
a phase-amplitude reduction of the form (9) for limit cycle
oscillators that is valid to arbitrary orders accuracy in the
amplitude coordinates. As part of this reduction strategy, the
standard definition of the asymptotic phase determined by
the isochrons (2) is used to characterize the timing of os-
cillations. Isostable coordinates [26] are used to characterize
the transient decay in directions transverse to the periodic
orbit. The key feature of both phase and isostable coordinates
that allows for the high-accuracy reduction illustrated here

is that they have simple dynamics in the absence of external
perturbations in the entire basin of attraction of the limit cycle:
the phase coordinate increases at a constant rate (i.e., θ̇ = ω)
and the isostable coordinates decay exponentially (i.e., ψ̇ j =
κ jψ j). This essential characteristic allows for the derivation
of equations of the form (18), (34), and (44) that are used
to compute the terms of the asymptotic expansions in the
phase-amplitude reduction (9).

Examples given in this work compute the phase-amplitude
reduced equations for the nonradial isochron clock (74) and a
simplified model of circadian oscillations (75) to fourteenth
order and eighth order, respectively, in the non-negligible
isostable coordinates. To determine the appropriate equations
of the form (18), (34), (44) that are used to compute the terms
of the phase-amplitude reduction, the powers of the isostable
coordinates in the expansions (30) and (40) must be matched.
Additionally, powers of the isostable coordinates on the right
hand sides of (15) and (12) must be matched. The resulting
equations are easily identified for the lowest order terms of
the expansions [for example, (16), (17)], but for higher order
terms it is imperative to perform this matching process using a
symbolic computational package because the number of terms
that must be considered grows rapidly with the order of the
expansion considered. The examples considered in this work
are relatively low-dimensional but the proposed reduction
strategy can be readily implemented in dynamical systems
with much higher dimension.

While the phase-amplitude reduction (9) can in principle
be performed to arbitrary orders of accuracy, in the examples
considered here diminishing returns are observed as the order
of accuracy of the reduction increases. For example, in the
results shown in Fig. 3(b), the decrease in error observed
between the zeroth and second order reduction is much more
substantial than the decrease in error observed between the
eighth and fourteenth order reductions. Additional analysis
that characterizes the error resulting from the truncating spe-
cific higher order terms would be useful. Likewise, quantita-
tive estimates relating the order of accuracy of the reduction
and the size of the regions for which the reductions accurately
reflect the unreduced system behavior would be useful. These
lines of inquiry will be left for future work.

In applications where the applied perturbations are particu-
larly large, the patchwork phase-amplitude reduction strategy
may be more appropriate. As illustrated in Sec. IV the patch-
work phase-amplitude reduction framework incorporates mul-
tiple high-accuracy phase-amplitude reductions and actively
switches between nominal orbits so that the isostable coordi-
nate and hence the distance from the nominal periodic orbit
remains small. Other reduction strategies have used a similar
notion of an extended phase space [13] which considers a
hypersurface formed by a family of limit cycles for various
choices of a given parameter. The use of an extended phase
space as in [13] allows for a reduced model that is valid when
the perturbation can be decomposed to a large amplitude but
slowly varying component and a remaining weak fluctuation.
The patchwork phase-amplitude reduction in the current work
differs substantially from [13] as it explicitly incorporates
amplitude coordinates for each limit cycle considered and
can be implemented using arbitrary perturbations. In the
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examples presented in this work, a third order accurate patch-
work phase-amplitude reduction significantly outperforms an
eighth-order accurate non-patchwork phase-amplitude reduc-
tion for particularly large magnitude inputs allowing for the
implementation of a simple but effective control strategy
(77) that can be implemented to reduce the time required
for reentrainment after sudden shifts in the environmental
time.

While the reduction (10) can be computed to arbitrary
order accuracy in ψ j for j = 1, . . . , N , during implementation
of the reduction strategy the state dynamics associated with
rapidly decaying isostable coordinates are often truncated
[5,28,29] without significantly influencing the overall applica-
bility of the reduction. This is done for the example from (75),
resulting in a reduction (9) that implicitly assumes the dynam-
ics are on a hypersurface on which the rapidly decaying and
hence neglected isostable coordinates are zero. Understand-
ing the magnitude of error that is incorporated when these
isostable coordinates are truncated is a particularly important
consideration that is left unaddressed in this paper. For the
model (75) (and other examples in previous work) isostable
coordinates are eliminated from the associated reduction if
the Floquet multipliers are deemed to be “close enough” to
zero. For high-dimensional systems, it is often the case that
a large majority of computed Floquet multipliers are close
enough to zero that they are within the limits of precision for
floating point arithmetic; as such the corresponding isostable
coordinates can clearly be ignored. For isostable coordinates
with corresponding Floquet multipliers that are small but
not minuscule (e.g., |λ j | ∼ 0.1) truncation will lead to some
errors in the reduction but it is not currently possible to
quantify the magnitude of the resulting error. Analysis of this
nature will be critical for the continued development of phase-
amplitude reduction techniques using isostable coordinates
and will be the subject of future work.

The proposed high-accuracy reduction frameworks are par-
ticularly useful in the study of systems with periodic orbits
that have small magnitude Floquet exponents; these systems
are typically difficult to handle with standard phase reduc-
tion methods because even relatively small inputs can drive
the state far from the nominal periodic orbit. Such systems
often emerge when considering population oscillations, i.e.,
limit cycles that represent the group dynamics of a coupled
population of oscillators [60–62]. Additionally systems with
slowly varying parameters that describe adaptation [63] or
memory [64] typically result in slowly decaying amplitude
components and would be good candidates for this method of
analysis. The implementation and analysis of high-accuracy
phase reduction methods have led to the discovery and charac-
terization of surprising behaviors observed in perturbed limit
cycle oscillators that go beyond the weakly perturbed limit
[13,30,31,42,65]. The reduction frameworks presented here
represent a powerful strategy that can be used to understand
nontrivial synchronization and entrainment behaviors that
emerge in response to strong perturbations.
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APPENDIX A: ORTHOGONALITY RELATIONSHIPS
BETWEEN TERMS OF THE ASYMPTOTIC EXPANSIONS

The requirements (47) and (48) can be used to derive
orthogonality relationships between the first order terms of
the asymptotic expansion (22). To illustrate this, consider
(48) taken to first order accuracy in the isostable coordinates
ψ1, . . . , ψN−1,

κnψn =
[

In(θ ) +
N−1∑
k=1

[
ψkIk

n (θ )
]]T

×
[

F (xγ (θ )) +
N−1∑
k=1

(
dgk

dt
ψk + gk (θ )κkψk

)]
. (A1)

Considering all order zero terms in the isostable coordinates,
one finds that 0 = In(θ )T F (xγ (θ )) = 1

ω
In(θ )T ∂xγ

∂θ
. Therefore

In(θ )T ∂xγ

∂θ
= 0, for all n. (A2)

Considering the order one terms in the isostable coordinates,
by examining all terms that are proportional to ψn one finds

Ik
n (θ )

T
F (xγ (θ )) + In(θ )T dgk

dt
+ κkIn(θ )T gk (θ )

=
{
κn, if k = n,

0, otherwise. (A3)

Toward simplifying (A3), one can use (16) to write

In(θ )T dgk

dt
= In(θ )T (J − κkId)gk (θ )

= gk (θ )T (JT − κkId)In(θ )

= −gk (θ )T dIn

dt
+ (κn − κk )gk (θ )T In(θ ), (A4)

where the last line is obtained using (41). Continuing to
simplify (A4), one can write dIn

dt = ∂In
∂x

dx
dt = Hψn,θF (xγ (θ ))

where Hψn,θ is the Hessian of ψn evaluated at xγ (θ ) so that

In(θ )T dgk

dt
= −gk (θ )T Hψn,θF (xγ (θ ))+ (κn− κk )gk (θ )T In(θ ),

=−Ik
n (θ )T F (xγ (θ )) + (κn − κk )gk (θ )T In(θ ),

(A5)

where the last line is obtained using the relation that
Hψn,θ gk (θ ) = Ik

n (θ ) (cf. [29]) and taking the transpose noting
that the Hessian is symmetric. Finally, substituting (A5) into
(A3) yields

κngk (θ )T In(θ ) =
{
κn, if k = n,

0, otherwise, (A6)

and thus

gk (θ )T In(θ ) =
{

1, if k = n,

0, otherwise. (A7)
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FIG. 8. Panel (a) shows two orbits for two choices of parameters from (57) which are temporally aligned in the sense that their peaks occur
at the same value of θ . Panel (b) illustrates that while these two orbits are close to each other for a given value of ψ1, they are not temporally
aligned. One can calculate θs(p1, p2) as in panel (c) which shows the shift required to align the orbits from panel (b). This shift is required
in order to convert coordinates between orbits during the implementation of the patchwork phase-amplitude reduction because �θ from (73)
must remain small. Panel (d) emphasizes that after the orbits are aligned at the indicated isostable coordinates, the limit cycles themselves are
no longer temporally aligned. This misalignment must be taken into account in the control strategy described by (77).

A similar argument starting with (47) instead of (48) can be
followed to find

Z (θ )T ∂xγ

∂θ
= 1,

gk (θ )T Z (θ ) = 0 for all k. (A8)

APPENDIX B: APPROPRIATELY ALIGNING PERIODIC
ORBITS IN THE IMPLEMENTATION OF THE

PATCHWORK REDUCTION

While (65) predicts that the periodic orbits match at pre-
dictable isostable coordinates provided the orbits are close
enough to each other, they must be temporally aligned in
order to implement the patchwork reduction. This issue is
illustrated in Fig. 8 for two separate periodic orbits xγ

p1 (θ )
and xγ

p2 (θ ) obtained for two different choices of the parameter
p from (57). As illustrated in panel (a), these two orbits are
aligned so that their respective maximums occur at θ = π .
Numerically, it is possible to identify an isostable value at
which orbits are nearby as shown in panel (b); however, these
orbits will not necessarily be aligned in phase as required by
(73) to convert coordinates between orbits. Alignment can be
accomplished by appropriately shifting the orbit xγ

p2 by some
value θs(p1, p2) as illustrated in panel (c). After this shift,
the periodic orbits themselves are not temporally aligned, as
illustrated in panel (d). Nonetheless, they are aligned near

the expected switching point allowing one to implement the
patchwork phase-amplitude reduction. This process can be
repeated for multiple orbits and the function θs(pi, p j ) can
be defined that characterizes how much xγ

p j has been shifted
relative to xγ

pi when all orbits are properly aligned.

APPENDIX C: STEPS REQUIRED IN THE COMPUTATION
OF THE HIGH-ORDER PHASE AND ISOSTABLE

REDUCTION

This Appendix provides an overview of the practical steps
required to compute the high-order phase-amplitude reduction
(9) as detailed in Sec. III. This is meant to aid an interested
reader in implementing the reduction framework in a general
model.

Step 1. For a given model, identify a target T -periodic
orbit xγ (t ). Choose some location on this periodic orbit to
correspond to θ = 0. Compute the fundamental matrix � and
identify its eigenvalues λi and associated left eigenvectors
w j . Each nonunity eigenvalue corresponds to an isostable
coordinate with Floquet exponent κi = log(λi)/T . Isostable
coordinates associated with eigenvalues of less than approx-
imately 0.1 can be neglected from the reduction. Let M ∈ N
denote the total number of isostable coordinates considered in
the reduction.

Step 2. Use a symbolic computational package to take
necessary derivatives and collect terms appropriately to write

⎡
⎢⎢⎢⎣
∑∞

i=2
1
i!

[ i⊗ [∑M
k=1[ψkgk (θ )] +∑M

j=1

∑ j
k=1[ψ jψkgjk (θ )] + · · · ]T ]vec

(
f (i)
1 (θ )

)

...∑∞
i=2

1
i!

[ i⊗ [∑M
k=1[ψkgk (θ )] +∑M

j=1

∑ j
k=1[ψ jψkgjk (θ )] + · · · ]T ]vec

(
f (i)
N (θ )

)

⎤
⎥⎥⎥⎦

=
M∑

j=1

j∑
k=1

[ψ jψkq jk (θ )] +
M∑

i=1

i∑
j=1

j∑
k=1

[ψiψ jψkqi jk (θ )] + · · · , (C1)

where the terms qi jk...(θ ) above match the periodic terms from Eq. (18). The terms on the left side of (C1) come from Eq. (15).
Save all resulting qi jk...(θ ) functions so that they can be evaluated later.

Step 3. Compute each gi jk...(θ ) by finding the necessary periodic orbits of equations of the form (18). These must be computed
in ascending order, for instance, by computing all first order terms, followed by all second order terms, followed by third order
terms, and so on. For low-dimensional systems, a Newton iteration can be used to identify the required periodic orbits. Normalize
appropriately according to the comments from Sec. III A 1.
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Step 4. Use a symbolic computational package to take necessary derivatives and collect terms appropriately to write

−[a1 · · · aN ]

⎛
⎝Z (θ ) +

M∑
k=1

[ψkZk (θ )] +
M∑

j=1

j∑
k=1

[ψ jψkZ jk (θ )] + · · ·
⎞
⎠

=
M∑

k=1

[
ψkqk

θ (θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkq jk

θ (θ )
]+

M∑
i=1

i∑
j=1

j∑
k=1

[
ψiψ jψkqi jk

θ (θ )
]+ · · · , (C2)

and

−[a1 · · · aN ]

⎛
⎝In(θ ) +

M∑
k=1

[
ψkIk

n (θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkI jk

n (θ )
]+ · · ·

⎞
⎠

=
M∑

k=1

[
ψkqk

ψn
(θ )
]+

M∑
j=1

j∑
k=1

[
ψ jψkq jk

ψn
(θ )
]+

M∑
i=1

i∑
j=1

j∑
k=1

[
ψiψ jψkqi jk

ψn
(θ )
]+ · · · , (C3)

where the terms qi jk...

θ (θ ) and qi jk...

ψn
(θ ) match those from (34)

and (44), respectively. The terms on the left sides of (C2)
and (C3) come from (30) and (40), respectively. Save all
resulting qi jk...

θ (θ ) and qi jk...

ψn
(θ ) functions so that they can be

evaluated later. Note that these functions will contain some
gi jk (θ ) terms.

Step 5. Compute each Zi jk...(θ ) and I i jk...
n (θ ) by finding the

necessary periodic orbits of equations of the form (34) and

(44), respectively. These must also be computed in ascending
order like the gi jk...(θ ) functions. For numerical reasons, it is
typically necessary to solve Eqs. (34) and (44) in backward
time. A Newton iteration can be used to identify the required
periodic orbits. Normalize solutions (if necessary) so that
(47) and (48) hold. Because the Zi jk...(θ ) and I i jk...

n (θ ) terms
contain the gi jk...(θ ) terms, step 5 must be completed after
step 3.
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[24] A. Mauroy, I. Mezić, and J. Moehlis, Isostables, isochrons,
and Koopman spectrum for the action-angle representation of
stable fixed point dynamics, Physica D (Amsterdam) 261, 19
(2013).

[25] D. Wilson and J. Moehlis, Isostable reduction of periodic orbits,
Phys. Rev. E 94, 052213 (2016).

[26] D. Wilson and B. Ermentrout, Greater accuracy and broadened
applicability of phase reduction using isostable coordinates,
J. Math. Biol. 76, 37 (2018).

[27] S. Shirasaka, W. Kurebayashi, and H. Nakao, Phase-amplitude
reduction of transient dynamics far from attractors for limit-
cycling systems, Chaos 27, 023119 (2017).

[28] D. Wilson, Isostable reduction of oscillators with piecewise
smooth dynamics and complex Floquet multipliers, Phys. Rev.
E 99, 022210 (2019).

[29] D. Wilson and B. Ermentrout, Augmented phase reduction of
(not so) weakly perturbed coupled oscillators, SIAM Rev. 61,
277 (2019).

[30] Iván León and Diego Pazó, Phase reduction beyond the first
order: The case of the mean-field complex Ginzburg-Landau
equation, Phys. Rev. E 100, 012211 (2019).

[31] M. Rosenblum and A. Pikovsky, Numerical phase reduc-
tion beyond the first order approximation, Chaos 29, 011105
(2019).

[32] J. Guckenheimer, Isochrons and phaseless sets, J. Math. Biol.
1, 259 (1975).

[33] K. C. A. Wedgwood, K. K. Lin, R. Thul, and S. Coombes,
Phase-amplitude descriptions of neural oscillator models,
J. Math. Neurosci. 3, 2 (2013).

[34] B. Letson and J. E. Rubin, LOR for analysis of periodic dynam-
ics: A one-stop shop approach, SIAM J. Appl. Dyn. Syst. 19,
58 (2020).

[35] A. Guillamon and G. Huguet, A computational and geometric
approach to phase resetting curves and surfaces, SIAM J. Appl.
Dyn. Syst. 8, 1005 (2009).

[36] D. Jordan and P. Smith, Nonlinear Ordinary Differential Equa-
tions: An Introduction for Scientists and Engineers (Oxford
University Press, Oxford, 2007).

[37] M. D. Kvalheim and S. Revzen, Existence and uniqueness
of global Koopman eigenfunctions for stable fixed points and
periodic orbits, arXiv:1911.11996.
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