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Abstract The applicability of phase models is generally limited by the constraint
that the dynamics of a perturbed oscillator must stay near its underlying periodic
orbit. Consequently, external perturbations must be sufficiently weak so that these
assumptions remain valid. Using the notion of isostables of periodic orbits to provide
a simplified coordinate system from which to understand the dynamics transverse to a
periodic orbit, we devise a strategy to correct for changing phase dynamics for locations
away from the limit cycle. Consequently, these corrected phase dynamics allow for
perturbations of larger magnitude without invalidating the underlying assumptions of
the reduction. The proposed reduction strategy yields a closed set of equations and
can be applied to periodic orbits embedded in arbitrarily high dimensional spaces.
We illustrate the utility of this strategy in two models with biological relevance. In
the first application, we find that an optimal control strategy for modifying the period
of oscillation can be improved with the corrected phase reduction. In the second, the
corrected phase reduced dynamics are used to understand adaptation and memory
effects resulting from past perturbations.
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1 Introduction

Phase reduction provides a tremendously useful tool in the study of weakly perturbed
nonlinear oscillators by allowing the dynamics of a potentially complicated and high
order differential equation of the form

‘Z_); =F@x)+G(), xeRV, (1)

to be represented by the single variable system:

90
o =et ZOTGx, 1), 6eSh )

Here, the state dynamics are represented by a phase of oscillation 6, the natural
frequency of the unperturbed oscillation is given by w, G € R¥ is a small perturbation,
Z(0) € RY is the phase response curve (PRC), and 7 indicates the matrix transpose.
Such reduction strategies have had a tremendous impact on the study of limit cycle
oscillators with a wide variety of applications in recent decades (Kuramoto 1984;
Winfree 2001; Hoppensteadt and Izhikevich 1997; Ermentrout and Terman 2010).
An essential characteristic of oscillators that can be represented by (2) is that they
remain close to the limit cycle; as the state moves farther from the limit cycle, (2)
becomes a worse approximation for the phase dynamics of the system (Kuramoto
1997). Generally, this requires the magnitude of external perturbations to be small
compared to the Floquet multipliers (Guckenheimer and Holmes 1983) associated
with the directions transverse to the periodic orbit.

Despite these limitations, recent progress has allowed for the use of phase reduction
when some of the components of the external perturbations are large but oscillating
at sufficiently slow (Kurebayashi et al. 2013; Park and Ermentrout 2016), or fast
(Pyragas and Novicenko 2015) frequencies when compared to the natural frequency
of the limit cycle oscillator. These results represent significant progress in dealing with
the fundamental weak forcing limitation, but still do not allow for larger more general
perturbations to a limit cycle oscillator.

An alternative strategy for studying strongly forced limit cycle oscillators is to
calculate the isochrons of a system directly (Osinga and Moehlis 2010; Detrixhe et al.
2016; Huguet and Llave 2013). Such computations can provide insight into a system
under study, allowing one to understand how large perturbations affect the phase
dynamics and uncovering ‘phaseless sets’ (Guckenheimer 1975) which have proven to
be of use in control applications (Nabi et al. 2013). However, practical implementation
of strategies require knowledge of the full state dynamics of the system, making them
difficult to apply in higher dimensions. Another strategy for addressing the breakdown
of (2) at locations away from the periodic orbit has come from the development of
an augmented set of coordinates for both the asymptotic phase and the coordinates
transverse to the periodic orbit (Guillamon and Huguet 2009; Castejon et al. 2013)
for exponentially attracting periodic orbits. While these new coordinate systems allow
for a more convenient study of a system of interest, they are also computationally
challenging to to implement in high dimensional systems.
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As a concrete example of the limitations of (2) in the reduction of a nonlinear
system (1), consider the radial isochron clock (Strogatz 1994),

da b—oa(a® +b?)

— =o0a—b—oala ,

dt

E:a—i—ab—ab(a + b*) + g(1), 3)

with o > 0, and g(¢) representing a perturbation to the b coordinate. In radial coordi-
nates, i.e. tan(0) = b/a, r> = a® + b?, one can verify that equation (3) becomes

— =or(1—r’) + in(0
; =or( ) + g(¢) sin(0).
— =1+ cos(9)/r 4

This coordinate transformation allows us to derive the phase reduced dynamics
almost immediately. By noticing that unperturbed dynamics settle to a solution with
r = 1, the phase reduced dynamics on the limit cycle are

o _ 1 0 5
o =1+ cos()g(0), )

Equation (5) represents a standard phase reduction of the form (2) and is valid when
perturbations from the limit cycle are small. However, a phase reduction of the form (5)
will not always be enough to accurately represent the dynamics of (3). For instance, as
shown in Fig. 1, two initial conditions at the same phase can have significantly different
responses to external perturbations when their radial coordinates differ. Indeed, from

151
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Fig. 1 Two initial conditions of (3) with & = 0 are perturbed in the b direction. Open circles indicate the
position after perturbation and arrows indicate the direction of the perturbation. While the magnitude and
timing of each perturbation is identical, the change in phase differs based on the initial value in the radial
direction. Colored dots indicate the initial and final conditions of each trajectory (color figure online)
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(4), the effect of a perturbation on 0 is inversely proportional to ». When the nonlinear
system is sufficiently far from its periodic orbit, a phase reduction of the form (2) no
longer accurately characterizes effect of small perturbations on the phase dynamics.

In this work, we derive an augmented and closed form set of equations to correct
for changes to the phase dynamics for locations farther from the periodic orbit. The
analysis draws from the recently developed isostables coordinates for systems with
periodic orbits. Intuitively, isostable coordinates give a sense of how long it will take an
initial condition to approach an associated attractor. Previously, (Ichinose et al. 1998;
Rabinovitch et al. 1994; Roberts 1989) investigated systems for which this attractor
is a fixed point. For these systems, the notion of a transient attractor, hidden structure,
or slow manifold can be used to understand the convergence of an excitable system
towards its stable equilibrium. These ideas were later extended by Mauroy et al. (2013)
which coined the term ‘isostables’ to describe level sets of initial conditions which
approach the fixed point together, in a well-defined sense. In Mauroy et al. (2013), the
use of isostables is limited a system’s approach toward a fixed point, and Wilson and
Moehlis (2016) modified this definition for use when the system approaches a limit
cycle solution.

The augmented phase reduced coordinates used in this work are similar to phase-
amplitude coordinates (Shirasaka et al. 2017; Wedgwood et al. 2013; Castejon et al.
2013), which have been used to understand the behavior of limit cycle oscillators
in directions that are transverse to the periodic orbit. The resulting phase-amplitude
coordinate transformation varies depending on the manner in which the transverse
coordinate system is defined and has been useful, for example, in investigating the
behavior of periodically forced oscillators (Wedgwood et al. 2013), or developing
control strategies to limit the magnitude of excursions from a stable limit cycle (Shi-
rasaka et al. 2017).

As we show in the results to follow, isostable coordinates provide a natural reduced
coordinate system for understanding how perturbations will affect the phase reduced
dynamics. The resulting reduction is valid for general systems of arbitrary dimension
and can be applied for general perturbations allowing for a better understanding of the
dynamical behavior of systems with stronger external forcing. This paper is organized
as follows: Section 2 details a strategy for correcting the phase reduced dynamics
when the system is not on the limit cycle. Section 3 details the relationship between
isostable coordinates and perturbations to the periodic orbit in order to develop a closed
set of phase reduced equations. Section 4 provides examples of this reduction strategy
applied to various systems. Specifically we find that this control strategy allows for
the use of larger magnitude perturbations in an optimal control problem and can also
be used to understand the effects of memory in a periodic oscillator that is repeatedly
perturbed by external forcing. Section 5 gives concluding remarks.

2 Calculation of the gradient and hessian of the phase on the periodic
orbit

Generally, in order to approximate an equation of the form (1) by its phase reduction
(2), the PRC (i.e. the gradient of the phase, Z(6)) must be calculated at all points
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along the periodic orbit. Such a calculation can be performed, for instance, by finding
an appropriately normalized solution to the adjoint equation (Ermentrout 2002; Gov-
aerts and Sautois 2006). In order to determine how the gradient of the phase changes
for locations that are near the periodic orbit, we will need to calculate the Hessian
matrix of second partial derivatives along the periodic orbit. This section develops a
computational strategy for such a calculation.

To begin, consider a stable limit cycle solution of (1) with period 7. Here, x (¢) € RN
is the state vector, F(x) = [f1(x) fa(x) ... fn Nk represents the natural system
dynamics, and all other parameters are defined directly below (1). We will define the
unperturbed flow (i.e. with G = 0) of (1) as ¢ : R x RN — RN so that ¢ (¢, x¢)
represents the solution of x = F(x) with initial condition xj.

It is often useful to parameterize the periodic orbit, y, of the vector vield (1) by
a phase 0 € [0, 2] defined so that for some arbitrary location xy € y, 8(xg) = O,
with all remaining phases defined such that 6(¢ (¢, x9)) = 2m¢t/T. The notion of
phase can be extended in the basin of attraction, B,, of the limit cycle using the notion
of isochrons, which are locations in phase space which share the same asymptotic
convergence to the periodic orbit. Defined more rigorously, for x| € y, the 6(x1)
isochron is the set of all initial conditions x> € B, such that

Jim [1¢t,x1) = (1, x| = 0. (©)

In this way, 6(x) for any x € B, can be defined as the particular isochron associ-
ated with x (Winfree 2001; Osinga and Moehlis 2010). Transforming (1) to phase
coordinates, from the chain rule we have

00| ox
Coax|, o’
36
= ;| F@+GO),
X X
30
=w+ —| G@). (M
x|,

In the second line, we have used the fact that the unperturbed dynamics (i.e. when
G(t) = 0) satisfy (c.f. Ermentrout and Kopell 1991)

0 = o, ®)

where w = 2/ T so that % |x - F(x) = w. Equation (7) represents a one dimensional
reduction of (1), but is not particularly useful in its present form, as the gradient
of the phase is still dependent on the state of the system. For this reason, systems
are typically analyzed in the vicinity of a small neighborhood of their limit cycles, for
which the PRC can be calculated using adjoint methods (Hoppensteadt and Izhikevich
1997; Brown et al. 2004; Ermentrout and Kopell 1991). Restricting attention to a close
neighborhood of the limit cycle allows (7) to be written as a closed set of equations
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b=w+ZO)G@1)+ O@x() —xV©H)). )

Here, xV () is defined as the intersection of the intersection of y and the 0(x)
level set, and Z(0) = % |x7 © is generally referred to as the PRC. For clarity, the
dependence of 6 on ¢ has been dropped in equation (9). The utility of the reduction
(9) hinges on the assumption that the state dynamics remain close to the limit cycle.
For an arbitrary location x, = xo + Ax, Taylor expansion of the phase field about xg

yields
Vi, 0 = V0 + Vi (VO) Ax + O(AxY). (10)

Here, V.0 is the gradient of 6 evaluated at x and V,(V#) is the Hessian matrix
of second derivatives of 6, evaluated at x. For simplicity of notation, we let Hy , =
V. (V0). For xo = x¥(0), Vy,0 is simply the PRC, Z(0), for which there are well-
established strategies available for its calculation (Hoppensteadt and Izhikevich 1997,
Brown et al. 2004; Ermentrout and Kopell 1991). With a similar technique used in the
derivation of the adjoint equation presented in Brown et al. (2004), let x” (0(¢)) € y be
asolution of (1) evolving along the limit cycle. Consider a small, arbitrary perturbation
Ax to that trajectory at ¢+ = 0. For all remaining ¢ > 0, assume that G = 0 and let
xe(t) = x7(0(t)) + Ax(t) represent this perturbed trajectory. Second order expansion
of (1) yields

AxT () Hy(x7 (1)
dAdxz(t) =J(xy(t))Ax(t)+% FOREON wroad.
AxT(t)HN(xV(t))

Here, J (x(#)) = VF(x)|x(, is the Jacobian matrix, and H; (x ()) = V(V fi ()|
is the Hessian matrix of second partial derivatives of f;. Note that for clarity of nota-
tion we have dropped the explicit & dependence from xV (6(¢)). We can also write the
phase shift due to this initial perturbation at r = 0 as

1
AO = (Varn®) T Ax + EAxTHg,XV(I)Ax + O(AX>). (12)

Using the insight given in Brown et al. (2004), after the initial perturbation at = 0,
A6 does not change in time. Taking the time derivative of (12) yields,

dVer0\" r(dAx\ 1 (dAx\T
O=|——] A \Y 0 —_— —|— ) H A
( 7 x + (Varny0) o ) tal 0.7 () AX
1 (dHQ’XV(t) dAx

ZAxT
T oA d dr

1
) Ax + EAxTHg,xy(,) ( ) +0(AX%).  (13)
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Substituting (11) into (13) and keeping terms up to leading order Ax? yields

AxT H (xY (1))
dVern0\" 1| AxTHy(x¥ (1))
0=<%(’)> Ax + (Ve 0" J(x”(t))Ax+§ , Ax

AxTHA}(xV(t))

1 1 dH,
5 AT T (67 () Ho. v Ax + 5 A (%) Ax

1
- EAxTH@,xy(,)J(xy(z))Ax + O(Ax?). (14)

Collecting terms up to leading order Ax from (14) yields

dVyr 10
O0={(—"——
( dt

T
) Ax + (Var )T T (x7 (1)) Ax, (15)

which, since Ax is arbitrary, can be manipulated as in Brown et al. (2004) to yield the
familiar adjoint equation:

dV 0
%(’) = —J (")) Ver 0, (16)

whose periodic solution when normalized so that (F (x” ()))” Vir )0 = w gives the
system’s PRC. Now, collecting the O(Ax?) terms from (14) yields

AxT Hy(xY (1))

; AxT Hy(xY (1)) -

0= (Vo) ] Ax + Ax" JH(xV (1)) Hp xr (1) Ax
AxT Hy (xY (1))

dH
+axT (%) Ax + AxT Hy v (1) J (x7 (1)) Ax. (17)

Rewriting (17) gives

0= AxT[Z 17 (1)) - Hi(a? () + Zo(x¥ (1)) - Ho(x¥ (1))
+ o Z T () - Hy (7 ()] Ax
+ AxTJT(xY (t)) Hy xv (1) Ax + AxT (%) Ax
+ AxT Hy v (1) J (x7 (1)) Ax, (18)
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where Z;(x(t)) = 00/0x;| X7 () Recall that the above equation holds for arbitrary
perturbations, Ax so that

dHy v (1 o
XY@ y . 14
i k§=1: [Zk (7 (1)) - He (Y (1))]
— JT QY (0) Ho xr ) = Hoxr 0 (7 (1), (19)

The differential equation (19) must be solved subject to the constraints of T-
periodicity along the periodic orbit. Furthermore, if all second partial derivatives of
the phase field exist and are continuous so in a neighborhood of the periodic orbit,
Hp xv (1) € RV*N is symmetric. A normalizing condition is derived by starting with

(16)

dvxy(t)e
dt ~
_ OVyrnf ox
ax 82‘ XV(I)’

= Hy v (iy F (X7 (1)). (20)

—JT ) Ve (0 =

Intuitively, equation (20) mandates that for an infinitesimal perturbation along the
periodic orbit, the change in the PRC calculated according to the adjoint equation
(16) must match the change in PRC calculated using information about Hg .(;). With
knowledge of Hp y(;), the second order phase reduced dynamics become

6 = w+e(Z(O) + Hy v 9)Ax)T G(1) + O(Ax?), 1)

Equation (21) represents the first step towards correcting the phase dynamics for
locations not on the limit cycle. In the following sections, we will illustrate how near
the limit cycle, x () can be represented as a function of isostable coordinates allowing
for the dynamics to be studied in a simplified coordinate system.

3 Using isostable coordinates to find a closed set of phase reduced
equations

Equation (21) provides a correction for the gradient of the phase field for locations in
phase space that are not on the periodic orbit. However, this equation is still a function
of Ax, which limits its practical utility. In order to characterize how Ax(¢) changes
in response to perturbations, we employ Floquet theory to understand the transient
dynamics of perturbations to the limit cycle. First, using methods presented in Wilson
and Moehlis (2016) we define a Poincaré map using the notion of isochrons. Letting
I'p = {x|0(x) = 0} define a Poincaré surface we define the following Poincaré map
for (1) when G = 0:

P:Ty— Ip;
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x — ¢(T, x). (22)

Recall that ¢ represents the unperturbed flow of the system and 7 is the natural
period of the limit cycle. Because the Poincaré surface is defined using isochrons,
any initial condition in I'g first returns to I'g at time 7. This map has a fixed point
P (xg,) = xq, for xg, € y and on the 6 = 0 isochron. Close to this fixed point, one
can approximate (22) with a linear mapping

(T, x) = xg, + Jp(x — xg,) + O(/|x — xg,|1%). (23)

Here Jp = d¢(T,x)/dx|x=x90. We assume that Jp is diagonalizable and let
V e R¥*N be a matrix whose columns define a basis of unit length eigenvectors
v with associated eigenvalues A for k = 1... N. Because the system admits a limit
cycle solution, at least one eigenvalue is equal to one (since a perturbation along the
periodic orbit does not decay). By convention, we will let Ay = 0 and define isostable
coordinates (c.f. Wilson and Moehlis 2016) for all A; # 1 as

Yito = lim [/ V@1 0) —x) exp(~logGort/T)]. 4

tlj; is the jth return time to I'g under the flow and ¢; is a vector with 1 in the ith
position and zeros elsewhere. In the definition above, as the sequence {¢ (tli, X)}jeN
approaches the fixed point of the Poincaré map, its convergence can be well approx-
imated by (¢ (tli, X) — Xgy) = Z;v:l [sj x)v j)J ], where s; represent coordinates
in the basis of eigenvectors of J,. Keeping this in mind, note that el.T V! yields a
left eigenvector of J,, which is used to select for the component of (¢ (tli, x).— X6y)
in the v; direction. Furthermore, using the definition of isochrons, tljfl — tli =T,
which implies exp(— log(ki)tli+l/T) = %exp(— log()\i)tll/T). Therefore, the mul-
tiplication of el.T V1l (zli, X) — xg,) by exp(— log()\l-)tli/T) converges to a scalar as
Jj — oo. The resulting scalar is the isostable coordinate.

Intuitively, larger values of 1/; correspond to larger distances from the stable limit
cycle. As we will show, the use of isostable coordinates will allow for the derivation of
a closed set of equations for Axg(t), the distance of a given trajectory from the limit
cycle. The definition (24) is analogous the definition of isostables from Mauroy et al.
(2013) for use when the dynamics relax to a fixed point rather than a limit cycle.

3.1 Isostable eduction for systems with periodic orbits

By noting that drl/di = —1, and letting ¢/(x) = e/ V- (@l x) — xq)
exp(— log(ki)tli / T), differentiating both sides of (24) with respect to ¢ yields

dt ' ’

dyi) _ | ded o dif
a j—o00 dtll dt
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dx log(xi) . i
Vel = o Jim 4],
log(;
Vit - F(x) = Og; )1/fi’ (25)

where V,; is the gradient of v; evaluated at x which we will refer to as an isostable
response curve (IRC). Equation (25) indicates that in the absence of external pertur-
bations, isostable coordinates decay exponentially with a fixed time constant, a useful
feature for this and other phase-amplitude coordinate systems (c.f. Shirasaka et al.
2017; Wedgwood et al. 2013; Castejon et al. 2013).

Starting with (1) and changing to isostable coordinates, by the chain rule

dyri (x)
dt

= Vi - (F(x) + G(1)),
= ki (x) + Vi ¥ G(x), (26)

where in the second line we have used (25), and k; = log(x;)/T. Much like how the
PRC can be calculated by finding solutions to the adjoint equation along the periodic
orbit, a similar equation can be derived for use in calculating Vv ¥, defined as the
gradient of the isostable coordinate evaluated at the periodic orbit. To do so, following
the derivation from Wilson and Moehlis (2016), consider a small perturbation Ax to
the periodic orbit x? (¢). By linearization, Ax(t) obeys

dAx(t)
dt

= J(x (1)) Ax (1) + O(|| Ax| ), 27)

recalling that J (xV (7)) is defined as the Jacobian of F evaluated at x” (¢). Furthermore,
the isostable shift corresponding to the perturbation Avy; = ¥, (xV (t) + Ax(t)) —
¥ (x”(¢)) can be found by the linear approximation

AYi = Vary¥i - Ax(@) + O(||Ax| ), (28)

Assuming that G = 0 after the initial perturbation, taking the derivative of (28)
with respect to time yields

(dVar oy Wi /dt, Ax () 4+ (Ver iy Wi, dAx () /dt) = Kk A,
= (ki Var¥i, Ax(t)),  (29)

where the right hand side of the top equation is obtained using (26), the bottom equation
is found by substituting (28), and (-, -) is the dot product. Manipulation of (29) yields

(dVyryi/dt, Ax (1)) = — (Var Wi, dAx (1) /dt) + (ki Vir )i, Ax (1))
= — (Voo ¥i, J(V (D) Ax (@) + (ki Var (i) i, Ax (1))
= — (1T O Variy i = ki Vor ¥ Ax(). (30)
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Because (30) is valid for any Ax, the following relation holds:

dVyr (Vi
= Gl = T () ) Ve vi. (31)
where [ is the identity matrix. The isostable response curve is the solution of (31)
subject to the normalizing condition Vg Vi - vi = 1. Using (31) to calculate IRCs,
(26) becomes:

Ui = kiyi + €Z] (0)G (1) + O(Ax),
i=1,...,N—1, (32)

where Z; (0) = Vyrg)¥;. Equation (32), much like the phase reduction (9) is accurate
to leading order Ax.

3.2 Writing Ax in terms of isostable coordinates

We will now show that near the periodic orbit, Ax can be written as a function of the
isostable coordinates. As in the previous section, letting x.(t) = x¥ (0(t)) + Ax(¢)
represent a solution of (1), the perturbed dynamics with G = 0 satisfy to leading
order,

— = J(x())Ax () + O(Ax?), (33)
where J(x(¢)) is the Jacobian matrix evaluated at x(¢). Floquet theory (Grimshaw

1993; Klausmeier 2008) allows us to write solutions of (33) as

Ax(t) = [q1(1) 2@t ... gn®)] [e1explicit) caexpliat) ... en explenn)]” .
(34)

Here, the constants ¢; are chosen to satisfy the initial conditions, ¢;(t) € RY are
T -periodic functions, and x; = log(A;)/ T are referred to as as Floquet exponents.
In (34), higher order terms have been dropped for notational convenience. In (33)
because phase increases at a constant rate, i.e. 6 = w, (34) can be rewritten as

Ax(1) = [p1(8(1) p2(6() ... pn(B(1)]

T
x [c1exp(kit) coexpliat) ... ey exp(ent)]

(35)

where p; (0(0) + wt) = gq;(t). Recall from equation (24) that té is defined as the

j™ return time to Ty under the flow. Also, note that Ax(#) = ¢(t., xc(0)) — xq,,
and & = 0 by definition when the trajectory crosses the I'g Poincaré section. We can
use this information along with (35) to directly evaluate (24) to calculate isostable
coordinates:
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Yi(x) = Jlirr;o [eiTV_l ([pl(O) pN(O)] [cl exp(/qtl"—) ... CN exp(/cNtl’;)]T)
X exp(— log()\,-)tl{/T)} ,
= lim [TV (21O . v @] [er exp(Ger = ki) . en explley — k)
(36)
In the second line, we have used the fact that x; = log(A;)/ T . From the linearizion of
the Poincaré map near xg,, one can show that p; (¢) from (35) approximately satisfies
epi(0) = [¢(0(1)/w, €v; + xq,) exp(—k;T) | — P (0(7) /w, xq,) (37)
for0 < € « 1 allowing for relatively straightforward numerical approximation. Using
(37), pi(0) = v;, and substituting this into (36) yields

Yi(x) = len;o [eiTV_l [vl v ... UN] [c1 exp((k1 — K,’)lll;) ... cyexp((ky — Ki)tli)]T] ,

= lim [eiT [cl exp((k1 — K,‘)tf-) ... enexp((ey — K,-)tl’;)]T] . =ci. (38)

J—>00

Equation (38) states that for the choice of p;(¢) in (37), the constants ¢; from (34)
are identical to the isostable values ;. Using this result, to leading order in Ax,
N-1
Ax(t) =Y pi@E)Yi (), (39)
i=1

Finally, (21) and (32) from the previous sections can be used together with (39) to
yield

T
N—1
O=w+|Z0)+Hywre | Y piOV; G(1) + O(Ax)?,
j=1
Y = kWi +I] (0)G (1) + O(Ax),
i=1,...,N—1. (40)

While equation (40) has the same number of variables as the original equations (1), in
practice, if some directions rapidly decay, i.e. if some «; are very negative, they can be
effectively ignored. Notice that the phase dynamics truncate terms of order Ax> while
the isostable dynamics truncate terms of order Ax. In the following section, we will
derive a correction for the isostable dynamics so that both reduced coordinate systems
are accurate to the same order in Ax.

3.3 A correction for the isostable response curve

We can also correct for a changing isostable response curve at locations not on the
periodic orbit. In this case again letting x, = xo + Ax,

Vi, Wi = Vi + Vi (Vi) Ax + O(AxY). (41)
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Here, V, (V) is the Hessian matrix of second derivatives of i;, evaluated at x.
We will use the notation Hy, vy = Vx(V;). In a similar strategy to the one used
for phase coordinates, we will investigate the dynamics of a small perturbation Ax
to the trajectory x(¢) € y. Assuming the perturbation is given at t = 0 with G = 0
thereafter, again letting x.(t) = x¥(6(¢)) + Ax(z), as previously mentioned, (11)
describes the perturbed dynamics. Furthermore, the isostable shift due to this initial
perturbation is

1
AYi = (Ver )" Ax + EAxTHllll‘,xV(l)Ax +0(AxY), (42)

After this initial perturbation, d Avyr; /dt = k; AY; [as can be seen using (25)]. Thus,
differentiating both sides of (42) with respect to time yields

dv N
K Ay = (M) Ax

dt
AxT () Hy (27 (1)
1| AxT(O)Hy(x7 (1)
+ (V¥ | T O)Ax(0) + 5 : Ax (1)
AxT(t) Hy (7 (1))

1 1 d Hy,
* EAXTJT(xy(f))ng,xv(t)Ax + EAxT (—Z’:””) Ax

1
+ EAxTJLI,,,I.,ﬂ(,)J(xy(z))Ax + O(AXD). (43)

Note the similarity between (43) and (14) which was derived for the phase variable.
By collecting O(Ax), as shown in Wilson and Moehlis (2016), one arrives at (31). In
the same sequence of steps to those which yield (17), (18), and (19) from (14), we
collect all O(Ax?) terms and manipulate to yield

N

=Y [ZFY ) - He¥ ()]

k=1
— JTxO)) Hy, x(t) — Hys 2y X (1)) + ki Hy, vy, (44)

dHy, xry
dt

where Iij (x(1)) = v, /0x; |x o Here, the solution of (44) is subject to both periodic
boundary conditions and a normalization condition

dVyv i
il — J & O) Vo o9 = %

_ dVaor i dx
dx dt |y

= Hy, xr(n F (7 (1)), (45)
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which is derived starting with (31). Intuitively, equation (45) mandates that for small
perturbations in the direction of the periodic orbit, the change in the IRC calculated
with (31) is identical to what would be found using Hy, ().

After calculating Hy, r(1), the isostable dynamics are

i = ki + (L (0) + Hy, v 0)A0)T G (1) + O(AxD),

T
N-1

=kiVi + | Zi(0) + Hy, xr 0 ZPj(Q)Wj(t) G(t) + O(Ax?),  (46)
i=j

fori = 1...N — 1. The second line of the above equation is obtained substituting
the expression for Ax from (39). Finally, adjusting for changes in the gradient of the
isostable field, the isostable and phase dynamics can be written as

T
N—-1
b=w+e|ZO)+ Y CiOWY; | G1)+O(Ax?),

j=1

N—-1 ) T
Vi =i +e | L)+ Y DIOW; | G@)+O0(Ax?),
j=1
i=1...N—1, A7

where

C;(0) = Hy v @e)p;0),
D/ (6) = Hy, xvo)p;j(0). (48)

3.4 Summarizing the steps to determine the reduced equations

In the sections to follow, we will illustrate the utility of using this reduction in the
analysis of various limit cycle oscillators. For a system which displays limit cycle
oscillations, the general procedure for reducing the dynamics to (47) involves the
following steps:

1. Identify the periodic orbit, x? and use the adjoint equation (16) to calculate the
PRC (this information would allow for the standard phase reduction (9).

2. The hyperplane orthogonal to the PRC at & = 0 provides a linear approximation
to the I'g Poincaré surface (the & = 0 isochron). Linearize the resulting Poincaré
map about its fixed point. The non-unity eigenvalues and associated eigenvectors
of the linearization are used to define isostable coordinates as in (24).

3. For all isostable coordinates ; for which A; is not near zero, calculate the IRC
according to (31). Isostable coordinates v; for which 4; is close to zero can usually
be ignored because they decay quickly.
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4. Calculate the Hessian matrices Hp xv (9) and Hy, v (g) for all isostable coordinates
which are included in the reduction according to Egs. (19) and (44).

5. Numerically calculate all functions p; according to (37) associated with all
isostable coordinates which are included in the reduction.

6. The information from steps 1-5 is used to calculate the reduced equation (47).

4 Examples

In the sections to follow, we will investigate the use of the reduction strategy proposed
in this work in three limit cycle oscillators. The first application is relatively simple so
that the gradient and Hessian of the phase and isostable coordinates can be calculated
analytically. Subsequent examples will highlight biological applications for which
numerical computation of all required functions using the strategies detailed in the
previous sections are necessary.

4.1 Step-by-step reduction of the radial isochron clock

Here, we apply the reduction strategy to the radial isochron clock (3) and explicitly
walk through the steps required as listed in Sect. 3.4. While reduction in this example
can be found analytically, we note in each step how it could also be approximated
numerically.

Step 1: As shown in the introductory section, in the absence of external perturba-
tions, this system (3) settles to a periodic orbit x” (9) that traces out a circle of radius
1 and moves in the counterclockwise direction. The PRC is the appropriately normal-
ized periodic solution to the adjoint equation (16). Additionally, in this example using
tan(f) = b/a, one can derive the PRC directly:

Z(0) = Virp)f = [_Cslsrzg)] . (49)

Step 2: At 6 = 0, the vector [1 0] is orthogonal to the PRC. Therefore, near the
periodic orbit at & = 0, the x-axis gives a linear approximation to the Iy Poincaré
surface. The fixed point of the resulting Poincaré map, P(xg,) = X, is satisfied by
xg, = [1 017. Using the transformation to radial coordinates from (4), we know the
dynamics of the r direction are independent of 8 in the absence of external perturbation,
therefore, the linearization of the Poincaré map near the fixed point is

P (x —xq)) = |:)61 (1):| (x —xg) + O ((x — x90)2> , (50)

Furthermore, the dynamics of the radial coordinate have the analytical solution

expot
Jexp2or +1/r2(0) — 1

r(t) = (G
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One can verify analytically that as time approaches infinity,

1 1
rit)—1= 3 [1 — W} exp(—20t1). (52)

Using (52) we find that over the course of one revolution, r(t + T) — 1 =
exp(—4mo)(r(t) — 1) so that Ay = exp(—4no) and that k1 =log(h1)/T = —20
(recall that the return time T = 2x time units). From (52), and the definition of
isostables from (24), one can show that

Yi() = Jim [ V@, ) = xa) exp(=loghig /T,

1 1 J .
[10] [7 (1 - r2(0)2 eXP(_‘”F)} exp(otl),

! 1 —1 53
5[ _ﬂ(O)] &)

In the second line, we use the fact that V is the identity matrix and that r = a when
the system crosses the Poincaré section. Numerically, we could instead find A as the
non-unity Floquet multiplier of linearization about the periodic orbit with V being a
matrix of corresponding eigenvectors.

Step 3: In this example, we have a single isostable coordinate which represents
perturbations in the radial direction. The IRC can be calculated numerically as the
%ppropriately normalized ggriaodic solution to (31). For this example, by noting that

1 or

W _ 9y or 9 _ 9y or i -
a2 = 3, 5g and ;b = k4, we can also analytically derive

T1(0) = Varoy i = [zfj((g))] . (54)

Step 4: In order to determine how perturbations affect the system when it is per-
turbed from the limit cycle, Hessians of the phase and isostable coordinates must
be calculated. This computation can be performed numerically, where Hy ,» ) and
Hy, v 9) are appropriately normalized periodic solutions of (19) and (44), respec-
tively. Notice that Eqgs. (19) and (44) require knowledge of the PRC and IRCs,
respectively. One can verify the following relation through direct differentiation of
the PRC and IRC from steps 1 and 3:

" _ sin(26) sin2(0) — cos2(0)
0270 = lsin2(0) — cos?(6)  —sin(26)
_ [-3cos?(®) + sin®(6) —25sin(26)
Hyy o) = [ —25in(26) —3sin%(0) +cos2(6):| : (55)
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Step 5: The function p relates the isostable coordinate to its location in the original
a-b coordinate system. Using the definition given in (37),

1
p1(0) = = [¢(0(v)/w, €v; + xg,) exp(—k1T) ] — $(O(2) /@, xp,),

€
= 2 [p0@ /0,10 +0 0 exp—x10)] ~ $O(@) /0, 11 01
= - , p(—k17)| = $(O(0) /. [1 01"),
1

(1 4+ €)exp(—201) cos(0) cos(6)
(e"p 207 [(1 +€) exp(—207) sin(@)] - |:sin(9)i| )

€
| cos(®@)
- |:sin(0)i| ’ (56)

In the third line, we use r(¢) — 1 = (r(0) — 1) exp(—20t) for r(0) close to 1. While
equation (56) gives an exact solution for p; (@), analytical solutions may not always be
possible. If instead the system (3) was not analytically tractable, a numerical approx-
imation pp(6) could be obtained instead by first letting x; = x7(0) + [e 017 =
[(1 + ¢) 0]7. Note here that x; is on the 8 = 0 isochron and that Y1(x1) = €. The
value p1(0) can then be approximated according to (37) as,

21(0) = exp(—k11) [d)(@(fz/w,m) —xy(é’)]’ 57)

which can be computed numerically.
Step 6: The full equation (3) can be rewritten in phase and isostable coordinates as

6 =0w+[22©) + 11O )
= 0+ [c0s(6) — 11 cos(6) g 1),
Y1 =k + [Z0@) + D )| s
= K1y + [sin(6) = 3y sin(©)] g(0). (58)

with the convention X (8) = [X*(0) X?(©)]" for X = Z, Cy, 3, D).

Figure 2 gives a visual representation of the reduced system (58). The left panel
shows the limit cycle as a thick black line, and isostable coordinates ¥ = —1.5,
and 0.25 are represented as dot-dashed lines. An arbitrarily chosen trajectory x () is
shown as a dashed blue line. The top-right and bottom-right panels give the gradient
of the phase and isostable coordinates, respectively, evaluated at x(¢). Here, exact
values are calculated directly from the phase and isostable coordinates. The first order
approximation is shown as dot-dashed blue line and is taken from the gradient of the
phase and isostable coordinates along the periodic orbit, as is the case for the stan-
dard phase reduction. The second order approximation inferred from (58). For values
farther from the periodic orbit, the first order approximation suffers dramatically, and
the second order approximation provides a significantly better representation of the
reduced dynamics.
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Fig. 2 The left panel shows level sets of two different isostable values for the system (3). An example
trajectory, x(¢) is shown with a dashed blue line. The top-right (resp. bottom-right panel) gives d6/db
(resp. d1 /db) evaluated at x (¢). The exact values are calculated directly from the gradient of the isostable
and phase coordinates. The second order approximation is obtained from (58), for example, d6/db ~
zb©) + 3} C{’ (60). The first order approximation is obtained from the gradient evaluated at the periodic
orbit, for example, d0/db ~ zb (6) (color figure online)

4.2 Control of a model for circadian oscillations

In this section, the reduction strategy is illustrated in a model for gene regulation
(Gongze et al. 2005) which has been used to model for oscillators within the suprachi-
asmatic nucleus which give rise to circadian oscillations:

X = v K /(KT 4+ W") — 02X/ (Ky + X) + u(t),
Y =k3X —vgY/(Ks+ Y),
W = ksY — vgW/ (ke + W). (59)

In this model, X denotes the mRNA concentration of the circadian clock gene per
or cry, Y represents the associated PER or CRY protein concentration, and W gives the
concentration of the active protein or its nuclear form. In this model, u (¢) represents an
external light perturbation. We use the nominal parameter set from Figure 1 of Gonze
et al. (2005). In the absence of external perturbation, the model settles to a limit cycle
solution with natural period 7 = 23.54 hours.

In this example, we choose 8§ = 0 to correspond to the moment when X reaches
its maximum value on the periodic orbit. A Poincaré return map is defined using the
6 = 0 isochron as the Poincaré surface, and the non-identity eigenvalues of the linear
approximation are numerically determined to be A; = 0.951 and A, = 6.14 x 107°.
In the phase and isostable coordinate transformation to follow, we will neglect the
Yr» isostable coordinate associated with A;; any perturbations in this direction rapidly
decay, and will assume it is approximately zero. Based on the values of the parameters
T and A1, o = 0.267 and k1 = —0.0021. The right panel of Fig. 3 shows the
periodic orbit, x”, as a thick black line. The thin black lines show orbits representing
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d9/dX
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Fig. 3 The left panels show how the gradient of the phase and isostable coordinate changes as a function
of both phase and isostable. Dots give numerical approximations using the direct method. Solid lines are
calculated according to the reduction (60). Here, /1 = 0 corresponds to a location on the limit cycle. The
right panel shows the limit cycle solution x? as a black line. The trajectory extends outward for larger
isostable values
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Fig. 4 Relevant parameters in the reduction of (60). The left panels show ZX(#) and IlX (0), which
represent the effect of perturbations in the X direction on the phase and isostables when the oscillator is

on the limit cycle. Near, but not on the limit cycle, C lX (0) and Di’X(Q) provide corrections based on the
isostable value. These corrections are obtained by calculating the second order partial derivatives of the
phase and isostable coordinates, according to equations (19) and (44), and shown in the top-right panels

xY(0) + 1 p1(0); initial conditions along these isostable values will spiral in towards
the periodic orbit in the absence of external perturbations.

The circadian system (59) is more complicated than the radial isochron clock from
the previous section, and the gradient and the Hessian of the phase and isostable coor-
dinates must be calculated numerically at locations along the periodic orbit. Fig. (4)
gives the results of these calculations. Because we only have the ability to perturb
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in the X direction, ZX(0) and Z;(0) are shown in the left panels of Fig. 4, where
Z©) = [2%©) z¥(©®) ZzV (@) and ;) = [Z{ ) Z} () Z|" (9)]T. Matrices of
second derivatives Hy v 9) and Hy, v () are calculated by finding the appropriately
normalized periodic solution to (19) and (44), respectively. Only the second partial
derivatives with some component in the X direction are of interest in this reduc-
tion, and these are shown in the top-right panels of Fig. 4. Here, we use the notation
Oup = (dj)z%. These partial derivatives are used to calculate C1(0) and D}(G) as
defined in (48) and are shown in the bottom-right panels. The system (59) can then be
rewritten in the form of (47) as:

b=w+ [ZX(G) 4 wlcf‘(e)] u(o),

J1 = ki + [T + i DX ©)| ), (60)

where CX(0) = el Hy v (9yp1(6), D1 (0) = el Hy, 1v(9yp1(6), and e; = [100]7 .

To implement the standard phase reduction as in (2) it would only be necessary to
calculate and use Z(0). However, following the strategy from Sect. 3.4 to implement a
second order reduction, (60) takes into account how the gradient of phase and isostable
coordinates change with varying values of ¢{. Near the periodic orbit (i.e. for small
values of V1), d0/dX and dy/dX are well approximated by ZX (6) + wlclx(e)

and IIX(Q) + xplD}’X(G), respectively. In the left panel of Fig. 3, d6/d X is calcu-
lated according to the reduction (60) at different values of | and 6. These values are
compared to discrete measurements with the direct method (Izhikevich 2007; Netoff
and Schwemmer 2012), whereby a small perturbation AX is applied to the oscilla-
tor, the resulting phase (resp. isostable) change is measured as A0 (resp. Ayrp), and
the gradient of the phase (resp. isostable) coordinate is approximated by A6/AX
(resp. Ayr1/AX). Overall we see good agreement between predictions and numerical
observations.

Because the gradient of the phase and isostable fields can change significantly even
for small isostable values, we would expect that control of the system (59) would be
more accurate using (60) when compared to a strategy which does not correct for these
changes, akin to the reduction used in Wilson and Moehlis (2016) where C 1X (@) and

D{’X (0) are not taken into account. To illustrate this, we choose a control objective
of optimally speeding up or slowing down the period of the circadian system, which
is relevant to the problem of mitigating the symptoms of jet-lag (Bagheri et al. 2008;
Serkh and Forger 2014; Dean et al. 2009), and may also be of relevance in treating
patients with advanced or delayed sleep phase syndrome (Crowley et al. 2007; Xu
et al. 2005; Wilson and Moehlis 2014). Here, we will consider all stimuli «(#) which
evolve 6(0) = 0, ¥1(0) = 0 to the final condition 6 (Tgoa1) = 27, V1 (Tgoa) = O at
some prespecified time Tgo,1. In order to find the stimulus which minimizes the control

effort, defined as fOTgM' u?(r)dt, we define a cost functional

Cald, @, u(®)] = () + &110 — 0 = [ 2X©0) + viCF©) |u)
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+ &l v = [T @) + D ¥ © Jum). 6D

In the above cost functional, & and &, are Lagrange multipliers which force the
dynamics to satisfy the reduction (60) and ®(¢) = [6(¢), ¥1(¢), &1(¢), &E2(2)]. We also
define a second cost functional

Cpld, @, u()] = u*(t) + £1{6 — @ — ZO)u(D)} + &y — k191 + L1 (O)u(D)).
(62)

which differs from (61) in that it ignores the corrections CX(6) and D, (6). The
reduced equations whereby C lx (0) and Dl1 ’X(G) are neglected as in (62) are similar
to those obtained in Wilson and Moehlis (2016). For each cost functional, the Euler-
Lagrange equations used to solve this calculus of variations problem are Kirk (1998)

9 _ d (3G 0G _ d (9C (63)
du  dr\ou )’ ad  dr\ad )’

with k = A, B. For both cost functions, optimal solutions satisfy (63) with boundary
conditions 6(0) = 0, 0(Tgoa)) = 27, ¥1(0) = 0 and Y1 (Tgoa) = 0. In order to satisfy
this two-point boundary value problem, the correct choice of £;(0) and &;(0) must
be found. These can be calculated, for example, using methods that rely on Newton
iteration (Ascher and Petzold 1998). Results using the cost functionals C4 and Cp are
presented in Fig. 5 with solid and dotted lines, respectively. The optimal stimuli, u*,
from each cost functional look qualitatively similar with those for Ty = 22 and
25 hours shown in the top-left and top-right panels of Fig. 5, respectively. When the
optimal stimuli are applied to the full equations (59), the top-right panel compares the
actual time at which 6 = 0, denoted by Ty to the prescribed time Tgoa1. Similarly, the
bottom-right panel shows the value of V1 (Tgoa1) after each control is applied to the full
system. We find that the optimal stimuli obtained from C4 are more accurate than those
obtained without correcting for changing phase dynamics. This is particularly apparent
at for values of Tyo, Which are farther away from the natural period of T = 23.54
hours. This happens because a larger change in the period requires more control effort,
which takes the system farther from the limit cycle. Optimal stimuli obtained from C4
explicitly correct for changing phase and isostable dynamics, and ultimately provides
an optimal control which satisfies the control objective better when applied to the full
system.

4.3 Adaptation to external input in a neural model

Phase reduction is a useful tool in neuroscientific applications. In periodically spiking
neurons, dynamics which give rise to neural action potentials can be understood in
terms of the phase of oscillation (Ermentrout and Terman 2010) rather the complicated
underlying state dynamics. Indeed, viewing neurons in terms of phase models has been
particularly useful to understand the emergence of synchronization and complicated
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Fig. 5 Comparison of the optimal control resulting from using cost functionals C4 and Cp as solid and
dotted lines, respectively. Left panels show the optimal waveform for two choices of Tgoa. When applying
the resulting optimal waveforms to the full system (59), the top-right panel compares the actual time at
which 6 = 0, denoted by Tact t0 Tgoa1. The grey line represents perfect agreement between the goal and
actual times at which 6 = 0. The bottom-right panel shows the value of | (Tgoa) Where the horizontal
grey line represents the goal of Y| (Tgoa1) = 0

spiking patterns in large populations of neurons (Hoppensteadt and Izhikevich 1997;
Tass et al. 2012; Azodi-Avval and Gharabaghi 2015; Wilson and Moehlis 2015).

One feature that standard phase models do not account for, however, is memory and
adaptation effects (Cui et al. 2009; Ermentrout et al. 2001; Vreeswijk and Hansel 2001)
whereby perturbations can have an effect on neurons on timescales that are slower
than a single oscillation. The notion of a higher-order PRCs (Maran and Canavier
2008; Netoff and Schwemmer 2012), or functional PRCs (Cui et al. 2009) has been
introduced to account for these effects in pulsed neural oscillators. While these effects
are often necessary to consider in order to make accurate predictions about a neural
phase locking behavior (Oprisan et al. 2004; Cui et al. 2009), such strategies cannot
account for continuous perturbations and do not provide intuition about the underlying
behavior responsible for the changing phase dynamics.

Here, we find that the reduction strategy proposed in this work can be used to
understand and predict how slowly changing variables can affect the reduced phase
dynamics leading to adaptation effects. We consider a three dimensional model for
neural spiking behavior presented in Rubin and Terman (2004):

CV=—=I(V)—=1Ins(V,h) — Ix(V, h)
— It (V,r) + Isy + Text (2),
h = (hoo(V) = h)/Ti(V),
F=(reo(V) = 1)/ (V). (64)
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Fig. 6 The top panel shows the limit cycle solution x¥ as a solid black line. Positive isostable values
correspond to the state increasing in the r-direction. The periodic orbit is represented as a function of 6 in
the middle rows, along with p1(0) in the bottom rows, which shows how the state changes as a function of
6 and

Here, V represents the transmembrane voltage, & and r are gating variables, C =
1 /,LF/CI’I]Z is the membrane capacitance, Isp = 5 nA/uF is the and Iex () is an
external voltage perturbation. When I (f) = 0, the system settles to a periodic
limit cycle solution with natural period 7 = 8.395 ms. The limit cycle solution
xV(0) = [VY(6) hY () r¥(0)] is shown in the second row of Fig. 6. In this model,
we take, & = 0 to correspond to the moment that a neuron on the limit cycle spikes,
taken to be the time it reaches its maximum transmembrane potential. A Poincaré
return map is defined with respect to the & = 0 isochron and the values of the non-
identity eigenvalues of its linear approximations are numerically determined to be
A1 = 0.828 and X, = 0.045. Similar to the previous example, we will approximate
the ¢¥» &~ 0 (the isostable coordinate associated with Ay) as perturbations in this
direction decay rapidly on the time scale of a single neural spike. Based on the values
of the parameters 7 and A1, @ = 0.748 and x1 = —0.023. The periodic function
p10) =1 pY(G) pﬁ' ©) p} ()17 (which is defined in (39) and how the state changes
as Y1 changes) is calculated numerically using the approximation (37), and shown in
the bottom row of Fig. 6. The top panel of Fig. 6 plots x” as a solid curve. Dotted curves
show that increasing values of 11 correspond to increasing values in the r-direction.

To illustrate the effect of memory in the neural model (64), consider the application
of §-function pulses at 8 ms intervals so that Iy = ad(mod(z, 8), with o being a
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Fig. 7 In the top panel, red and blue voltage traces show the steady state behavior of (64) is entrained
to 10 V (resp. —10 V) perturbations applied at 8.1 ms (resp. 8.7 ms) intervals. The black tracerepresents
the limit cycle solution for reference. The bottom panel shows 06/9V for each trajectory calculated using
the direct method (Izhikevich 2007) with each color corresponding to the trace from the panel above. We
interpret a shifting value of 90/90V as adaptation, which is observed for negative perturbations, but not
positive voltage perturbations (color figure online)

constant determining the magnitude of the perturbation. Here we will consider values
of B close to the natural period so that the oscillator entrains in a 1:1 locking pattern to
the pulsatile stimulus. The top panel of Fig. 7 shows examples a neuron entrained to
a stimulus witho = 10 mV, 8 = 8.1 ms, (resp. « = —10 mV, 8 = 8.7 ms) with red
(resp. blue) traces after allowing sufficient time for the transient behavior to die out. We
also show an unperturbed neuron orbiting on the limit cycle as a black trace. The bottom
panel gives the phase response for voltage perturbations evaluated numerically using
the direct method (Izhikevich 2007) by applying a voltage perturbation AV ataknown
phase (i.e. isochron) and calculating 00/0V ~ A6/AV, with A6 being the measured
phase change due to the perturbation. Compared with the unperturbed system, after
the system adapts to the negative perturbations, d6/0V is shifted significantly to the
right while the positive perturbations have little overall effect on adaptation.

Using the reduction (65), we can investigate the adaptation response of this
neural system to these periodic, pulsatile inputs. The PRCs and IRCs, Z(0) =
[(zV®) ") 2" and 7,(0) = [Z} (©) I!'(®) T} ()] are calculated using
(16) and (31), respectively. In this example, we can only perturb the voltage vari-
able, and ZV (9) and lV (0) are shown in the left panel of Fig. 8. As in the previous
example, Hg yr(9) and Hy, v g) are calculated using (19) and (44), respectively. The
partial derivatives with components in the V direction contribute to the reduction
and are shown in the top-right panels. These functions are used in conjunction with
p1(0) to calculate C1(0) and Dl1 (0). The neural system (64) can be approximated by
a reduction of the form (47):
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Fig.8 Relevant parameters in the reduction of (64). Left panels show the PRC, Z v (0) and the IRC, Z 1V )

for perturbations in the voltage direction. C IV(G) and D}’V (6) provide corrections to the gradient of the
phase and isostable coordinate, respectively, when the state is not on the limit cycle. These corrections are
obtained using second order partial derivatives of the phase and isostable coordinates, calculated according
to (19) and (44), respectively, and shown in the top-right panels

i=0+[2) + il @] L),

= ke + [IIV ©) + wlD}’V(e)] Lt (1), (65)

where, similar to the previous example, CIV(H) = elTHg,xy(g)pl(Q), Dll’V(Q) =
e1Hy, xv@yp1(0),and ey =[10 017.

Letting Ix¢(t) = ad(mod(z, B)), where §(¢) is a delta function, B sets the rate of
pacing, and « represents the magnitude of perturbations applied to the neuron. The
dynamical behavior of the reduced system can then be understood in terms of a series
of maps. By integrating (65) over the pulsing period, an initial condition [0, ¥, ]
corresponding to a time immediately proceeding a perturbation is mapped to

0" =mod(0~ + wp +alZ"(07) + ¥, C (07)],27),
v = Yy +alZl @) + vy DY 07)]) explci ). (66)

Note that in (66), we assume that « is small enough so that the effect of delta
function pulses can be well approximated with knowledge of gradient of the phase
and isostable coordinates. We numerically calculate fixed points of (66), denoted by
[6°°, ¥7°], for various choices of & and B. In this example, we are interested {* for
these fixed points, as they determine the level of adaptation induced by the periodic
perturbations. These values are shown in left panel of Fig. 9. For positive perturbations,
Y is relatively close to zero and 96/9V does not change much compared to the
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Fig.9 The left panel gives the steady state value of wa of the map (66) indicating that significant adaptation
is expected for negative perturbations while little adaptation is expected for positive perturbations. White
indicates that the map has no fixed points those particular parameter values. Black dots in the left panels
indicate parameter sets for which are investigated in the full model. Right panels illustrate the adaptation
seen in the full model, when paced with the indicated parameters

unperturbed system. Negative perturbations, however, tend to result in much larger
values of /7, particularly when they are close to the natural period. This effect can
be seen by the change the value of 96/0V for neurons with different pacing histories.
For instance, in the top-right panel of Fig. 9 a single neuron is paced with a period
B = 8.6 ms with pulses that perturb V by —4 mV. Once the neuron reaches steady
state (i.e. the paced dynamics become periodic), the pacing is turned off. In these
simulations, we denote the time of the final pulsatile perturbation by #,. Individual dots
represent direct measurements of 6 /9 V. The solid line represents the approximation
00/0V ~ Z VO)+yC lv () using initial conditions determined from the fixed point
of (66). For comparison, the dashed line gives an approximation which does not
account for adaptation, (i.e. 06/0V ~ ZV(9)). The same test is implemented in the
bottom-right panel of Fig. 9 with a period § = 8.2 ms for pulses which perturb V by 4
mV. As expected from the left panel of Fig. 9 even though the magnitude pulsing is the
same, this parameter set does not produce much adaptation and both curves are nearly
indistinguishable from each other. As 1/{° becomes larger, nonlinear terms begin to
degrade accuracy of the prediction of 36 /9V, however, the qualitative prediction of a
shift to the right as /[ increases continues to hold.

5 Discussion and conclusion

Phase reduction continues to play in important role in the understanding of nonlinear
limit cycle oscillations. Central to the utility of phase reduction is the assumption
that an oscillator is on or close to its periodic orbit, limiting the magnitude of per-
turbations that can be applied without invalidating the assumptions of the reduction.
In this work we have developed a closed set of reduced equations which correct for
changes to the phase dynamics at locations further from the limit cycle. The reduction
strategy presented here can be seen as a second order correction to the standard phase

@ Springer



Greater accuracy and broadened applicability...

reduction (9). While standard phase reduction techniques assume the state dynamics
remain close to a one-dimensional subspace (the periodic orbit), the strategy presented
here explicitly allows the state dynamics to exist on a higher dimensional subspace,
necessitating the use of additional isostable coordinates in the overall reduction (47).
The dynamics in some of these subspaces may decay rapidly allowing them to be
effectively ignored, similar to the notion of an inertial manifold of a high dimensional
system (Constantin et al. 1989; Foias et al. 1988; Jolly et al. 1990). In this case, even
though a periodic orbit may be embedded in a high dimensional space, the reduced
equations still represent a significant reduction in the complexity and dimensionality
of the system if the exponential decay of some isostable coordinates is rapid.

The calculation of the second order partial derivatives of the phase and isostable
coordinates are computationally intensive and may be a limiting factor for the applica-
tion of this control strategy, especially in higher dimensional systems. Most notably,
for the computation of PRCs and IRCs, the dimensionality of equations (16) and (31)
scale with the number of state variables in the system while equations for finding the
second partial derivatives, (19) and (44), scale with the square of the number of state
variables. It may be of interest to develop strategies for the computation of these higher
order partial derivatives using strategies with computational complexity which does
not grow quadratically as the number of state variables increases. One such avenue
of exploration may be to use the properties of the Koopman operator (Budisi¢ et al.
2012); previous authors have noted that isostable coordinates can be defined as level
sets of certain eigenfunctions of the Koopman operator (Mauroy et al. 2013; Shirasaka
etal. 2017). Leveraging this property could lead to more efficient algorithms for com-
puting isostable coordinates of large systems, particularly at locations far from the
limit cycle.

While the reduction strategy presented here allows for a better understanding of
phase reduced oscillators which have been perturbed from their nominal limit cycles,
they still must remain reasonably close to their limit cycles to ensure accuracy of the
reduction (47). While the accuracy may degrade due to higher order effects which are
not explicitly accounted for by the approximation, it will still outperform the standard
phase reduction (2) in most applications. In future work, it may be of interest to extend
the reduction to include third order or higher corrections to the dynamics in (12).

The biologically inspired applications presented in this work illustrate some of
the advantages of using the reduction (47) over a standard phase reduction (9). In a
simple model of a circadian oscillator (59) an optimal control problem solved using the
corrected phase reduction provides control signals which are much more effective than
when using the uncorrected equations. Such a result is perhaps not surprising as the
corrected phase reduced dynamics provide a better representation of the unreduced
system. As perturbations become stronger, the corrected equations still suffer from
similar limitations as the uncorrected phase equations, however, they will still give a
better qualitative description.

This reduction strategy can also explicitly account for adaptation and memory
effects that occur in a model based on the history of external perturbations applied
to a model. This point is illustrated in a model of neural spiking, where we find that
adaptation is a function of both the timing and magnitude of perturbations given in the
model. When comparing the results presented here to other work on neural adaptation
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it is important to note the definition of phase. Here, we define phase with respect to the
infinite time convergence to the periodic orbit using isochrons (6), while others (Maran
and Canavier 2008; Cui et al. 2009; Oprisan et al. 2004) define it with respect to the
timing of the next spike with respect to the baseline firing rate. Both definitions have
benefits and drawbacks, and it may be interesting to develop strategies to transform
the reduction (65) from one definition of phase to the other. Neurons are not the
only biological system which can adapt to external perturbations. For instance, the
dynamics of excitable cardiomyocytes are strongly dependent on their pacing history
(Tolkacheva et al. 2003; Cherry and Fenton 2004; Rosen and Cohen 2006). The present
strategy might be able to be useful in the study of cardiological applications and where
transient perturbations can have long lasting effects on system.

Acknowledgements Support for this work by National Science Foundation Grant NSF-1602841 is grate-
fully acknowledged.
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