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An Operational Definition of Phase Characterizes the Transient Response of
Perturbed Limit Cycle Oscillators\ast 
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Abstract. Phase reduction is an essential tool used in the study of perturbed limit cycle oscillators. Usually,
phase is defined with respect to some asymptotic limit, often making phase reduction's ability to
predict transient behavior during the approach to a limit cycle inadequate. In this work, we present
an operational notion of phase, defined with respect to a distinct feature of the oscillator, for example,
the timing of a periodically firing neuron's action potential. We derive relationships between standard
and operational phase reduction in order to make comparisons between these two approaches. In
theoretical and numerical examples, we show how operational phase reduction accurately predicts
both the asymptotic and transient behavior due to perturbations without relying on the notion of
higher order phase response curves which are valid only for specific perturbations. Furthermore, we
develop a strategy for direct measurement of the necessary terms of the operational phase reduction
when the full dynamical equations are unknown.
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1. Introduction. Many biological systems exhibit periodicity at various levels of organi-
zational complexity, from the circadian oscillations that regulate the 24-hour cycles of entire
organisms [47] to the synchronous periodic firing of individual neurons that give rise to mea-
surable brain rhythms [1], [3]. However the underlying mechanisms behind these oscillations
are often obscured by a lack of information about the system behavior, where it is simply
not possible to measure all of the important variables that give rise to the observed oscilla-
tory behavior. Despite this limitation, useful analysis can still be performed by using phase
reduction [47], [17], [22], [10], by which the dynamics of a limit cycle oscillator of the form

(1)
dx

dt
= F (x) +G(t), x \in \BbbR N ,

can be represented by the single variable system:

(2)
d\theta 

dt
= \omega + \scrZ (\theta )TG(t), \theta \in \BbbS 1.

Here, F gives the nominal unperturbed dynamics, \theta \in [0, 2\pi ) represents the asymptotic phase
of an oscillator, giving a general sense of its state near the periodic orbit, \omega = 2\pi /T is the
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OPERATIONAL PHASE REDUCTION 2517

natural frequency where T is the period of oscillation, and \scrZ (\theta ) \in \BbbR N is the infinitesimal
phase response curve (iPRC) to external perturbations G(t) \in \BbbR N . A key aspect of (2) is
the resulting reduction in dimensionality and complexity, allowing further analysis to predict
more complicated behavior such as entrainment, phase locking, and synchronization [10], [47],
[43], [45], [2]. Phase reduction is particularly useful in experimental systems because all of
its required terms can be inferred using the direct method [18], [28], whereby a series of
perturbations at known phases are applied, the resulting phase changes are estimated, and
the iPRC is inferred from the resulting data.

As mentioned above, the phase coordinate from (2) is determined by the oscillator's asymp-
totic approach to the limit cycle. For all locations on the limit cycle, \.\theta = \omega and the location
corresponding to \theta = 0 can be chosen arbitrarily. The notion of asymptotic phase can be
extended to the basin of attraction of the limit cycle using isochrons [47], [14]. For example,
for some X(0) on the limit cycle of (1), the associated isochron is defined to be the set of all
initial conditions Y (0) for which

(3) lim
t\rightarrow \infty 

| | X(t) - Y (t)| | = 0,

where | | \cdot | | can be any norm. However, in many cases we are not specifically interested in the
asymptotic behavior and are more concerned with aspects of the transient behavior. In other
cases, the oscillator might be continuously perturbed, never reaching its limit cycle and making
the notion of asymptotic phase difficult to interpret. As a concrete example, consider the
Wang--Buzsaki model of neural behavior [40], with the addition of an adaptation current [7],

C \.V =  - g\mathrm{N}\mathrm{a}m
3
\infty h(V  - E\mathrm{N}\mathrm{a}) - g\mathrm{K}n

4(V  - EK) - g\mathrm{L}(V  - E\mathrm{L}) - Iw + I\mathrm{b},

\.h = \gamma [\alpha h(V )(1 - h) - \beta h(V )h] ,

\.n = \gamma [\alpha n(V )(1 - n) - \beta n(V )n] ,

\.w = a(1.5/(1 + exp((b - V )/k)) - w).(4)

Here, V is the transmembrane voltage, h and n are gating variables, w is used to determine
the adaptation current Iw, and I\mathrm{b} = 5\mu A/\mu F is a baseline current chosen so that the neuron
is in a periodically firing regime. A similar model was studied by [5] using the notion of a
functional phase response curve, which gives a sense of an oscillator's asymptotic behavior in
response to a specific periodic perturbation. Full model equations and parameters are given
in Appendix B. For the choice of parameters used here, the neuron settles to a stable periodic
orbit with natural period T = 11.74 ms.

The top panel of Figure 1 shows the isochrons calculated on a two-dimensional cross
section for which h = 0.234 and n = 0.305. Here, we let \theta = 0 on the limit cycle correspond to
the location where V crosses zero with positive slope (i.e., (V, h, n, w) = (0, 0.234, 0.305, 0.052)
for this choice of parameters). In experimental applications the asymptotic phase is usually
difficult to measure and the timing of neural action potentials is generally of more practical
interest (since the action potentials are related to the release of synaptic neurotransmitters).
In this setting, the timing of an action potential might be defined as the time the variable V
crosses a level set (such as V = 0), which we illustrate with a vertical dashed line in the top
panel of Figure 1. Notice that the \theta = 0 level set does not directly correspond to a neuralD
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2518 DAN WILSON AND BARD ERMENTROUT
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Figure 1. The top panel shows the isochrons in a two-dimensional cross section of (4) for which h = 0.234
and n = 0.305. Isochrons are calculated according to (3). For reference, the periodic orbit is projected onto the
V w-plane (giving the illusion that isochrons intersect the periodic orbit multiple times) and is shown as a solid
black line. The vertical dashed line corresponds to the V = 0 level set, i.e., a reasonable threshold that might
be used to correspond to the timing of an action potential, and the curved dashed white line shows the \theta = 0
isochron. The white dot (resp., asterisk) shows an initial condition of (4) corresponding to the red (resp., black)
voltage trace shown in the bottom panel obtained from direct numerical simulation. Even though both of these
trajectories start on the \theta = 0 isochron, their transient behavior is different with spike times that do not align.

spike and that this isochron is nearly perpendicular to the V = 0 threshold. The difference is
particularly apparent when viewing the transmembrane voltage of two neurons with identical
asymptotic phases in the bottom panel of Figure 1. While their behavior does converge in the
limit as time approaches infinity, their transient behavior is different, with spikes occurring
at different times. The qualitative mismatch between the V = 0 level set and the \theta = 0
isochron is a common feature of living neurons; when a neuron spikes the transmembrane
voltage is rapidly changing and the phase generally has little sensitivity to perturbations to
the transmembrane voltage (cf. [30]).

This discrepancy between the asymptotic definitions of phase and the measurable features
of an experimental oscillator's state leads to many practical issues during implementation of
phase reduction in living systems. For example, [28], [27] discuss the notion of a causality
limit in measuring iPRCs in living neurons, whereby perturbations applied near the end of
a cycle tend to elicit an immediate spike, limiting the measurement of an iPRC when large
perturbations are applied. Additionally, various authors have investigated the effect of residual
or higher order iPRCs [5], [30], [11], [31], [33], whereby perturbations can affect the timing
of more than one subsequent action potential which alters phase locking predictions in some
cases. These physiological behaviors represent a fundamental limitation of the phase reduction
(2). While quantitative analysis is possible by measuring residual and higher order iPRCs [5],D
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OPERATIONAL PHASE REDUCTION 2519

[31], iPRCs must first be measured to analyze the effect of a specific type of perturbation, and
no general framework exists for relating the iPRCs between different types of perturbations.

While phase reduction (2) is particularly useful for investigating the steady state behav-
ior of a perturbed oscillator, it is often inadequate to predict its transient behavior. As such,
when oscillators are subject to recurrent, aperiodic perturbations, or when perturbations decay
slowly back to the limit cycle, (2) may not adequately capture the behavior of the full system
(1). In this work, we propose an operational phase defined to have a direct correspondence to
the moment a given variable crosses a specific threshold Poincar\'e section [42], such as the V = 0
threshold shown in Figure 1. As we will show, the resulting operational phase reduction (OPR)
correctly predicts both the asymptotic and transient behavior of a perturbed oscillator. Fur-
thermore, the relatively simple definition of phase in this context makes it applicable when data
with high temporal resolution is limited, e.g., in neurons where transmembrane voltage is typi-
cally the most readily available measurement. The organization of this paper is as follows: sec-
tion 2 investigates the theoretical details required to define the OPR, and section 3 investigates
a direct method for calculation for all required terms in the OPR. Section 4 gives examples il-
lustrating the contrast between asymptotic and OPRs, and section 5 gives concluding remarks.

2. Operational phase coordinates and reduction. The goal of this section is to develop
a reduced coordinate system \theta \ast (x) \in [0, 2\pi ) such that \theta \ast (x) = 0 corresponds to the moment
at which an arbitrarily chosen variable crosses an arbitrarily chosen threshold near the limit
cycle. We will refer to these as operational phase coordinates because \theta \ast = 0 corresponds to
some feature of the system that is directly measurable and may be of interest on every cycle.
For example, we might define \theta \ast = 0 as the time that a periodically spiking neuron fires an
action potential and elevates its voltage beyond its resting level. Intuitively, this threshold
defines a Poincar\'e section [42], and the time required for the operational phase to start at
and return to \theta \ast = 0 corresponds to the return time to this Poincar\'e section. By contrast,
the asymptotic phase, \theta , of a neuron can only be directly measured once the state returns
sufficiently close to the limit cycle.

We will define the operational phase using the isostable coordinates described in [44].
These isostable coordinates, \psi i for i = 1, . . . , N - 1, give a sense of the distance in a particular
direction transverse to the periodic orbit. In the absence of external perturbations, isostable
coordinates decay exponentially, making them useful in many practical applications. Other
strategies for obtaining phase-amplitude coordinate systems have also been proposed (cf. [4],
[41], [36]) and are useful in other contexts.

We will also analyze operational phase in a reduced coordinate framework and derive
formal relationships between the previously established augmented phase reduction from [44],
[46]. The augmented isostable reduction given below tracks how both the asymptotic phase
and isostable coordinates change over time in response to small perturbations provided the
state remains close to the limit cycle. Such a coordinate transformation allows (1) to be
represented by

\.\theta = \omega + \scrZ (\theta )TG(t),

\.\psi i = \kappa i\psi i + \scrI i(\theta )TG(t),
i = 1, . . . , N  - 1.(5)
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2520 DAN WILSON AND BARD ERMENTROUT

Here, \kappa i is the Floquet exponent corresponding to the isostable coordinate \psi i, \scrI i is the in-
finitesimal isostable response curve (iIRC) associated with the ith isostable coordinate, and
all other terms are defined identically to those in (2). It is generally assumed that G(t) is
of order \epsilon where 0 < \epsilon \ll 1 and that \epsilon \ll | \kappa i| for all i so that \psi i is also an order \epsilon term.
More technical details about (5) based on analysis from [44] and [46] are given in Appendix
A. Provided some isostable coordinates of (5) decay rapidly, i.e., with | \kappa i| being large relative
to the magnitude of G(t), these coordinates can be approximated to be zero and neglected.

2.1. Defining operational phase. From this point on, we will refer to a reduction of the
form (5) as an asymptotic phase reduction (APR). Our operational phase coordinate, \theta \ast (x),
is a function of the state x and will be related to the phase and isostable coordinates from (5).
We will use two definitions which reflect the original motivation for developing the notion of
operational phase coordinates.

Definition 1 (\theta \ast = 0 level set). Let \gamma be a stable limit cycle. Let x\gamma (0) correspond to x \in \gamma 
for which \theta (x) = 0. Choose k \in \BbbN \leq n, and let x\gamma k(0) and xk be the kth element of x\gamma (0) and
x, respectively. The \theta \ast (x) = 0 level set is defined to be all states x in some neighborhood of
x\gamma (0) for which xk = x\gamma k(0) and sign(| dxkdt | x) = sign(dxkdt | x\gamma (0)).

Definition 2 (time derivative of \theta \ast ). In the basin of attraction of the limit cycle, phase
coordinates evolve according to

\.\theta \ast = \omega + d(\psi 1, . . . , \psi N - 1) +
\partial \theta \ast 

\partial x

T
\bigm| \bigm| \bigm| \bigm| \bigm| 
x(t)

G(t),(6)

where \theta \ast (x) \in [0, 2\pi ), d is a function of the isostable coordinates that is generally not known
a priori and must be chosen such that Definitions 1 and 2 do not contradict each other (more
about the function d will be discussed below), and the gradient with respect to x is used to
capture the effects of infinitesimal perturbations on the operational phase. In (6), explicit
dependence of the variables \theta \ast , \theta , \psi 1, . . . , and \psi N on x has been dropped for notational
convenience. Using Definitions 1 and 2, one can show by contradiction that d(0, . . . , 0) = 0.
Thus, on the limit cycle, the unperturbed dynamics of both \theta and \theta \ast increase at a constant
rate \omega so that \theta \ast (x) = \theta (x) for every x \in \gamma .

Definition 1 reflects the original motivation of developing operational phase coordinates,
that is, to use a coordinate system for which the \theta \ast = 0 level set corresponds to the moment
an arbitrary variable crosses some prescribed threshold. Note that this \theta \ast = 0 level set
could be used to define a Poincar\'e section. Definition 2 states that the time derivative of
the operational phase is a function of the isostable coordinates and will be used to extend
the notion of operational phase to the basin of attraction of the limit cycle. The dynamics
of \theta \ast could be chosen differently, but as we will see, our choice will allow for the derivation
of relationships between the asymptotic and operational phase coordinates which makes the
comparison between these coordinates systems tractable. Also, unlike when using asymptotic
phase coordinates, two separate initial conditions with the same operational phase coordinate
will not necessarily share the same convergence to the periodic orbit.

By setting G = 0, for any initial condition in the basin of attraction of \gamma the operational
and asymptotic phases converge as time approaches infinity. Recalling that \.\theta = \omega when G = 0D
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OPERATIONAL PHASE REDUCTION 2521

and that \.\theta \ast is given by (6), integrating d
dt(\theta 

\ast (t) - \theta (t)) in the limit as time approaches infinity
yields

(7) \theta \ast (0) = \theta (0) - 
\int \infty 

0
d(\psi 1, . . . , \psi N - 1)dt.

The relationship prescribed by the function d in (7) must be consistent with the definition of
the \theta \ast = 0 level set. In general, this fully nonlinear function d is difficult to find explicitly.
However, as we will show in the examples to follow, it can be useful to approximate it by
Taylor expanding, assuming that all isostable coordinates are \scrO (\epsilon ), to yield

(8) d(\psi 1, \psi 2, . . . , \psi N - 1) =

N - 1\sum 
j=1

(\alpha j\psi j) +

N - 1\sum 
j=1

j\sum 
k=1

(\beta k,j\psi k\psi j) +\scrO (\epsilon 3).

Here, the terms \alpha j and \beta k,j represent the constant terms of the Taylor expansion. As noted
in Appendix A, in the absence of perturbations, isostable coordinates decay exponentially so
that \psi i(t) = \psi i(0) exp(\kappa it). This feature, along with (7), implies the following relation for a
given initial condition which is accurate to \scrO (\epsilon 2):

\theta (0) = \theta \ast (0) +

\int \infty 

0

N - 1\sum 
j=1

\Biggl( 
\alpha j\psi j(t) +

j\sum 
k=1

(\beta k,j\psi k(t)\psi j(t))

\Biggr) 
dt

= \theta \ast (0) - 
N - 1\sum 
j=1

\Biggl( 
\alpha j\psi j(0)

\kappa j
+

j\sum 
k=1

\biggl( 
\beta k,j\psi k(0)\psi j(0)

\kappa k + \kappa j

\biggr) \Biggr) 
.(9)

Equation (9) is valid for any initial conditions close enough to the periodic orbit which gives
us a direct relationship between the operational and asymptotic phase at any time,

(10) \theta = \theta \ast  - 
N - 1\sum 
j=1

\Biggl( 
\alpha j\psi j
\kappa j

+

j\sum 
k=1

\biggl( 
\beta k,j\psi k\psi j
\kappa k + \kappa j

\biggr) \Biggr) 
.

In the sections to follow, we will use the above relation to investigate an OPR in relation to
the APR (5).

2.2. First order operational phase reduction. Equation (5) is a first order approximation
of the asymptotic phase dynamics which assumes that G(t) = \scrO (\epsilon ) and that the trajectory
remains close to the limit cycle (i.e., that \psi i = \scrO (\epsilon ) for all i). By making similar assumptions,
starting with (6) and retaining terms up to and including \scrO (\epsilon ), we arrive at a first order
accurate OPR:

\.\theta \ast = \omega +

N - 1\sum 
j=1

(\alpha j\psi j) + \scrZ \ast (\theta \ast )T G(t),

\.\psi i = \kappa i\psi i + \scrI \ast 
i (\theta 

\ast )TG(t),

i = 1, . . . , N  - 1.(11)
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2522 DAN WILSON AND BARD ERMENTROUT

Notice the similarity between the above definition and the augmented phase reduction (5).
Here, isostable coordinates \psi i are identical to those from the augmented phase reduction,
functions \scrZ \ast (\theta \ast ) \equiv \partial \theta \ast 

\partial x | x\gamma (\theta \ast ), and \scrI \ast 
i (\theta 

\ast ) \equiv \partial \psi i

\partial x | x\gamma (\theta \ast ) with x\gamma (\theta \ast ) defined to be the intersec-
tion of the periodic orbit and the \theta \ast level set. Here, the functions \scrZ \ast and \scrI \ast 

i are analogous to
\scrZ and \scrI i, and each \alpha i provides an \scrO (\epsilon ) correction to the natural frequency for locations away
from the limit cycle. To derive a relationship between the APR and OPR, we can substitute
(10) into (5), keeping only \scrO (\epsilon ) terms to yield

\.\theta \ast  - 
N\sum 
j=1

\Biggl( 
\alpha j \.\psi j
\kappa j

\Biggr) 
= \omega + \scrZ 

\biggl( 
\theta \ast  - 

N\sum 
j=1

\biggl( 
\alpha j\psi j
\kappa j

\biggr) \biggr) T
G(t),

\.\psi i = \kappa i\psi i + \scrI i
\biggl( 
\theta \ast  - 

N\sum 
j=1

\biggl( 
\alpha j\psi j
\kappa j

\biggr) \biggr) T
G(t).(12)

Taylor expanding (12) and appropriately collecting all \scrO (\epsilon ) terms allows us to write (12) in
the form (11) with the following relationship between the terms of the APR and OPR:

\scrI \ast 
i (\theta 

\ast ) = \scrI i(\theta \ast ),

\scrZ \ast (\theta \ast ) = \scrZ (\theta \ast ) +

N\sum 
j=1

\biggl( 
\alpha j\scrI j(\theta \ast )

\kappa j

\biggr) 
.(13)

Thus, if the APR is known, all functions in the OPR can be calculated with knowledge of
the constants \alpha j . Toward the determination of an arbitrarily chosen \alpha j , consider the periodic
orbit and a solution of the full system (1) for which \theta (t0) = 0, \psi j(t0) = \scrO (\epsilon ), and \psi i(t0) = 0
for all i \not = j. Assume also that G(t) = 0 when t > t0. From (51) in Appendix A the initial
state is given to leading order \epsilon by

(14) x(t0) = x\gamma (0) + \psi jpj(0),

where x\gamma (\theta ) represents the location on the periodic orbit as a function of \theta and pj(\theta ) relates the
isostable coordinate to a perturbation from the limit cycle. Figure 2 illustrates the relationship
between the operational and asymptotic phase coordinates for a planar system. As a function
of t0, a given trajectory will cross the \theta \ast = 0 level set at time t\ast 0 given to leading order as

(15) t\ast 0 = t0  - 
\psi j(t0)p

xk
j (0)

\.xk(0)
+\scrO (\epsilon 2),

where pxkj (\theta ), and \.xk(\theta ) are the components of pj(\theta ) and \.x(\theta ), respectively, in the xk direction.
Both of these functions are evaluated on the periodic orbit. Intuitively, (15) states that the
difference in the times t0 and t\ast 0 is equal to the distance between the \theta \ast = 0 and \theta = 0
level set divided by the ``speed"" on \gamma , both taken in the xk direction. As a brief aside, for a
dynamical system which does not receive any inputs, (15) could be used in conjunction with
(5) to obviate the need for operational phase coordinates, as t\ast 0 can be determined to leading
order \epsilon by simply knowing t0 and the corresponding isostable coordinates. However, when
perturbations are allowed (15) alone would not be enough to determine t\ast 0.D
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t0
t∗0

t1 t∗1

θ = 0 θ∗ = 0

γ

x1

x2

xγ
1(0)

Isochron Level Set

p1(0)

Figure 2. A planar system schematic of the \theta = 0 isochron (diagonal dashed line), defined by the asymptotic
approach to the periodic orbit and \theta \ast = 0 level set (vertical dashed line) defined by the crossing of the threshold
x\gamma 1 (0). The gray line represents the periodic orbit and the black line represents a trajectory for which \theta (t0) = 0,
\psi 1(t0) \not = 0, and G(t) = 0 for t > t0. At locations close enough to the limit cycle, \psi 1p1(\theta ) determines the
deviation from the limit cycle; p1(0) is tangent to the \theta = 0 level set. By relating the times between crossings
of the \theta = 0 and \theta \ast = 0 level sets, one can numerically determine the coefficient \alpha j according to (18).

When G(t) = 0 subsequent crossings of the \theta = 0 level set will occur at tn = t0 + nT .
Therefore, at these crossings, the associated isostable coordinate is \psi j(t0 + nT ) = \lambda nj \psi j(t0),
where \lambda j is the jth Floquet multiplier. Therefore, using the same reasoning used to obtain t\ast 0,

t\ast n = t0 + nT  - 
\psi j(t0)\lambda 

n
j p

xk
j (0)

\.xk(0)
+\scrO (\epsilon 2).(16)

Finally, integrating (11) forward in time from t\ast 0 to t\ast 1 and dropping the \scrO (\epsilon 2) terms we have\int t\ast 1

t\ast 0

(\omega + \alpha j\psi j) dt = 2\pi ,

\alpha j\psi j(t0)

\kappa j
(exp(\kappa j(t

\ast 
1  - t0)) - exp(\kappa j(t

\ast 
0  - t0))) = 2\pi  - \omega (t\ast 1  - t\ast 0),

\alpha j\psi j(t0)

\kappa j
(exp(\kappa j(t

\ast 
1  - t0)) - exp(\kappa j(t

\ast 
0  - t0))) =

\psi j(t0)\omega (\lambda j  - 1)pxkj (0)

\.xk(0)
.(17)

In the above equation, the second line is obtained by noting that \psi j(t) = \psi j(t0) exp(\kappa j(t - t0))
in the integral, and the third line is obtained by using (15) and (16) to substitute t\ast 1  - t\ast 0 and
simplify recalling 2\pi = \omega T . Continuing to simplify (17),

\alpha j\psi j(t0)

\kappa j
(\lambda j exp(\lambda j\kappa j(t

\ast 
0  - t0)) - exp(\kappa j(t

\ast 
0  - t0))) =

\psi j(t0)\omega (\lambda j  - 1)pxkj (0)

\.xk(0)
,

\alpha j =
\omega \kappa jp

xk
j (0)

\.xk(0)
.(18)

The first line of (18) is obtained from (17) by using the relation t\ast 1  - t0 = T +\lambda j(t
\ast 
0  - t0), and

the last line is obtained through algebraic manipulation after noting that \lambda j exp(\lambda j\kappa j(t
\ast 
0  - D
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2524 DAN WILSON AND BARD ERMENTROUT

t0)) - exp(\kappa j(t
\ast 
0  - t0)) = \lambda j  - 1 +\scrO (t\ast 0  - t0) and recalling that (t\ast 0  - t0) and \psi j(t0) are both

\scrO (\epsilon ) terms. Equation (18) can be used to find \alpha j corresponding to the isostable coordinate
\psi j .

2.3. Second order operational phase reduction. In [44] a strategy is developed for in-
creasing the accuracy of standard phase reduction (2) when the state is far from the periodic
orbit. The resulting equations are similar to the APR from (5), with additional correction
terms

\.\theta = \omega +

\left[  \scrZ (\theta )T +

N - 1\sum 
j=1

\bigl( 
\psi j\scrB j(\theta )T

\bigr) \right]  G(t),
\.\psi i = \kappa i\psi i +

\left[  \scrI i(\theta )T +

N - 1\sum 
j=1

\bigl( 
\psi j\scrD i

j(\theta )
T
\bigr) \right]  G(t),

i = 1, . . . , N  - 1.(19)

Here, the functions Bj(\theta ) and D
i
j(\theta ) provide a correction to the gradient of the isostable and

phase coordinates for each \psi i, and the remaining terms are identical to those presented in the
first order accurate reduction (5). A brief description of the terms in the reduction (19) is
given in Appendix A, with a more in-depth explanation given in [44]. Similar to the results
in the previous section, we can define a second order accurate OPR by retaining all terms up
to and including order \scrO (\epsilon 2) in the Taylor expansion of (6)

\.\theta \ast = \omega +
N - 1\sum 
j=1

(\alpha j\psi j) +
N - 1\sum 
j=1

j\sum 
k=1

(\beta k,j\psi k\psi j) +

\left[  \scrZ \ast (\theta \ast )T +
N - 1\sum 
j=1

\bigl( 
\psi j\scrB \ast 

j (\theta 
\ast )T
\bigr) \right]  G(t),

\.\psi i = \kappa i\psi i +

\left[  \scrI \ast 
i (\theta 

\ast )T +
N - 1\sum 
j=1

\bigl( 
\psi j\scrD i\ast 

j (\theta 
\ast )T
\bigr) \right]  G(t),

i = 1, . . . , N  - 1.(20)

Here, the terms \scrB \ast 
j and \scrD i\ast 

j are analogous to the terms \scrB j and \scrD i
j from (19), the terms \beta k,j

give a second order correction to the natural frequency for locations away from the limit cycle,
and the remaining terms are identical to those presented in the first order accurate reduction
(11). Note that in (20), the number of terms \beta k,j in the second order accurate reduction
(20) increase at a rate proportional to N2, and it is generally difficult to obtain all of these
constants. In this section, we will focus on the case where all but one isostable coordinate
rapidly decays, i.e., | \kappa i| is large for all i \geq 2 so that the isostable coordinates \psi 2, . . . , \psi N - 1

are well approximated by zero (cf. [46], [44]). With this assumption, it is clear from (20) that
we can also ignore \beta k,j for k \geq 2 or j \geq 2. Using a strategy similar to that of the previous
section, we substitute terms from (10) into (19), Taylor expand assuming \psi 1 is an \scrO (\epsilon ) term,
and retain all \scrO (\epsilon 2) terms to obtain the functions \scrB \ast 

1(\theta 
\ast ) and \scrD 1\ast 

1 in relation to the functionsD
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OPERATIONAL PHASE REDUCTION 2525

from (19),

\scrD 1\ast 
1 (\theta \ast ) = \scrD 1

1(\theta 
\ast ) - \alpha 1

\kappa 1
\scrI \prime 
1(\theta 

\ast ),

\scrB \ast 
1(\theta 

\ast ) = \scrB 1(\theta 
\ast ) +

\beta 1,1
\kappa 1

\scrI 1(\theta \ast ) - 
\alpha 1

\kappa 1

\biggl( 
\scrZ \prime (\theta \ast ) - \scrD 1

1(\theta 
\ast ) +

\alpha 1

\kappa 1
\scrI \prime (\theta \ast )

\biggr) 
,(21)

where \prime \equiv d/d\theta \ast . Equation (18) is still valid for calculating \alpha 1, so that only the additional
calculation of \beta 1,1 is required to evaluate the terms in (21).

For planar systems (i.e., with N = 2), a relatively simple equation can be derived
to obtain \beta 1,1 in relation to the terms in the APR. To begin, consider any initial condi-
tion x \in \gamma corresponding to an asymptotic phase \theta (recall that \theta = \theta \ast on \gamma ) and an
\scrO (\epsilon ) perturbation x\epsilon = x + \Delta x. The change in asymptotic phase, operational phase, and
isostable coordinates caused by this perturbation can be approximated to leading order \epsilon 2

by \theta (x\epsilon ) = \theta + \scrZ (\theta )T\Delta x + \Delta xT\scrH \theta (\theta )\Delta x, \theta 
\ast (x\epsilon ) = \theta \ast + \scrZ \ast (\theta )T\Delta x + \Delta xT\scrH \theta \ast (\theta )\Delta x, and

\psi 1(x\epsilon ) = \scrI (\theta )T\Delta x + \Delta xT\scrH \psi 1(\theta )\Delta x. Here \scrH A(\theta ) is the Hessian matrix of second partial
derivatives of the coordinate A \equiv \theta , \theta \ast and \psi 1 evaluated at x\gamma (\theta ). Substituting the above
relations into (10) when N = 2 and collecting \scrO (\epsilon 2) terms yields the following:

(22)
1

2
\Delta xT\scrH \theta (\theta )\Delta x =

1

2
\Delta xT\scrH \theta \ast (\theta )\Delta x - 1

2
\Delta xT

\alpha 1

\kappa 1
\scrH \psi 1(\theta )\Delta x - \beta 1,1

2\kappa 1
\Delta xT\scrI 1(\theta )\scrI T1 (\theta )\Delta x.

The equation above is valid for arbitrary perturbations \Delta x so that

(23) \scrH \theta (\theta ) = \scrH \theta \ast (\theta ) - 
\alpha 1

\kappa 1
\scrH \psi 1(\theta ) - 

\beta 1,1
\kappa 1

\scrI 1(\theta )\scrI 1(\theta )T .

Recall that the operational phase is defined so that \theta \ast = 0 when xk crosses the threshold x
\gamma 
k(0).

For a planar system we will without loss of generality take k = 1. This definition implies that
\partial 2\theta \ast 

\partial x22
= 0 whenever \theta \ast = 0 because perturbations that do not change the x1 coordinate at

\theta \ast = 0 remain on the \theta \ast = 0 level set. Therefore, eT2 \scrH \theta \ast (0)e2 = 0 where e2 = [0 1]T and by
multiplying each term of (23) on the left and right by eT2 and e2, respectively, and simplifying
we have

\beta 1,1 =
eT2 \kappa 1\scrH \theta (0)e2 + eT2 \alpha 1\scrH \psi 1(0)e2

 - eT2 \scrI 1(0)\scrI T1 (0)e2

=  - 
\biggl[ 
\kappa 1
\partial 2\theta 

\partial x22
+ \alpha 1

\partial 2\psi 1

\partial x22

\biggr] \bigg/ \biggl( 
\partial \psi 1

\partial x2

\biggr) 2

,(24)

where all partial derivatives are evaluated at \theta = 0 on the limit cycle.
To summarize, all terms of the second order accurate OPR (20) can be determined if the

second order APR (19) has already been calculated for planar systems. Specifically, \beta 1,1 and
\alpha 1 can be calculated using (24) and (18), respectively. The remaining functions are supplied
by the relations (21) and (13). In higher dimensions the calculation of each \beta k,j becomes
more complicated and is not discussed here. In special situations where N > 2 and all but
one isostable coordinate decays rapidly, the reduction (21) only requires knowledge of \beta 1,1 and
it may be more efficient to estimate this term using a fit to numerical data.D
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2526 DAN WILSON AND BARD ERMENTROUT

2.4. \bfitn th order iPRCs in relation to operational phase reduction. The standard phase
reduction (2) assumes that perturbations to the full system (1) decay rapidly to the periodic
orbit [47], justifying its study on a one-dimensional manifold. In practice, however, this as-
sumption is not always true. For instance, in neurons it is well documented that a perturbation
during a given cycle can influence not only the timing of the next spike but also the timing of
subsequent spikes [32], [29]. This phenomenon is often referred to as higher order resetting,
from which nth order iPRCs can be measured [5], [24], [31]. For small perturbations from
the limit cycle, the sum of all nth order iPRCs yields the asymptotic iPRC, \scrZ (\theta ). The effect
of larger periodic perturbations can also be investigated, yielding a functional phase response
curve [5], [37] which can be used to study the asymptotic behavior of systems resulting from
specific periodic perturbations.

While higher order iPRCs have been used to investigate neural behavior, their relationship
to the underlying system dynamics is not well understood. Here, using the first order accurate
version of the OPR (11), we show that, provided perturbations from the limit cycle are small
enough, all higher order phase response curves are exponentially decaying functions of the
isostable response curves. To begin, consider an initial condition on the limit cycle which
yields a spike at t = t0. If we apply a small perturbation \Delta x at tp, where t0 \leq tp \leq (T + t0),
the phase at which the perturbation is applied is \theta \ast p = \omega (tp  - t0). Letting G \equiv 0 at all other
times, the the timing of the nth spike occurring at tn solves the equation

2\pi n =

\int tp

t0

\omega dt+ \scrZ \ast (\theta \ast p)
T\Delta x+

\int tn

tp

\biggl( 
\omega +

N - 1\sum 
j=1

\alpha j\psi j(t)

\biggr) 
dt

= \theta \ast p + \omega (tn  - tp) + \scrZ \ast (\theta \ast p)
T\Delta x+

N - 1\sum 
j=1

\alpha j\scrI \ast 
j (\theta 

\ast 
p)
T\Delta x

\kappa j

\biggl( 
exp(\kappa j(tn  - tp)) - 1

\biggr) 
.(25)

Using (25), one can show with algebraic manipulation that the residual effects on the interspike
interval (ISI) which yield higher order iPRCs are given by

(26) tn  - tn - 1 = T  - 
N - 1\sum 
j=1

\alpha j\scrI \ast 
j (\theta 

\ast 
p)
T\Delta x

\omega \kappa j

\biggl( 
exp(\kappa j(tn  - tp)) - exp(\kappa j(tn - 1  - tp))

\biggr) 
.

Equation (26) states that the nth ISI is equal to the natural period plus the sum of N  - 1
exponentially decaying functions which are proportional to the iIRC.

2.5. Asymptotic behavior for weak periodic perturbations. Here we consider the infinite
time behavior of the OPR (11) and the APR (5) for a general limit cycle oscillator in the weakly
perturbed limit. Consider the infinite time behavior of (1) when G(t) is an \scrO (\epsilon ), Tp-periodic
perturbation. Furthermore, suppose \omega p = 2\pi /Tp is within \scrO (\epsilon ) of the natural frequency \omega of
the limit cycle oscillator. Starting with operational phase coordinates, we change variables to
a rotating reference frame \phi \ast = \theta \ast  - \omega pt so that the first order OPR (11) can be written as

\.\phi \ast = (\omega  - \omega p) +

N - 1\sum 
j=1

(\alpha j\psi j) + \scrZ \ast (\phi \ast + \omega pt)
TG(t) +\scrO (\epsilon 2),

\.\psi i = \kappa i\psi i + \scrI \ast 
i (\phi 

\ast + \omega pt)
TG(t) +\scrO (\epsilon 2), i = 1, . . . , N  - 1.(27)

D
ow

nl
oa

de
d 

12
/0

9/
18

 to
 7

6.
23

4.
10

1.
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPERATIONAL PHASE REDUCTION 2527

Notice that the above equation is Tp-periodic. We assume that | \kappa i| are large relative to \epsilon and
that the dynamics remain close enough to the periodic orbit so that \psi i are \scrO (\epsilon ) terms. This
allows us to use formal averaging techniques [35], [15] to approximate (27) as

\.\Phi \ast = P (\Phi \ast ) +
N - 1\sum 
j=1

(\alpha j\Psi j),

\.\Psi i = \kappa i\Psi i +Qi(\Phi 
\ast ), i = 1, . . . , N  - 1.(28)

Here P (\Phi \ast ) = 1
Tp

\int Tp
0 [\omega  - \omega p +\scrZ \ast (\Phi \ast + \omega pt)

TG(t)]dt, Qi(\Phi 
\ast ) = 1

Tp

\int Tp
0 [\scrI \ast 

i (\Phi 
\ast + \omega pt)

TG(t)]dt,

and \Phi \ast and \Psi i are close approximations to \phi \ast and \psi i.
We also consider the APR of (1). Here we will neglect the isostable dynamics and focus

on the dynamics of the phase coordinate, i.e., \.\theta = \omega + \scrZ (\theta )TG(t). The change of variables
\phi = \theta  - \omega pt yields

(29) \.\phi = (\omega  - \omega p) + \scrZ (\phi + \omega pt)
TG(t) +\scrO (\epsilon 2).

Similar to (27), the above equation can be averaged in the weak forcing limit to yield the
approximation

(30) \.\Phi = R(\Phi ),

where R(\Phi ) = 1
Tp

\int Tp
0 [\omega  - \omega p + \scrZ (\Phi + \omega pt)

TG(t)]dt, and \Phi is a close approximation to \phi .
In this example, averaging is particularly useful to analyze the infinite time behavior of each
reduced system, because fixed points of (28) (resp., (30)) correspond to periodic orbits of (27)
(resp., (29)) with the same stability [35].

In the analysis to follow, we will show that if (28) has a fixed point at \Phi \ast 
\mathrm{f}\mathrm{p}, then (30) also

has a fixed point at \Phi \mathrm{f}\mathrm{p} = \Phi \ast 
\mathrm{f}\mathrm{p} with the same stability. We will also show that the converse is

true, i.e., that if (30) has a fixed point, (28) has the same fixed point with identical stability.
Here, the following relation between P,Q, and R will be particularly useful:

R(\Phi ) =
1

Tp

\int Tp

0
[\omega  - \omega p + \scrZ (\Phi + \omega pt)

TG(t)]dt

=
1

Tp

\int Tp

0

\biggl[ 
\omega  - \omega p +

\biggl( 
\scrZ \ast (\Phi + \omega pt) - 

N - 1\sum 
j=1

\biggl( 
\alpha j\scrI (\Phi + \omega pt)

\kappa j

\biggr) \biggr) T
G(t)

\biggr] 
dt

= P (\Phi ) - 
N - 1\sum 
j=1

\biggl( 
\alpha jQj(\Phi )

\kappa j

\biggr) 
,(31)

where the first line is true by definition, and the second line is obtained using (13). Keeping
(31) in mind, suppose (28) has a fixed point at\bigl[ 

\Phi \ast \Psi 1 . . . \Psi N - 1

\bigr] T
=
\bigl[ 
\Phi \ast 
\mathrm{f}\mathrm{p} \Psi 1,\mathrm{f}\mathrm{p} . . . \Psi N - 1,\mathrm{f}\mathrm{p}

\bigr] T
.

This can be true only when \Psi i,\mathrm{f}\mathrm{p} =  - Qi(\Phi \ast 
\mathrm{f}\mathrm{p})/\kappa i for all i, and it follows from the top equation

in (28) that P (\Phi \ast 
\mathrm{f}\mathrm{p})  - 

\sum N - 1
j=1 (

\alpha j

\kappa i
Qj(\Phi 

\ast 
\mathrm{f}\mathrm{p})) = 0. Noting the relation in (31), this implies that

R(\Phi \ast ) = 0, and in the weakly perturbed limit, fixed points of (28) and (30) are identical.D
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2528 DAN WILSON AND BARD ERMENTROUT

The stability of a fixed point of (30) can be determined simply by considering the sign of
dR/d\Phi evaluated at the fixed point. Determining the stability of a fixed point of (28) is more
difficult and is dependent on the eigenvalues of the Jacobian, J , of (28) evaluated at the fixed
point where

J = A+ E,

A \equiv 

\left[        
0 \alpha 1 \alpha 2 . . . \alpha N - 1

0 \kappa 1 0 . . . 0

0 0 \kappa 2
...

...
...

. . . 0
0 0 . . . 0 \kappa N - 1

\right]        , E \equiv 

\left[     
P \prime (\Phi \ast 

\mathrm{f}\mathrm{p}) 0 . . . 0

Q\prime 
1(\Phi 

\ast 
\mathrm{f}\mathrm{p}) 0 . . . 0

...
...

...
Q\prime 
N - 1(\Phi 

\ast 
\mathrm{f}\mathrm{p}) 0 . . . 0

\right]     .(32)

Here, the Jacobian of (28) is split into the matrix A, which contains \scrO (1) terms, and the
matrix E, which contains \scrO (\epsilon ) terms, and \prime \equiv \partial /\partial \Phi \ast . Note that all terms in (32) are real-
valued. Toward determining the eigenvalues of J , we will consider the eigenvalues \lambda i of A in
response the effect of the \scrO (\epsilon ) perturbation, E. In the unperturbed case, the eigenvalues can
be read off the diagonal, with \lambda 1 = 0 and \lambda i = \kappa i - 1 for i = 2, . . . , N . Suppose for the moment
each \kappa i is unique so that all eigenvalues are simple (i.e., with algebraic multiplicity equal to
1). Then, as shown in section 4.3 of [6], to leading order \epsilon , the eigenvalues of A+E are given
by

(33) \~\lambda i = \lambda i + u\ast iEvi/(u
\ast 
i vi),

where u\ast i and vi are the left and right eigenvectors of A corresponding to \lambda i. Additionally,
since A and its eigenvalues are real-valued, its left and right eigenvalues must also be real-
valued so that to leading order \epsilon , \~\lambda i remain real-valued. Note that all \kappa i are negative because
the limit cycle is stable. Therefore, for \epsilon small enough, \~\lambda i remains negative for i = 2, . . . , N .
If some of the values \kappa i are not unique, we can still guarantee that \~\lambda i < 0 for i \geq 2 and
when \epsilon is small enough, but the expansion may include fractional powers of \epsilon (cf. Chapter 2
of [20]). The sign of the remaining eigenvalue can be determined by noting that the left and
right eigenvalues of \lambda 1 = 0 are [1  - \alpha 1

\kappa 1
. . .

 - \alpha N - 1

\kappa N - 1
] and [1 0 . . . 0]T , respectively. According to

(33),

\~\lambda 1 = P \prime (\Phi \ast 
\mathrm{f}\mathrm{p}) - 

N - 1\sum 
k=1

\Biggl( 
\alpha kQ

\prime 
k(\Phi 

\ast 
\mathrm{f}\mathrm{p})

\kappa k

\Biggr) 
+\scrO (\epsilon 2)

= R\prime (\Phi \ast 
\mathrm{f}\mathrm{p}) +\scrO (\epsilon 2).(34)

Equation (34) implies that the stability of corresponding fixed points of (28) and (30) is the
same.

Toward showing that if (30) has a fixed point, (28) has the same fixed point with identical
stability, suppose R(\Phi \mathrm{f}\mathrm{p}) = 0 for some value of \Phi \mathrm{f}\mathrm{p}. Using the operational phase reduced
framework from (28), for i = 1, . . . , N  - 1, we can find \Psi i,\mathrm{f}\mathrm{p} such that \kappa i\Psi i,\mathrm{f}\mathrm{p} +Qi(\Phi \mathrm{f}\mathrm{p}) = 0.
Manipulation yields \Psi i,\mathrm{f}\mathrm{p} =  - Qi(\Phi \mathrm{f}\mathrm{p})/\kappa i. Substituting this relation into the right-hand sideD
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of the topmost equation in (28) yields

\.\Phi = P (\Phi \mathrm{f}\mathrm{p}) - 
N - 1\sum 
j=1

\biggl( 
\alpha j
\kappa j
Qj(\Phi \mathrm{f}\mathrm{p})

\biggr) 
= R(\Phi \mathrm{f}\mathrm{p}) = 0,(35)

where the second line is obtained using the relation (31). Therefore, (28) has a fixed point

at
\bigl[ 
\Phi \ast \Psi 1 . . . \Psi N - 1

\bigr] T
=
\bigl[ 
\Phi \mathrm{f}\mathrm{p} \Psi 1,\mathrm{f}\mathrm{p} . . . \Psi N - 1,\mathrm{f}\mathrm{p}

\bigr] T
. For \epsilon small enough, we already

showed that the Jacobian of (28) evaluated at a fixed point has N - 1 negative eigenvalues and
that the sign of the remaining eigenvalue depends on the sign of R\prime (\Phi \mathrm{f}\mathrm{p}), which is negative.
Thus, the stability of these fixed points is identical.

The above analysis shows that in the weakly perturbed limit, entrainment to a periodic
perturbation is identical regardless of whether operational or asymptotic phase coordinates
are used. In other specific cases, these results can be extended to show, for example, that
asymptotic phase locking between two oscillators is identical regardless of whether the APR
or the OPR is used. As we will show in section 4.2, however, OPR is essential when trying to
understand the transient behavior of a perturbed oscillator.

3. Strategy for experimental estimation of operational phase reduction. In an exper-
imental dynamical system, such as a periodically firing neuron, it is unlikely that one would
have direct access to the full dynamical equations, i.e., the right-hand side of (1). In these
applications, phase reduction (2) is an attractive strategy because even without the full dy-
namical equations, the iPRC can be inferred using the direct method [18], [28] whereby a
perturbation is given at a known phase, the measured spike time is compared to the expected
spike time had the perturbation not been applied, and this procedure is repeated at multiple
phases to estimate the iPRC.

Here we present a strategy for estimating the first order accurate terms of the OPR (11)
using a strategy similar to the direct method. In this case, we assume that all but one isostable
coordinate decays rapidly. Furthermore, we will take G(t) = [u(t) 0, . . . , 0]T with u(t) being
a perturbation to one of the state variables (for example, applying an external current to a
neuron to modify its transmembrane voltage). With these assumptions, the resulting OPR
will be of the form

\.\theta \ast = \omega + \alpha 1\psi 1 + z\ast (\theta \ast )u(t),

\.\psi 1 = \kappa 1\psi 1 + i\ast 1(\theta 
\ast )u(t),(36)

where z\ast (\theta \ast ) and i\ast 1(\theta 
\ast ) are the first elements of \scrZ \ast (\theta \ast ) and \scrI \ast 

1 (\theta 
\ast ), respectively. Here, we will

detail a strategy for obtaining all required elements \omega , \alpha 1, z
\ast (\theta \ast ), \kappa 1, and i

\ast 
1(\theta 

\ast ) using only
measurements of the transmembrane voltage and the ability to give perturbations at known
times. Much like measurement of iPRCs with the direct method [18], our proposed strategy
works best with many trials in order to average out the effects of random factors such as noise.

3.1. Estimation of \bfitomega and \bfitkappa \bfone . We define the nth ISI as ISIn = t\ast n+1  - t\ast n, where t
\ast 
n is the

time of the nth spike. For a single oscillator, the estimation of \omega is relatively straightforward---D
ow

nl
oa

de
d 

12
/0

9/
18

 to
 7

6.
23

4.
10

1.
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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by taking multiple measurements of the ISI, the unperturbed natural period can be estimated
by the mean of M ISIs:

(37) T =
1

M

M\sum 
i=1

ISIi.

The natural frequency can be estimated as \omega = 2\pi /T . In order to obtain an estimate for \kappa 1,
consider a trajectory which has been perturbed from its limit cycle so that the asymptotic
phase, \theta , reaches zero at some time t0. Referring back to Figure 2, in this situation, the nth
time to cross the \theta \ast = 0 isochron can be found by substituting (18) into (16) yielding the
relation

(38) t\ast n = t0 + nT  - \psi 1(t0)\lambda 
n
1\alpha 1

\omega \kappa 1
.

Using (38), one can show

t\ast n+1  - t\ast n = T +
\psi 1(t0)\alpha 1\lambda 

n
1 (1 - \lambda 1)

\omega \kappa 1
,

log(ISIn  - T ) = log

\biggl( 
\psi 1(t0)\alpha 1(1 - \lambda 1)

\omega \kappa 1

\biggr) 
+ n log(\lambda 1).(39)

From (39), log(\lambda 1) can be obtained starting with initial condition perturbed from the limit
cycle and calculating the slope of a simple linear regression of log(ISIn  - T ) as a function of
n during its return to the limit cycle. For a noisy system, this can be repeated for multiple
measurements to obtain an averaged estimate for log(\lambda 1) (see panels A and B of Figure 5,

for example). Equation (50) in Appendix A gives the relation \kappa 1 =
\mathrm{l}\mathrm{o}\mathrm{g}(\lambda 1)
T , so that \kappa 1 can be

inferred from \lambda 1.

3.2. Estimation of \bfitalpha \bfone , \bfiti \ast \bfone (\bfittheta 
\ast ), and \bfitz \ast (\bfittheta \ast ). Here we detail a strategy for the mea-

surement of \alpha 1, i
\ast 
1(\theta 

\ast ), and z\ast (\theta \ast ). To begin, suppose that at some time tp, the oscilla-
tor is on its limit cycle (i.e., \psi 1(tp) = 0). We will approximate the operational phase as
\theta \ast (tp) = \theta \ast p \approx 2\pi (tp  - t\ast 0)/T , where t

\ast 
0 is the time of the last spike. Suppose that at tp, we

apply a small perturbation u = up lasting for \Delta t seconds. Provided this perturbation is small
enough so that the perturbed behavior is a good approximation of the asymptotic behavior,
the perturbed phase will be \theta \ast p + z\ast (\theta \ast p)up\Delta t and the perturbed isostable coordinate will be
i\ast 1(\theta 

\ast 
p)up\Delta t. By definition, the nth spike after the perturbation will occur when \theta \ast reaches

2\pi n, so that the time at the nth spike, t\ast n, solves the equation

2\pi n = \theta \ast p + \omega (t\ast n  - tp) + z\ast (\theta \ast p)up\Delta t+

\int t\ast n

tp

\alpha 1\psi 1(t)dt

= \theta \ast p + \omega (t\ast n  - tp) + z\ast (\theta \ast p)up\Delta t+
\alpha 1up\Delta t

\kappa 1
i\ast 1(\theta 

\ast 
p)
\bigl[ 
exp(\kappa 1(t

\ast 
n  - tp)) - 1

\bigr] 
.(40)

Here, the integral is evaluated by noting that \psi 1(t) = \psi 1(tp) exp(\kappa 1(t - tp)). Evaluating (40)
at the first and the nth spike, subtracting the difference, and rearranging yields an equationD
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Figure 3. Schematic of a single set of measurements required for estimation of the iPRC and iIRC for a
periodically firing neuron in the absence of noise. In panel A, the oscillator is allowed to relax to its periodic
orbit before a small perturbation is applied at time tp. The measured time t\ast n gives the time of the nth spike
after tp. By only needing to measure the spike times, (40) and (41) can be used to estimate \alpha 1i

\ast 
1(\theta 

\ast ) and z\ast (\theta \ast ).
Panel B shows the ISIs relative to the natural period.

independent of z\ast (\theta \ast ),

(41) \alpha 1i
\ast 
1(\theta 

\ast 
p) =

\kappa 1[2\pi (n - 1) - \omega (t\ast n  - t\ast 1)]

up\Delta t
\bigl[ 
exp(\kappa 1(t\ast n  - tp)) - exp(\kappa 1(t\ast 1  - tp))

\bigr] .
After obtaining estimates for \kappa 1 and \omega as shown in the previous section, all values on the
right-hand side of (41) are known, providing a single estimate for \alpha 1i

\ast 
1(\theta p). Over multiple

trials for different values of \theta p, allowing the oscillator to return to its limit cycle between
perturbations, the resulting data can be fit with an appropriate basis (e.g., sinusoids) in order
to estimate the relation \alpha 1i

\ast 
1(\theta 

\ast ). Even though the specific values of i\ast 1(\theta 
\ast ) and \alpha 1 cannot be

resolved, this does not matter since a change of basis \=\psi 1 = c\psi 1 with \=i\ast 1 = ci\ast 1 and \=\alpha 1 = \alpha 1/c
does not change the dynamics (36); the product \alpha 1i

\ast 
1(\theta 

\ast ) is all that is important. Practically,
to determine the individual terms for use in (36), one can choose \alpha 1 as convenient and scale
i\ast 1(\theta 

\ast ) to maintain the necessary relationship.
Once the estimates \alpha 1 and i\ast 1(\theta 

\ast ) have been obtained, the only unknown remaining in
(40) is z\ast (\theta \ast ). Using the same spiking data that was used for the estimates from (41), we can
now use (40) to get pointwise estimates of z\ast (\theta \ast ). The resulting data can be fit to a curve to
calculate the operational iPRC. Figure 3 gives an illustration of the measurements required
for a single estimate of both i\ast 1(\theta 

\ast ) and z\ast (\theta \ast ).

4. Examples.

4.1. Operational phase reduction of the isochron clock. Consider the following two-
dimensional system, which is a modified version of the radial isochron clock [47]:

\.r = \sigma (1 - r2)r,

\.\vargamma = 1 + \rho (r2  - 1).(42)

Here, r and \vargamma represent a radial and angular coordinate, respectively, and \sigma and \rho are con-
stants. When \sigma is positive, the system admits a stable periodic orbit with r = 1, shown inD
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Figure 4. Panels A, B, and C show the asymptotic phase, isostable, and operational phase coordinates,
respectively, as a function of spatial location. In panels D and E, dashed gray and solid black lines show the
resulting curves when using operational and asymptotic phase coordinates, respectively. In panel E, i1(\theta ) and
i\ast 1(\theta 

\ast ) are identical, which is consistent with the relationship derived in (13). Panel F (resp., G) shows the
behavior of initial conditions for which the operational (resp., asymptotic) phase is identical at t = 0.

black in panels A--C of Figure 4, and \rho determines the change in the angular rate of rotation
for perturbations in the radial direction. For (42) with \rho = 0.12 and \sigma = 0.04, isochrons are
calculated according to (3) and shown in panel A of Figure 4. Because \rho \not = 0, the isochrons
spiral into the origin. The \theta = 0 isochron is chosen to define a Poincar\'e surface with numer-
ically calculated nonunity Floquet multiplier \lambda 1 = 0.605 and corresponding right eigenvector
vT1 = [0.3162, - 0.9487] and left eigenvector uT1 = [3.1623, 0]. This information is used along
with the definition of isostable coordinates from (48) of Appendix A to numerically calcu-
late the isostable coordinate \psi 1 for (42), with results shown in panel B of Figure 4. Letting
a = r cos(\vargamma ) b = r sin(\vargamma ) define a Cartesian coordinate system, panel D (resp., panel E) shows
z(\theta ) \equiv \partial \theta /\partial b and z(\theta \ast ) \equiv \partial \theta \ast /\partial b (resp., i1(\theta ) = i\ast 1(\theta 

\ast ) \equiv \partial \psi 1/\partial b), where both functions are
evaluated on the limit cycle.

In this example it is relatively straightforward to determine operational phase coordinates
\theta \ast once both the asymptotic phase and isostable coordinates have been calculated. To do
so, we define \theta = 0 to correspond to the location at which b crosses zero in the right half of
the plane, i.e., the boundary between the red and blue colors in panel C of Figure 4. From
(7), operational phase coordinates can be inferred by numerically estimating D \equiv 

\int \infty 
0 d(\psi 1)dtD
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using the \theta \ast = 0 surface. Panel C of Figure 4 shows the operational phase coordinates for this
system, which extend radially from the origin. Intuitively, using the operational instead of
asymptotic phase undoes the ``twist"" in the isochrons. In panel F, the solid and dashed lines
show the behavior of two initial conditions (a(0), b(0)) = (1.7, 0) and (0.4, 0), respectively,
chosen so that \theta \ast (0) = 0. Analogously, solid and dashed lines in panel G show the behavior of
two initial conditions (a(0), b(0)) = (1, 0) and (0, 0.594), respectively, chosen so that \theta (0) = 0.
Intuitively, the operational phase coordinate provides instantaneous information about the
state (i.e., \theta \ast = 0 reflects the moment when b crosses from negative to positive values) but
does not contain any information about the asymptotic behavior. Conversely, the asymptotic
phase coordinate provides information about the infinite time behavior but does not contain
information about the transient behavior.

4.2. Estimation of the operational phase reduction and transient behavior of a neural
oscillator. Here we will calculate the OPR for the Wang--Buzsaki model [40] with adaptation
given in (4). Here, we will also consider a Gaussian white noise process,

\surd 
2D\eta (t), to model

general system noise and an external perturbation, u(t), both added to the transmembrane
voltage equation. We will calculate the terms in the first order OPR (11) in two different ways:
first by numerically calculating the terms of the APR in the absence of noise and inferring the
corresponding terms from (11) using (13) and (18) and, second, by estimating the terms of
the phase reduction using the strategies developed in section 3. To numerically calculate the
APR, the periodic orbit is found numerically to have three nonunity Floquet multipliers; we
numerically calculate the Floquet multipliers \lambda 1 = 0.527, \lambda 2 = 0.011 and find that | \lambda 3| < 10 - 5.
Since \lambda 2 and \lambda 3 are close to zero, we will assume the isostable coordinates \psi 2 and \psi 3 are
simply equal to zero. The nonzero isostable coordinate \psi 1 has the Floquet multiplier \kappa 1 =
log(\lambda 1)/T =  - 0.055. With this information, \scrZ (\theta ) and \scrI 1(\theta ) from the APR can be calculated
as the appropriately normalized solution to the adjoint equation (53) (see Appendix A for
details). To convert the asymptotic phase coordinates to operational phase coordinates, \alpha 1

is calculated numerically according to (18) allowing \scrI \ast 
1 (\theta 

\ast ) and \scrZ \ast (\theta \ast ) to be calculated using
(13), assuming that \kappa 2 and \kappa 3 are sufficiently large in magnitude so the contributions from
\scrI 2(\theta ) and \scrI 3(\theta ) are both negligible. The response to voltage perturbations i\ast 1(\theta 

\ast ) \equiv \partial \psi 1/\partial V
and z\ast (\theta \ast ) \equiv \partial \theta \ast /\partial V are the first elements of \scrZ \ast (\theta \ast ) and \scrI \ast 

1 (\theta 
\ast ), respectively. Here, \theta \ast = 0

is defined to be the point at which V = 0 and \.V > 0 (i.e., during the transmembrane voltage
upstroke of an action potential). In panels D--F of Figure 5, black curves represent the relevant
functions of the OPR, calculated numerically. The relationship from (13) is used to calculate
the asymptotic phase response curve.

Using the methodology developed in section 3, we also calculate the necessary terms of
the OPR. We do this for two different sets of simulations for which the noise intensity 2D
is 0.8 and 1.6. Here, we assume that we have the ability to apply a perturbation u(t) and
can measure the neuron's transmembrane voltage but have no other information about this
neuron. When measuring the noisy ISIs, the mean converges to the unperturbed natural period
of 11.74 ms, which we will use for all calculations in the direct method. Panel A of Figure 5
illustrates the strategy used for estimation of \kappa 1, by which a constant perturbation is applied
and the neuron is given time to adapt. After adaptation occurs, the perturbation is removed
immediately after a spike is detected, and the ensuing ISIs are measured. This procedureD
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Figure 5. Estimation of the OPR using the direct method. In panel A, the neuron is allowed to adapt to a
hyperpolarizing (negative) perturbation. Transmembrane voltage is shown as a solid line and the perturbation
is shown as a dashed line. Upon its removal, the ISIs are shorter on average during relaxation to the periodic
orbit. Black circles in panel B show representative measurements using this procedure over multiple trials and
an exponential fit to the data yields the Floquet multiplier \lambda 1. Panel C shows a subset of datapoints obtained
using the procedure outlined in section 3 for estimation of z\ast (\theta \ast ) with 2D = 0.8. The blue line is fit to the
data. Panels D and E show estimates of the functions in the augmented phase reduction obtained using the
direct method with a noisy system (blue and red lines) compared to their true values, obtained with a noiseless
system using the adjoint equation (black line). Panel F shows the asymptotic phase response curve, inferred
using (13).

is repeated 500 times, and panel B shows a representative subset of these measurements
with red dots indicating the mean values over all trials. Per (39), a linear regression of
log(ISIn  - T ) as a function of n yields an estimate of log(\lambda 1). An estimate of \kappa 1 is obtained
immediately as log(\lambda 1)/T . Trials with 2D = 0.8 and 1.6 give estimates \kappa 1 =  - 0.048 and
 - 0.060, respectively. Using the strategy detailed in section 3.2, i\ast 1(\theta 

\ast ), z\ast (\theta \ast ), and \alpha are
estimated with 10,000 perturbations with alternating magnitudes up = 1 and  - 1\mu A/\mu F with
\Delta t = 1 ms. Panel C shows a representative subset of samples of z\ast (\theta \ast ), calculated using (40),
when 2D = 0.8. In panels D and E, the function

\sum 2
n=0[ai sin(n\theta 

\ast ) + bi cos(n\theta 
\ast )] is fit to the

datapoints for z\ast (\theta \ast ) and \alpha 1i
\ast 
1(\theta 

\ast ). Constants of the fits are chosen to minimize the sum of
the squared residuals. Panel F shows the asymptotic phase response curve, inferred from the
terms of each OPR. In both simulations of different noise intensity, z\ast (\theta \ast ) is well approximated
by this procedure. The estimates of \alpha 1i

\ast 
1(\theta 

\ast ) are slightly less accurate, particularly as the
noise intensity increases. However, the qualitative behavior is correct at both noise levels.
Interestingly, the approximations of the asymptotic phase response curve (panel F) are quite
robust, for larger noise intensities.D
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Figure 6. Transient response of (4) to a hyperpolarizing pulse. In panel A, black, dashed red, and dashed
blue traces show the time courses of V , \theta \ast , and \theta , respectively. Action potentials in the full model always
coincide with \theta \ast = 0, while the APR is accurate only once the neuron has decayed to the periodic orbit. Panel
B gives the time course of the perturbation, and panel C shows the rise and subsequent exponential decay of \psi 1

in response to the perturbation.

In the implementation of the direct method shown here, noise has a significant impact
on the ISI. For example, for a noise intensity of 2D = 1.6, the variance in spike times of the
unperturbed system is approximately 5 ms, about half the natural period. In order to obtain
accurate measurements in this particularly noisy environment many measurements must be
taken. Most likely, it would be difficult to get this amount of data in a real experiment;
however, for systems where noise intensity is smaller, fewer measurements will be required to
guarantee a reasonable estimate of the terms in the OPR.

As its name implies, APR is useful for predicting the infinite time behavior of a perturbed
oscillator. In examples illustrated here, in addition to the asymptotic behavior, OPR predicts
transient oscillatory behavior and is valid for general perturbations. First, consider the tran-
sient behavior of a neuron from (4) in response to an applied current perturbation shown in
Figure 6. The black voltage trace in panel A shows the behavior of a noiseless neuron (i.e., with
2D = 0) in response to a u(t) =  - 2 \mu A/\mu F current perturbation lasting approximately 20
ms. The blue and red traces show the predicted behavior using the APR (5) and the OPR
(11), respectively. All functions and parameters of the reductions are calculated numerically
with the adjoint equation (53) for a noiseless neuron (shown with black lines in panels C--E of
Figure 5). In panels B and C of Figure 6, the isostable coordinate \psi 1 increases rapidly during
the application of the hyperpolarizing stimulus and decays asymptotically during the subse-
quent relaxation to the periodic orbit. The results from Figure 6 are a clear demonstration
of the ability of the OPR to capture the transient dynamics of the periodically firing neuron.
Each action potential occurs at almost exactly the same moment that \theta \ast = 0, while for the
APR, the moments at which \theta = 0 occur as much as 8 ms in advance of the true spikes. Also
notice that as \psi 1 decays and the trajectory approaches the periodic orbit, the asymptotic
phase becomes a better indicator of when action potentials occur in the full model.D
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Figure 7. The black line gives an approximate probability distribution of ISIs for simulations of over 40,000
spikes of the full model (4) with noise intensity 2D = 4. Blue dots (resp., red and gray dots) give estimates
using the asymptotic reduction (43) (resp., operational reduction (44)). Gray dots correspond to simulations
where z\ast (\theta \ast ) and i\ast 1(\theta 

\ast ) are obtained from the direct method; all other reduced functions are obtained using the
adjoint method. The mean and variance for each set of simulations are shown in panels B and C, respectively.

As illustrated in Figure 6, OPR is particularly useful for predicting the transient behavior
of an oscillator. This becomes particularly important if the behavior in response to pertur-
bations never reaches a steady state. To illustrate this, consider an adapting neuron with an
ISI which varies in response to white noise added to the transmembrane voltage. Here, we
simulate the full equations (4) with a noise intensity 2D = 4, along with corresponding APR
and OPR, (5) and (11), respectively. Here we take u(t) = 0 so that the only perturbations are
from noise. For the phase reduced stochastic differential equations, we assume that the noise
intensity is small enough so that higher order noise terms are negligible (cf. [8], [23]) yielding

\.\theta = \omega + z(\theta )
\surd 
2D\eta (t)(43)

and

\.\theta \ast = \omega + \alpha 1\psi 1 + z\ast (\theta \ast )
\surd 
2D\eta (t),

\.\psi 1 = \kappa 1\psi 1 + i\ast 1(\theta 
\ast )
\surd 
2D\eta (t).(44)

In simulations of the OPR (44), we use z\ast (\theta \ast ) and i\ast 1(\theta 
\ast ) calculated according to the adjoint

method (53), and the direct method with 2D = 1.6 (black and red curves, respectively, from
panels D and E of Figure 5). Both curves are chosen to compare results when the terms of
(44) are not measured perfectly. Simulations of the APR (43) use z(\theta ) calculated according
to the adjoint method (53). In each set of simulations, over 40,000 consecutive spikes are
obtained in order to yield estimates for the ISI probability densities from panel A of Figure
7. Spiking statistics with the full model (FM) and the operational reduction (OR) calculated
with the adjoint method are nearly identical. Panels B and C of Figure 7 give the mean
and variance of the ISIs, respectively, for each simulation. When using the OR with noisy
measurements, the results disagree slightly when compared to the full model but are stillD
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quite similar. In contrast, the simulations with the asymptotic reduction (AR) significantly
underestimate the variance in spike times. Furthermore, the asymptotic reduction simulations
give an ISI distribution which appears nearly Gaussian (cf. [8]), while in all other simulations,
the ISI distribution has a much longer tail extending toward larger ISIs. Qualitatively similar
profiles are obtained when using smaller noise magnitudes.

5. Discussion and conclusion. While phase reduced coordinate systems using an asymp-
totic definition of phase are useful for understanding the behavior of complex biological os-
cillators, the transient behavior is not considered when working in this reduced coordinate
system. Here, we propose a new coordinate system which uses an operational phase, defined
relative to some meaningful event (such as the timing of a neural action potential) rather
than the asymptotic behavior. The definition of operational phase proposed in this work only
requires knowledge of a single state variable, making it suitable to experimental systems where
the measurement of multiple variables with high temporal resolution is generally limited.

It is well documented that perturbations to periodically firing neurons can affect the timing
of not only the next action potential but also subsequent action potentials [32], [29], a feature
that standard phase reduction cannot accommodate. While strategies which use residual or
higher order iPRCs [5], [31], [11] have been proposed to correct for this physiological phe-
nomenon, they are generally limited to specific types of perturbations. Here, OPR tracks the
decay of modes that are transverse to the periodic orbit in order to replicate this phenomenon
resulting from sufficiently small but arbitrary perturbations. In certain cases, corrections to
the OPR can be made to extend its accuracy at locations that are farther from the limit
cycle (e.g., section 2.3), but this becomes particularly difficult as the number of nonnegligible
isostable coordinates increases.

APR is a particularly attractive strategy when the full dynamical equations governing
the behavior of a limit cycle oscillator are unknown, as the necessary curves can be obtained
through the well-established direct method [18], [28], which is briefly summarized below.
Recalling the definitions of spike times t\ast n and perturbation time tp from Figure 3, the standard
implementation of the direct method only requires t\ast 0, t

\ast 
1, and tp to obtain an estimate of the

phase response curve z(\theta p) =  - 2\pi (t\ast 1  - t\ast 0  - T )/(Tup\Delta t), where \theta p = 2\pi tp/T , and up and
\Delta t are the magnitude and duration of the applied perturbation. Provided the magnitude
of up is sufficiently small and perturbations transverse to the periodic orbit decay rapidly,
it is well established that the resulting phase response curve can be used to predict the
behavior of arbitrary perturbations using the phase reduced equation \.\theta = \omega + z(\theta )u(t) [10],
a strategy which has been successfully applied in many experimental settings [21], [27], [38].
A similar strategy for direct measurement of the terms in the OPR has been proposed here.
When isostable coordinates decay slowly, the OPR has the ability to predict the effect of a
perturbation on the current ISI and all subsequent ISIs. The direct strategy proposed here is
shown to work well provided the decay of directions transverse to the periodic orbit can be
well approximated by the decay of a single isostable coordinate.

The operational phase coordinates presented here rely on the notion of isostable coordi-
nates of periodic orbits [44], [46] which give a sense of the asymptotically exponential decay
of trajectories towards a limit cycle solution. This choice of coordinates transverse to the
periodic orbit is particularly effective here because the reduced dynamics decay exponentiallyD
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in the absence of perturbations, allowing for the derivation of relatively straightforward re-
lationships between the asymptotic and operational phase coordinates in the fully nonlinear
regime (7). At locations sufficiently close to the stable periodic orbit, simple relationships
between operational and asymptotic phase coordinates are also obtained (10). Unlike other
phase-amplitude reduction strategies [4], [41], [36], OPR is explicitly tied to an event which is
easily detectable at locations farther from the limit cycle and can be implemented even when
only a single state variable can be measured. In principle, many of these phase-amplitude
reduction strategies could be used to detect meaningful events in the full equations without
the need to introduce operational phase coordinates. This could be achieved, for instance, by
determining a Poincar\'e section of the reduced equations which corresponds to the \theta \ast = 0 level
set of the full equations. However, the calculation of such a Poincar\'e section for a general
nonlinear dynamical system would not be trivial.

While OPR represents a significant advance in the study of the transient behavior of
limit cycle oscillators, the methods presented here can still be improved upon. Perhaps most
notably, in an experimental setting, the direct measurement strategy of the terms of the
OPR presented here requires that the transient dynamics can be accurately captured by a
single isostable coordinate. It would certainly be of interest to develop strategies to accurately
measure the terms in the OPR when multiple isostable coordinates contribute to the transient
behavior. Such a strategy would most likely require knowledge of additional state variables
in the nonlinear system. Experimentally, these additional measurements might be obtained
either through simultaneous measurement or by using techniques for inferring the other state
variables [16], [39]. Also, the operational phase reduced coordinates presented here are defined
using a single event to explicitly define the location at which \theta \ast = 0. It would be interesting
to investigate the effects of incorporating multiple explicit definitions in a slightly different
set of reduced coordinates. As a concrete example in a spiking neuron, \theta \ast 1 might correspond
to the timing of an action potential and \theta \ast 2 might correspond to a particular feature tied to
the calcium dynamics.

The OPR presented here allows for greater understanding of the transient behavior of limit
cycle oscillators for which perturbations transverse to the periodic orbit do not decay rapidly.
The transient dynamics of perturbed oscillators are an important feature in many biological
applications. For instance, circadian misalignment (jet lag) results from a sudden perturbation
to the time of one's circadian day, with symptoms lasting until one's circadian rhythms can
reentrain to the new light-dark cycle [12], [34]. Furthermore, the complex interactions leading
to transient hypersynchronous behavior among neurons during seizures [19], [13] could be
useful to model using an OPR. Preliminary numerical simulations suggest that the effect of
noise on the spike times of oscillatory neurons could be well understood using OPR. For
example, Figure 7 show non-Gaussian distributions of ISIs in an adapting neural oscillator
subject to additive Gaussian white noise. These results are different from those which use
APR [8], [26]. Future work may be devoted to understanding the behavior of these systems
which result in more complicated distributions of spiking intervals.

Appendix A. Isostable coordinates and augmented phase reduction. Here we give a
brief overview of the important features of augmented phase reduction as described in [44]
(cf. [46]). The isostable coordinates used here were inspired by the notion of isostables setD
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forth in [25] to characterize the approach of a trajectory to a stable equilibrium solution.
To start, consider the stable periodic orbit, \gamma , of the ordinary differential equation (1). If
we define \Gamma 0 as the \theta = 0 isochron, then recalling the definition of isochrons (3), this initial
condition will first return to \Gamma 0 at time T , where T is the natural period. This allows us to
define \Gamma 0 as a Poincar\'e surface and the associated Poincar\'e map

P : \Gamma 0 \rightarrow \Gamma 0,(45)

x \mapsto \rightarrow \varphi (T, x),(46)

where \varphi is the unperturbed flow of the system. Note that this map has a stable fixed point
P (x0) = x0 for x0 on \gamma and \theta (x0) = 0. We can approximate the solution of this map near the
fixed point as

(47) \varphi (T, x) = x0 + JP (x - x0) +\scrO (| | x - x0| | 2),

where Jp is the Jacobian of \varphi (T, x) evaluated at x0. For each real, semisimple (i.e., with
identical algebraic and geometric multiplicity) eigenvalue \lambda i of Jp, consider the corresponding
left and right eigenvectors ui and vi, respectively. We can define isostable coordinates provided
| \lambda i| < 1 as follows (cf. [44]):

(48) \psi i(x) = lim
j\rightarrow \infty 

\bigl[ 
uTi (\varphi (t

j
\Gamma , x) - x0)\underbrace{}  \underbrace{}  
gi(x,t)

exp( - log(\lambda i)t
j
\Gamma /T )\underbrace{}  \underbrace{}  

hi(x,t)

\bigr] 
,

where tj\Gamma is the jth return time to \Gamma 0 under the flow. In the above definition, the sequence

\{ \varphi (tj\Gamma , x)\} j\in \BbbN approaches x0 so that for j large enough, its convergence is well approximated
by

(49) \varphi (tj\Gamma , x) - x0 =
N\sum 
j=1

(sj(x)vj\lambda 
j),

where sj are coordinates in the basis of eigenvectors of Jp. Note that (49) is only valid in
the limit as time approaches infinity so that the dynamics can be well approximated by a
linearization about the fixed point. The left eigenvector ui in (48) is used to select for the
component of (49) in the vi direction and the resulting term gi(x, t) shrinks at a rate \lambda i.
Considering the term hi(x, t), because the trajectory crosses the Poincar\'e section every T
units of time, it grows at a rate 1/\lambda i. The resulting multiplication gi(x, t)hi(x, t) approaches a
constant as j approaches infinity, yielding the isostable coordinate \psi i(x). Using (48) isostable
coordinates are defined for all locations in the basin of attraction of the limit cycle, not just
on the Poincar\'e section.

While the definition of isostable coordinates is somewhat complicated, their behavior is
quite simple; one can show (cf. [44]) that when G(t) = 0, d\psi i/dt = \kappa i\psi i, where

(50) \kappa i = log(\lambda i)/T,D
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so that isostable coordinates decay exponentially. Furthermore, as shown in [44], for \scrO (\epsilon )
perturbations to the limit cycle, there is a one-to-one correspondence between isostable coor-
dinates and the state of a system to leading order \epsilon given by

x = x\gamma (\theta ) +
N - 1\sum 
i=1

pi(\theta (t))\psi i,

pi(\theta (t)) =
[\varphi (\theta /\omega , \epsilon vi + x0) - \varphi (\theta /\omega , x0)] exp( - \kappa i\theta /\omega )

\epsilon 
,(51)

where x\gamma (\theta ) represents the state on \gamma as a function of the phase, pi(\theta ) relates the isostable
coordinate \psi i to a corresponding perturbation from the limit cycle, \omega = 2\pi /T , and t = \theta /\omega .
Furthermore, this coordinate system can be used to define a second order accurate phase and
isostable reduction of the following form:

\.\theta = \omega +

\left[  \scrZ (\theta )T +
N - 1\sum 
j=1

\bigl( 
\psi j\scrB j(\theta )T

\bigr) \right]  G(t),
\.\psi i = \kappa i\psi i +

\left[  \scrI i(\theta )T +
N - 1\sum 
j=1

\bigl( 
\psi j\scrD i

j(\theta )
T
\bigr) \right]  G(t),

i = 1, . . . , N  - 1,(52)

where \scrZ (\theta ) \equiv \partial \theta 
\partial x | x\gamma (\theta ), \scrI i(\theta ) \equiv \partial \psi i

\partial x | x\gamma (\theta ), \scrB i(\theta ) \equiv ( \partial 
\partial \psi i

\partial \theta 
\partial x)| x\gamma (\theta ), and \scrD i

j(\theta ) \equiv ( \partial 
\partial \psi j

\partial \psi i

\partial x )| x\gamma (\theta ).
Recalling from the main text that \psi i and G(t) are both \scrO (\epsilon ) terms, truncation of the \scrO (\epsilon 2)
terms from (52) yields the first order reduction (5). In order to calculate the functions \scrZ (\theta )
and \scrI i(\theta ) numerically a useful strategy is to use the adjoint equation [9], [2]. To apply this
strategy, one can choose any initial condition in \gamma to correspond to \theta = 0. After making this
choice, the phase and isostable response curves, d\theta /dx| x(t) \equiv \nabla x(t)\theta and d\psi i/dx| x(t) \equiv \nabla x(t)\psi i,
are the periodic solutions to

d\nabla x(t)\theta 

dt
=  - J(x(t))T\nabla x(t)\theta ,

d\nabla x(t)\psi i

dt
=
\bigl[ 
\kappa iI  - J(x(t))T

\bigr] 
\nabla x(t)\psi i,(53)

where J(x(t)) is the Jacobian of F evaluated at x(t). The periodic functions \scrZ (\theta ) and \scrI i(\theta )
are subject to the normalizing conditions F (x(t))TZ(\theta ) = \omega and vTi \scrI i(0) = 1. The functions
Bi(\theta ) and Di

j(\theta ) can be calculated by a method proposed in [44], which first requires the
computation of the Hessian matrix of second derivatives of phase and isostable coordinates
evaluated on the periodic orbit and then uses this information to compute the necessary
functions.D
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Appendix B. Wang--Buzsaki model. The equations and parameters for the Wang--
Buzsaki model [40] from (4) with an adaptation current [7] are given below:

C \.V =  - g\mathrm{N}\mathrm{a}m
3
\infty h(V  - E\mathrm{N}\mathrm{a}) - g\mathrm{K}n

4(V  - EK) - g\mathrm{L}(V  - E\mathrm{L}) - Iw + I\mathrm{b},

\.h = \gamma [\alpha h(V )(1 - h) - \beta h(V )h] ,

\.n = \gamma [\alpha n(V )(1 - n) - \beta n(V )n] ,

\.w = a(1.5/(1 + exp((b - V )/k)) - w).(54)

Here, V represents the transmembrane voltage, gating variables are denoted by h and n, and
w determines the adaptation current Iw. The baseline current Ib = 5\mu A/\mu F, capacitance
C = 1\mu F/cm2, with additional equations:

m\infty = \alpha m(V )/(\alpha m(V ) + \beta m(V )),

\beta n(V ) = 0.125 exp( - (V + 44)/80),

\alpha n(V ) =  - 0.01(V + 34)/(exp( - 0.1(V + 34)) - 1),

\beta h(V ) = 1/(exp( - 0.1(V + 28)) + 1),

\alpha h(V ) = 0.07 exp( - (V + 58)/20),

\beta m(V ) = 4 exp( - (V + 60)/18),

\alpha m(V ) =  - 0.1(V + 35)/(exp( - 0.1(V + 35)) - 1).

Reversal potentials and conductances are

E\mathrm{N}\mathrm{a} = 55mV,

E\mathrm{K} =  - 90mV,

E\mathrm{L} =  - 65mV,

g\mathrm{N}\mathrm{a} = 35mS/cm2,

g\mathrm{K} = 9mS/cm2,

g\mathrm{L} = 0.1mS/cm2.

We take \gamma = 5. The adaptation current is given by

Iw = gww(V  - E\mathrm{K})

with associated parameters:

a = 0.02 ms - 1,

b =  - 5 mV,

k = 0.5mV,

gw = 2mS/cm2.
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