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Abstract. While phase reduction is a tremendously useful tool for understanding the dynamics of
weakly perturbed limit cycle oscillators, its assumptions break down as perturbations be-
come larger, limiting its practical utility in many applications. This fundamental limitation
is often apparent when studying coupled populations of oscillators when the collective be-
havior approaches a limit cycle with transient behavior that decays slowly. Using the
notion of isostables of periodic orbits, which define a coordinate system transverse to the
limit cycle, we develop a strategy to augment the standard phase reduction in large pop-
ulations of coupled oscillators to allow for the application of larger perturbations. The
resulting augmented phase reduction yields a tremendous decrease in model complexity
with a resulting dimensionality that does not depend on the number of oscillators in the
population. Additionally, the augmented phase reduction replicates model behavior that
standard phase reduction cannot. Finally, we propose and implement a direct method
for the application of augmented phase reduction that would be applicable in systems of
biological oscillators. Applying the augmented phase reduction to a model of coupled cir-
cadian oscillators yields novel insight about the possible mechanism behind the difference
in reported jet-lag severity between eastward and westward travel.
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1. Introduction. The biological oscillations necessary for sustaining life are usu-
ally composed of a large number of periodic oscillators, each communicating on a
microscale to give rise to an organism's macroscale behavior. For instance, periodi-
cally firing neurons in different brain regions give rise to the brain rhythms that are
associated with perception, cognition, and sensation [38], [1], [8], [24]; oscillators in
the suprachiasmatic nucleus (SCN) entrain to an external 24-hour light-dark cycle in
order to maintain circadian time [70], [16]; and pancreatic islets must coordinate their
periodic release of insulin in order to control blood sugar levels [54], [45]. Due to their
often parallelizable nature, and with the advent of distributed computing hardware,
it is now possible to simulate detailed numerical models of these biological systems.
While such numerical simulations are useful for hypothesis testing and developing
intuition about these systems, their sheer size and complexity can make it difficult to
understand the underlying mechanisms driving a system's behavior.

One strategy that can be used to reduce the complexity and dimensionality of
these large and complicated models is phase reduction, whereby a system of the form

(1) \.\bfitx = \bfitF (\bfitx ) + \bfitP (\bfitx , t), \bfitx \in \BbbR n,

where \bfitx is the state vector, \bfitF gives the unperturbed dynamics, and \bfitP is an external
perturbation, can be reduced to a scalar system,

(2) \.\theta = \omega +\bfitZ T (\theta )\bfitP (\bfitx (\theta ), t).

Here, \theta \in [0, 2\pi ) is the oscillator's phase, \omega is the unperturbed natural frequency,
and \bfitZ (\theta ) \in \BbbR n is the infinitesimal phase response curve (iPRC) to external per-
turbations. Phase reduction, a well-established and particularly useful strategy for
studying weakly perturbed oscillatory dynamical systems, has had many applications
in the physical and biological sciences [70], [20], [36], [29], [15].
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NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 279

In principle, phase reduction can be applied to any system that admits a stable
periodic orbit, including those comprised of large populations of coupled oscillators.
Previous authors have studied the phase response properties when (1) is itself a pop-
ulation of phase oscillators [33], [31], [40], [35], where in many cases it can be shown
that the iPRC of the population oscillation is a function of the iPRCs of the con-
stituent oscillators. Furthermore, the population need not be finite, and in the limit
as the number of oscillators in a population approaches infinity, the system can be well
approximated by studying the dynamics of its probability distribution function [31],
[40], from which iPRCs can be obtained. Practically, when studying a large popula-
tion of oscillators, phase reduction works best when perturbations are small, or close
to infinitesimal. Larger perturbations can drive the population away from its limit
cycle over time and invalidate the phase reduction (2). Indeed, in large populations
of oscillators, when the phase response curve is measured using the direct method
results can vary depending on the distribution of oscillators during the application of
a perturbation [68]. This phenomenon, along with noise in the system, can lead to
significant variation in the measurement of iPRCs experimentally and in numerical
simulations [4], [26], [27].

Other experimental evidence suggests that while phase reduction can be a useful
tool to help gain theoretical insight about an oscillatory population of coupled os-
cillators, standard phase reduction (2) is usually not sufficient to fully characterize
the behavior of these complicated systems in response to external perturbations. For
instance, circadian misalignment due to jet-lag is known to last longer after eastward
travel, as compared to westward travel [51], [62]. This pronounced asynchrony is dif-
ficult to explain using a phase reduced model since for small enough perturbations,
reentrainment should occur on similar time scales regardless of the direction of the
shift. Also, the phase change of the circadian pacemaker in response to light pertur-
bations has been shown to scale nonlinearly with the applied light intensity in humans
[71] and fruit flies [12], a feature that cannot be predicted from the standard phase
reduced equations.

A number of authors have proposed to extend the applicability of phase reduction
when larger perturbations are applied. For instance, [37] and [53] propose a phase
reduction method that is valid for strongly perturbed oscillators with slowly varying
external input. The authors of [55] consider a related problem of an oscillator subject
to large amplitude, high-frequency perturbations. Others have taken an alternative
approach of computing phase coordinates throughout the basin of attraction of the
limit cycle [52], [11]; this strategy does not result in a reduction of dimensionality,
but is valid for arbitrary perturbations and has been shown to be useful in control
applications in low-dimensional settings [48]. Alternatively, others have explored the
possibility of augmenting the phase coordinate with amplitude coordinates that repre-
sent perturbations in directions transverse to the limit cycle [5], [34], [69], [58]. Most of
these methods are based on Floquet theory [30], which provides an elegant character-
ization of the structure of solutions of linear, time-varying periodic systems. Floquet
theory stipulates that for small perturbations to a limit cycle, the decay in transverse
directions can be described by a set of exponentially decaying, time-varying vector-
valued functions. With this in mind, the authors of [23] and [9] postulated using a
globally exponentially decaying coordinate system to represent the approach toward
a limit cycle and developed methods to compute such a coordinate system both in the
basin of attraction of the limit cycle and along specific trajectories for low-dimensional
systems. Additionally, [69] suggested using a coordinate system based on the notion
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280 DAN WILSON AND BARD ERMENTROUT

of isostables (cf., [43]), which represent level sets of initial conditions that approach
the periodic orbit together. Recently, it was shown that isostable coordinates could
be used to improve the accuracy of standard phase reduction [66].

In this work, we will focus on the augmented phase reduction developed in [66],
which provides a useful balance between accuracy and computational tractability.
Generally, periodic systems composed of a large number of coupled periodic oscillators
have a large number of nonnegligible isostable coordinates, limiting the utility of
this augmented phase reduction. However, as we will show, when the individual
oscillators are identical and coupled through a mean-field, only a small subset of
these isostable coordinates are necessary. With this augmented reduction, we find that
many behaviors can be replicated when standard phase reduction alone is insufficient.

This paper is organized as follows: In section 2 we give necessary background
information on isostables and isochrons and illustrate shortcomings of standard phase
reduction when applied to coupled oscillator models; this section represents a review
of the theory presented in both [69] and [66] with new examples chosen to provide
intuition about the utility of augmented phase reduction. The remainder of the pa-
per presents new results which use augmented phase reduction as a starting point.
Section 3 gives a strategy for augmenting the standard phase reduction of a large
population of oscillators by a small number of isostable coordinates to understand
behavior as perturbations become larger. We illustrate this strategy for a model of
coupled circadian oscillators in section 4 and find that the augmented reduction gives
a close approximation of the full system while adding only a small number of isostable
coordinates. For the same model, standard phase reduction does not provide a good
approximation of the system dynamics. Section 5 investigates a strategy for calculat-
ing an augmented phase reduction in experimental systems, akin to the direct method
[29], [50] for measuring phase response curves, and section 6 gives concluding remarks.

2. Background: Isochrons and Isostables of Coupled Theta Model Oscilla-
tors. In order to illustrate many of the concepts that will be important in the re-
mainder of this work, consider the following model comprised of two coupled theta
oscillators [13]:

\.T1 = 1 - cos(T1) + (1 + cos(T1))I1(t) + p1(t),

\.T2 = 1 - cos(T2) + (1 + cos(T2))I2(t) + p2(t).(3)

Here, T1, T2 \in [0, 2\pi ) so that when either T1 or T2 reaches 2\pi , it resets to zero,
I1(t) = I2(t) = 2 + sin(T1(t)) + sin(T2(t)) represent identical feedback coupling to
each oscillator, and p1(t) and p2(t) represent external perturbations. The coupled
theta model is often used as a minimal model to represent periodically spiking neural
behavior [46], [13]. In the absence of external perturbations, (3) admits a stable
periodic orbit, which we will refer to as \gamma (shown in the top panel of Figure 1), for
which both oscillators are synchronized, i.e., T1(t) = T2(t).

2.1. Isochrons and Phase Reduction. In many cases, it is useful to analyze a
system such as (3) in reference to its periodic orbit. To this end, one can define a
scalar phase \theta \in [0, 2\pi ) such that along the limit cycle, \theta = \omega , where \omega = 2\pi /T is
the natural frequency and T is the unperturbed natural period of oscillation. We will

refer to the state of the system along the periodic orbit \bfitx \gamma (\theta ) \equiv 
\bigl[ 
T1(\theta ) T2(\theta )

\bigr] T
and

let \theta = 0 correspond to the moment at which T1, T2 = 0 on the periodic orbit. One
can also extend the notion of phase to the basin of attraction of the limit cycle using
the concept of isochrons [70], [20], which are defined as follows: let \bfita (0) correspond
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NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 281

to an initial state of (3) in \gamma , then the isochron associated with \bfita (0) is the set of all
initial conditions \bfitb (0) for which

(4) lim
t\rightarrow \infty 

| | \bfita (t) - \bfitb (t)| | = 0,

where | | \cdot | | can be any norm. Using this definition, the isochron of an initial condition
gives a sense of its asymptotic convergence to the periodic orbit. The middle-left
panel of Figure 1 shows the isochrons calculated for the nonlinear two-dimensional
system (3).
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Fig. 1 The top panel shows the state of T1 and T2 as a function of \theta for the system (3) on the stable
periodic orbit. The middle-left and middle-right panels show the fully nonlinear isochrons
and linearized approximation, respectively, for (3). The gray line in the left panel represents
an unstable periodic orbit which is not in the basin of attraction of the limit cycle. Using the
nonlinear isochrons, one can see that perturbations orthogonal to the periodic orbit (black
arrow and dots) can significantly advance the phase, a characteristic that is not observed
when using only a linear approximation to the isochrons. The bottom panel shows the phase
response curve for perturbations to either T1 or T2 as a function of phase.

While the global isochrons of a nonlinear dynamical system can display compli-
cated and even fractal patterns [52], it is often useful to reduce the dimensionality of
a system by assuming that it stays near its stable periodic orbit. In this case, one can
approximate (3) as a phase reduced equation of the form (2),

(5) \.\theta = \omega +\bfitZ T (\theta )\bfitP (t),

where \bfitP (t) \equiv 
\bigl[ 
p1(t) p2(t)

\bigr] T
and \bfitZ (\theta ) \equiv \partial \theta 

\partial \bfitx 

\bigm| \bigm| 
\bfitx \gamma (\theta )

. In essence, a phase reduction is

a linearization of the isochrons for a system close to its periodic orbit: the middle-
right panel of Figure 1 shows the result of this linearization for the system (3), and
the bottom panel shows the approximated phase response curve for perturbations to
either T1 or T2. Notice that for the linearized approximation, \partial \theta 

\partial T1
= \partial \theta 

\partial T2
, so that

perturbations of the form p1(t) =  - p2(t) do not change the phase of the system.
However, from the fully nonlinear isochron calculations, perturbations of this form
can indeed alter the phase of the system.
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282 DAN WILSON AND BARD ERMENTROUT

The coupled theta oscillator model (3) illustrates a significant limitation of phase
reduction when applied to small populations of oscillators. Specifically, it predicts
that the overall phase shift will be the sum of the phase shifts resulting from per-
turbations to each constituent oscillator. As illustrated in Figure 1, such a reduction
strategy cannot predict the phase shift caused by modifying the relative position of
these oscillators, for instance, with a desynchronizing pulse. While these points are
illustrated for two coupled oscillators, these limitations are also present for larger pop-
ulations of coupled oscillators. As we will show in the section to follow, augmenting
this reduction with isostable coordinates can overcome this limitation.

2.2. Isostables and Augmented Phase Reduction. In order to make the phase
reduction more accurate, one can also track the isostable coordinates, which represent
directions transverse to the periodic orbit. This section reviews some of the main
findings from [69], [66] which will be important in the results to follow. Of course,
when considering the example system (3), a transformed system with one phase and
one isostable coordinate is not really reduced, as the number of states in the original
model and transformed models are identical. Nevertheless, this example is helpful for
developing intuition for more complicated models.

To begin, consider a general system of the form (1) which admits a stable periodic
orbit, \gamma . Isostable coordinates of this periodic orbit can be defined by considering the
transient behavior of (1) near \gamma . If we consider any initial condition \bfitx (0) \in \Gamma 0, where
\Gamma 0 is defined as the \theta = 0 isochron, then by the definition of isochrons (4), this initial
condition first returns to \Gamma 0 at time T . By defining \Gamma 0 as our Poincar\'e surface, this
allows for the construction of a Poincar\'e map [64],

(6) \Upsilon : \Gamma 0 \rightarrow \Gamma 0; \bfitx \mapsto \rightarrow \phi (T,\bfitx ),

where \phi (t,\bfitx ) is the unperturbed flow of (1), and \Upsilon (\bfitx 0) = \bfitx 0 for \bfitx 0 \in \gamma . At all
locations in an n-dimensional neighborhood of \bfitx 0 (not just on the Poincar\'e surface),
\phi (T,\bfitx ) is well approximated by

(7) \phi (T,\bfitx ) = \bfitx 0 + J\phi (\bfitx  - \bfitx 0) +\scrO (| | \bfitx  - \bfitx 0| | 2),

where J\phi is the Jacobian of \phi (T,\bfitx ) evaluated at \bfitx 0 (not to be confused with J , the
Jacobian of the vector field of (1) as defined in Appendix A). If we suppose J\phi is
diagonalizable with real eigenvalues, let V \in \BbbR n\times n be a matrix whose columns form
a basis of unit length right eigenvectors \bfitv j with corresponding left eigenvectors \bfitu j
and eigenvalues \lambda j , for j = 1, . . . , n. These eigenvalues are also known as Floquet
multipliers, or characteristic multipliers of the system [21]. Because the linearization
(7) is defined for a stable periodic orbit, there is exactly one eigenvalue equal to one,
and the remaining eigenvalues have magnitude strictly less than 1. We will assume
that all eigenvalues are real. Without loss of generality, assume that all eigenvalues
are positive (if they are not, one can take the period to be 2T so that eigenvalues
are strictly positive), then for any 0 < \lambda j < 1, we can define an associated isostable
coordinate

\psi j(\bfitx ) = lim
k\rightarrow \infty 

\bigl[ 
\bfitu Tj (\phi (t

k
\Gamma ,\bfitx ) - \bfitx 0) \cdot exp( - log(\lambda j)t

k
\Gamma /T )

\bigr] 
,(8)

where tk\Gamma is the kth return time to \Gamma 0 under the flow and \bfitu j is used to select for the
component of the decay toward \bfitx 0 in the \bfitv j direction. The definition of isostable
coordinates considers the position of an oscillator in the basis of the eigenvectors of
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NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 283

J\phi as it exponentially converges to the periodic orbit and compares it with another
function which grows exponentially at the same rate. The limit of these two values
gives a scalar isostable coordinate; cf., [43], [69], [66]. We emphasize that (8) is valid
in the basin of attraction of the limit cycle, not just on \Gamma 0.

As an example, consider the coupled theta model (3). Near the periodic orbit,
\Gamma 0 can be approximated as the surface orthogonal to \bfitZ (0). Here, for states close to
the periodic orbit, the section mod(T1 + T2, 2\pi ) = 0 corresponds to \Gamma 0. A Poincar\'e
map of the form (6) can be defined with respect to this surface, whose linearization
is found numerically to be

(9)

\biggl[ 
T1(t+ T )
T2(t+ T )

\biggr] 
= \bfitx 0 +

\biggl[ 
0.55 0.45
0.45 0.55

\biggr] \biggl( \biggl[ 
T1(t)
T2(t)

\biggr] 
 - \bfitx 0

\biggr) 
for

\biggl[ 
T1(t)
T2(t)

\biggr] 
\in \Gamma 0.

The eigenvectors of this linearized map are \bfitv 2 =
\bigl[ 
1 1

\bigr] T
, \bfitv 1 =

\bigl[ 
1  - 1

\bigr] T
with

associated eigenvalues \lambda 2 = 1 and \lambda 1 = 0.1. Here \bfitv 2 corresponds to the periodic
orbit so that \bfitv 1 can be used to define the isostable coordinate \psi 1. Figure 2 shows
the isostable coordinates of (3) calculated according to (8). Compare this coordinate
system to the one defined by isochrons shown in Figure 1. While isochrons give
a sense of the progression through the periodic orbit, isostable coordinates give a
sense of how long it will take to approach the periodic orbit, with values of larger
magnitude corresponding to longer times. For instance, near the unstable periodic
orbit, | \psi 1| approaches infinity while values that are already close to the stable periodic
orbit have isostable coordinates with relatively small magnitude.

Fig. 2 For the coupled theta model (3), \psi 1 is evaluated directly by approximating the limit in (8).
Isostable coordinates give a sense of how long it will take the unperturbed dynamics to ap-
proach the stable periodic orbit.

For a general system (1), isostable coordinates can be particularly useful, as in
the absence of external perturbation, one can verify by direct differentiation of (8)
that \.\psi j = \kappa j\psi j , where \kappa j = log(\lambda j)/T . Switching to isostable coordinates via the
chain rule and assuming that the state is close to the periodic orbit we have

(10)
d\psi j
dt

= \bfitI Tj (\theta ) (\bfitF (\bfitx \gamma (\theta )) + \bfitP (t)) ,

where \bfitx \gamma (\theta ) is the state on the periodic orbit as a function of \theta and the infinitesimal

isostable response curve (iIRC) \bfitI j(\theta ) \equiv \partial \psi j

\partial x

\bigm| \bigm| 
\bfitx \gamma (\theta )

and can be calculated either directly
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284 DAN WILSON AND BARD ERMENTROUT

or using strategies discussed later. Because \.\psi j = \kappa j\psi j when \bfitP (t) = 0, this implies
that \bfitI Tj \bfitF (\bfitx \gamma (\theta )) = \kappa j\psi j , so that the above equation can be simplified to

(11) \.\psi j = \kappa j\psi j + \bfitI Tj (\theta )\bfitP (t),

which yields the isostable reduction from [69] and is analogous to the phase reduction
(5).

Equations (5) and (11) are first order accurate approximations to the phase and
isostable dynamics, respectively. In order to extend the accuracy of these equations,
it is necessary to relate the isostable coordinates to perturbations from the limit cycle.
As illustrated in [66], this can be accomplished using Floquet theory [19], [30], which
states that near the periodic orbit, the general structure of solutions can be written
as

(12) \bfitx (t) - \bfitx \gamma (t) =

n\sum 
j=1

cje
\kappa jt\bfitq tj(t),

where \bfitq tj(t) \in \BbbR n are T -periodic functions, \kappa j are the Floquet exponents defined
earlier, and cj are constants which are chosen to satisfy the initial conditions. Using
the definition of isostable coordinates (8), it was shown in [66] that for small enough
perturbations from the periodic orbit, the position of an oscillator can be written as

\bfitx (\theta , \psi 1, . . . , \psi n - 1) = \bfitx \gamma (\theta ) +

n - 1\sum 
j=1

\bfitq j(\theta )\psi j ,

(13)

where

\bfitq j(\theta ) = \bfitq tj(t\omega ),

\bfitq tj(t) \equiv 
[\phi (t, \epsilon \bfitv j + \bfitx 0) - \phi (t,\bfitx 0)] exp( - \kappa jt)

\epsilon 
(14)

for 0 < \epsilon \ll 1. The representation (13) above arises as a consequence of Floquet
theory [30]. Here, each function \bfitq j(\theta ) is related to the decay of the eigenvalues of
the linearized map (7). Furthermore, by calculating the Hessian matrix of partial
derivatives of isochrons and isostables along the periodic orbit, i.e., H\theta ,\bfitx \gamma (\theta ) \equiv \nabla (\nabla \theta )
and H\psi j ,\bfitx \gamma (\theta ) \equiv \nabla (\nabla \psi j), both evaluated at \bfitx \gamma (\theta ), we can derive the second order
accurate augmented phase reduction [66]

\.\theta = \omega + (\bfitZ (\theta ) +H\theta ,\bfitx \gamma (\theta )\Delta \bfitx )T\bfitP (t),

\.\psi j = \kappa j\psi j + (\bfitI j +H\psi j ,\bfitx \gamma (\theta )\Delta \bfitx )T\bfitP (t),(15)

where \Delta \bfitx = \bfitx (\theta , \psi 1, . . . , \psi n - 1)  - \bfitx \gamma (\theta ) and j = 1, . . . , n  - 1. Substituting (13) into
(15) yields the second order reduced dynamics in terms of the phase and isostable
coordinates,

\.\theta = \omega +\bfitZ T (\theta )\bfitP (t) +

n - 1\sum 
k=1

\bigl[ 
\bfitB kT (\theta )\psi k

\bigr] 
\bfitP (t),

\.\psi j = \kappa j\psi j + \bfitI Tj (\theta )\bfitP (t) +

n - 1\sum 
k=1

\bigl[ 
\bfitC k
j

T
(\theta )\psi k

\bigr] 
\bfitP (t)(16)
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for j = 1, . . . , n  - 1 with \bfitB k(\theta ) \equiv 
\bigl( 

\partial 
\partial \psi k

\partial \theta 
\partial \bfitx 

\bigr) \bigm| \bigm| 
\bfitx \gamma (\theta )

= H\theta ,\bfitx \gamma (\theta )\bfitq k(\theta ) and \bfitC k
j (\theta ) \equiv \bigl( 

\partial 
\partial \psi k

\partial \psi j

\partial \bfitx 

\bigr) \bigm| \bigm| 
\bfitx \gamma (\theta )

= H\psi j ,\bfitx \gamma (\theta )\bfitq k(\theta ). Finally, in high-dimensional models, it is often the

case that some \lambda j will be close to zero so that the resulting \kappa j is negative and large
in magnitude. In this case, the corresponding \psi j can generally be assumed to be
identical to zero and ignored from (16), resulting in a reduction in the dimension
compared to the original equation (1).

It should be noted that the amplitude coordinates used in (16) are not unique,
and other authors have been successful in using related strategies to understand the
behavior of stochastic limit cycle oscillators. For instance, [5] investigates both an
orthogonal basis and a basis chosen according to Floquet theory (similar to the one
used here) to investigate the behavior of stochastic differential equations; when using
the Floquet basis, it is possible to exploit the effective decoupling between the phase
and amplitude coordinates for small magnitude perturbations. Furthermore, [34] pro-
poses a drift-free stochastic differential equation to study the resulting phase noise
due to the inherent of randomness of chemical kinetics. In [60], a generalized set of
phase and amplitude coordinates is used to show how correlated noise can influence
the behavior of limit cycle oscillators. Additionally, [6] suggests defining a stochastic
phase using a variational approach in order to increase the accuracy of the resulting
phase equation over long time scales. The authors of [18] take an entirely different
approach in the investigation of oscillatory biochemical reactions under the influence
of molecular noise by directly analyzing a Fokker--Planck equation derived from the
chemical master equation in the weak-noise limit. Clearly, phase and amplitude coor-
dinate systems have been immensely useful for characterizing behavior of perturbed
and noisy limit cycle oscillators.

2.3. Augmented Phase Reduction for the Coupled Theta Model. As shown
above, the coupled theta model (3) can be transformed to a system with one phase
variable \theta and one isostable coordinate \psi 1 which gives information about its state
with respect to its stable periodic orbit. Therefore, the augmented phase reduction
of the form (16) will require the calculation of four functions: \bfitZ (\theta ),\bfitB 1(\theta ), \bfitI 1(\theta ), and
\bfitC 1

1 (\theta ). These can be calculated using one of two different strategies, either directly
from the globally calculated isochron and isostable coordinates as shown in Figures 1
and 2, respectively, or as the solution to the adjoint equation [14], [7] and its second
order analogue detailed in [66]. Appendix A details strategies for calculation of these
functions. Having performed the calculation, the transformation (16) can be used on
(3) to investigate its utility.

Equation (16) can be thought of as a second order correction to the standard phase
reduction (5). To illustrate the advantage of this correction, consider a second order
approximation of the isochrons of (3) shown in the left panel of Figure 3 calculated
according to a second order accurate expansion

(17) \theta (2)(\bfity ) = \theta (\=\bfity ) +
\partial \theta 

\partial \psi 1
\Delta \psi 1 +

1

2

\partial 2\theta 

\partial \psi 2
1

\Delta \psi 2
1 ,

where \bfity \equiv 
\bigl[ 
T1 T2

\bigr] T
, \=\bfity = 1

2

\bigl[ 
(T1 + T2) (T1 + T2)

\bigr] T
, \Delta \psi 1 = \partial \psi 1

\partial \bfity 

T
(\bfity  - \=\bfity ), and all

derivatives are evaluated at \=\bfity . Compared to the isochrons of the full system in the left
panel of Figure 1, the second order approximation is significantly closer than the linear
approximation. For this reason, we would expect the transformation of the form (16)
to be significantly more accurate than the standard phase reduction (5) in predicting
the behavior of the unreduced equations (3), particularly for perturbations for which
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286 DAN WILSON AND BARD ERMENTROUT

Fig. 3 The left panel shows a second order approximation to the isochrons of (3) calculated ac-
cording to (17). The right panel compares the effect of pulsatile perturbations of the form
[p1(t) p2(t)] = [\rho  - \rho ] applied for T/20 time units to the full equations (3) (black lines)
and the transformed equations (16) (red lines). For comparison, standard phase reduction
predicts \Delta \theta = 0 at all phases.

p1(t) \not = p2(t). Indeed, the right panels of Figure 3 compare the results of applying
perturbations of the form

\bigl[ 
p1(t) p2(t)

\bigr] 
=
\bigl[ 
\rho  - \rho 

\bigr] 
for different initial conditions

which start on the limit cycle and last for T/20 units of time. The resulting \Delta \theta 
values show the change in phase caused by these perturbations. For relatively small
perturbations, the phase differences from the full equations (3) (black lines) and the
transformed equations (16) (red lines) are nearly identical. As the magnitude of the
perturbation grows, however, discrepancies do emerge between the two models (recall
that the standard phase reduction (5) would predict \Delta \theta = 0 for all perturbations).
Also note that the change in phase between these perturbations grows nonlinearly
with the magnitude, an effect that could not be predicted using the standard phase
reduction (5).

As mentioned earlier, the transformation of (3) to (16) neither reduces the di-
mensionality nor simplifies the model equations. Instead, this example provides an
intuitive illustration of the advantages of using (16) over the standard phase reduced
equations (5) when studying coupled oscillators. In the examples to follow we will
show that when we have more than two oscillators, under certain conditions we can
use an equation of the form (16) to significantly reduce the dimensionality of the full
equations.

3. Augmented Phase Reduction of a Large Population of Oscillators. Con-
sider a population of N identical oscillators with mean-field coupling:

(18)
d

dt

\left[     
\bfitx 1

\bfitx 2

...
\bfitx N

\right]     =

\left[     
\bfitF (\bfitx 1) +\bfitG (\=\bfitx ,\bfitx 1)
\bfitF (\bfitx 2) +\bfitG (\=\bfitx ,\bfitx 2)

...
\bfitF (\bfitx N ) +\bfitG (\=\bfitx ,\bfitx N )

\right]     +

\left[     
\alpha 1\bfitdelta 
\alpha 2\bfitdelta 
...

\alpha n\bfitdelta 

\right]     u(t),
where \bfitx i \in \BbbR M so that n (the overall dimension) equals NM , \bfitF (\bfitx ) gives the
nominal dynamics of each oscillator, \bfitG (\=\bfitx ,\bfitx ) gives the coupling as a function of

\=\bfitx = 1
N

\sum N
i=1 \bfitx i, \bfitdelta \in \BbbR M is a perturbation with \alpha i giving the weighted contribu-

tion felt by each oscillator, and u(t) = \scrO (\epsilon ) uniformly in time with 0 < \epsilon \ll 1 is a
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time-dependent scalar function. Equation (18) might, for instance, describe a popu-
lation of synaptically coupled neurons under the influence of deep brain stimulation
[44], where the effective voltage perturbations are dependent on each neuron's spatial
location relative to the voltage probe.

To proceed, suppose that in the absence of perturbation, the system (18) admits
an asymptotically stable periodic orbit, \gamma N , with period T . Furthermore, suppose
that \gamma N is a synchronous solution, i.e., a solution for which \bfitx 1 = \bfitx 2 = \cdot \cdot \cdot = \bfitx N . We

will denote the full state of the system \bfitx =
\bigl[ 
\bfitx T1 . . . \bfitx TN

\bigr] T
so that we can define

the Poincar\'e map of the form (6). For this map, \Upsilon , recall that \bfitx 0 is defined as the
location for which \Upsilon (\bfitx 0) = \bfitx 0 so that it can be approximated by the linearization
\phi (T,\bfitx ) = \bfitx 0+J\phi (\bfitx  - \bfitx 0)+\scrO (| | \bfitx  - \bfitx 0| | 2). The N\times M eigenvalues of J\phi correspond to
the Floquet multipliers of the periodic orbit, and provided that J\phi is diagonalizable, as
defined in (8), theNM - 1 nonunity eigenvalues of J\phi and their associated eigenvectors
can be used to define isostable coordinates for this system. The system (18) could
be transformed using a single phase variable and NM  - 1 isostable coordinates using
methods described in [66]. However, this transformation would generally not be very
useful as it would not reduce the number of state variables and would be difficult to
calculate for such a large system. As we will show here, by carefully choosing isostable
coordinates, only a maximum of 2M  - 1 isostable coordinates are necessary in the
augmented reduction of (18).

3.1. A Minimal Reduction of a Large Population of Oscillators. We can deter-
mine a set of necessary isostable coordinates by considering the eigenvectors of J\phi .
As shown in Appendix B, all eigenvectors of J\phi are either of the form

(19) \bfitv Si =

\left[     
\bfitmu Si
\bfitmu Si
...

\bfitmu Si

\right]     \in \BbbR MN ,

where 1 \leq i \leq M , or are in the span of the linearly independent columns of a matrix
of the form

(20) E(\bfitmu Ai ) =

\left[         

\bfitmu Ai  - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1)
 - \bfitmu Ai /(N  - 1) \bfitmu Ai  - \bfitmu Ai /(N  - 1)
 - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1)

...
... . . .

...
 - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1) \bfitmu Ai
 - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1)  - \bfitmu Ai /(N  - 1)

\right]         
,

where \bfitmu Si and \bfitmu Ai \in \BbbR M , E(\bfitmu Ai ) \in \BbbR MN\times (N - 1), and where 1 \leq i \leq M . All eigenvec-
tors in the span of a given \bfitE (\bfitmu Ai ) correspond to the same eigenvalue. As shown in
Appendix B there exist M eigenvectors of the form \bfitv Si and M sets of N  - 1 eigen-
vectors of the form (20), all of which are linearly independent and comprise the NM
eigenvectors of J\phi . We will refer to the eigenvectors which make up the columns of
E(\bfitmu Ai ) as a set of asynchronous eigenvectors, and the eigenvectors of the form \bfitv Si
will be referred to as synchronous eigenvectors. We emphasize that there are M total
matrices of the form E(\bfitmu Ai ) with each matrix corresponding to the M asynchronous
eigenvectors.

Synchronous eigenvectors of the matrix J\phi with the form \bfitv Si will yield one phase
variable and M  - 1 isostable coordinates. All of these coordinates with Floquet
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288 DAN WILSON AND BARD ERMENTROUT

multipliers that are not near zero (and therefore do not decay rapidly) must be used
in the augmented phase reduction. In general, each of the N  - 1 columns of each
E(\bfitmu Ai ) would result in N  - 1 isostable coordinates in the reduction (16). However,
we will show with the analysis starting from (21) and ending just before (27) that for
any E(\bfitmu Ai ) only one isostable coordinate is necessary to capture the behavior. These
arguments can be applied for each E(\bfitmu A1 ), . . . , E(\bfitmu AM ), resulting in M corresponding
isostable coordinates. Ultimately, considering isostable coordinates resulting from all
synchronous and asynchronous eigenvectors, we will show that we require 2M  - 1
isostable coordinates for the overall reduction. In order to show this result, for the
moment consider a single set of asynchronous eigenvectors E(\bfitmu Ai ) with associated
eigenvalue \lambda i. In order to reduce (18) using a minimal number of coordinates, it will
be useful to represent these eigenvectors in a different basis:

(21) VB = E(\bfitmu Ai )
\bigl[ 
\bfity 1 \bfity 2 . . . \bfity N - 1

\bigr] 
,

where \bfity k \in \BbbR N - 1 for all k so that E(\bfitmu Ai )\bfity k gives the kth element of our new basis.
The procedure below details how we will choose each \bfity k in this change of basis.

Consider the multiplication of one of these basis elements by our perturbation
from (18),

\bfity Tk E
T (\bfitmu Ai )

\left[     
\alpha 1\bfitdelta 
\alpha 2\bfitdelta 
...

\alpha N\bfitdelta 

\right]     =

M\sum 
j=1

\biggl[ 
\delta j\bfity 

T
k E

(j)
sub

T
(\bfitmu Ai )\bfitalpha 

\biggr] 

=

M\sum 
j=1

\Bigl[ 
\delta j\bfitalpha 

TE
(j)
sub(\bfitmu 

A
i )\bfity k

\Bigr] 
,(22)

where \delta j is the jth element of the vector \bfitdelta , \bfitalpha \equiv 
\bigl[ 
\alpha 1 \alpha 2 . . . \alpha N

\bigr] T
, and E

(j)
sub

is a subset of the rows of E(\bfitmu Ai ), specifically the jth, M + jth, 2M + jth, . . . , and
(N  - 1)M + jth rows. Equivalence in the first line of (22) can be shown by appropri-

ately rearranging the rows of both E(\bfitmu Ai ) and
\bigl[ 
\alpha 1\bfitdelta 

T \alpha 2\bfitdelta 
T . . . \alpha N\bfitdelta T

\bigr] T
and then

rewriting the multiplication. The second line is obtained by taking the transpose of

the first. The structure of E
(j)
sub is given in (B7) of Appendix B. Because of this highly

regular structure, we can conclude that if \bfity k is in the null space of \bfitalpha TE
(i)
sub(\bfitmu 

A
i ) for

any i, then it will also be in the null space of \bfitalpha TE
(j)
sub(\bfitmu 

A
i ) for any j. If this is the case,

the perturbation
\bigl[ 
\alpha 1\bfitdelta 

T \alpha 2\bfitdelta 
T . . . \alpha N\bfitdelta T

\bigr] T
u(t) will be orthogonal to the kth el-

ement of our new basis. We will therefore choose our new basis so that the resulting
elements are orthogonal to each other and so that N  - 2 elements of this basis are

orthogonal to the perturbation \bfitP \delta \equiv 
\bigl[ 
\alpha 1\bfitdelta 

T \alpha 2\bfitdelta 
T . . . \alpha N\bfitdelta T

\bigr] T
. See Figure 4 for

a visual representation of this choice.
In our new basis (21), when \theta = 0, for each set of asynchronous eigenvectors

exactly N  - 2 will be orthogonal to \bfitP \delta . We will use these eigenvectors to define the
associated isostable coordinates from (8). Because of the orthogonality relationships
mentioned earlier, for each set of asynchronous eigenvectors there is an associated set
of isostable coordinates with isostable response curves for which

\bfitI T\zeta (0)\bfitP \delta \not = 0,

\bfitI T\zeta +k(0)\bfitP \delta = 0 for k = 1, . . . , N  - 2,(23)

where \zeta \in \BbbN indicates the index of the isostable response curves within the complete
set.
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E(µA
i )e2

P δ

E(µA
i )e1

E(µA
i )e3

B

E(µA
i )y1

P δ

E(µA
i )y2

E(µA
i )y3

A

Fig. 4 Panel A shows a projection of \bfitP \delta into a basis of elements of E(\bfitmu A
i ). Here, \bfite j represent

elements of the standard basis, e.g., [1 0 0]T . In panel B, after using the transformation
from (21) all but one element of the new basis are orthogonal to \bfitP \delta . As explained below,
using this basis to define isostable coordinates in (8) allows us to neglect most of the resulting
coordinates from the overall reduction in (27) because perturbations are always orthogonal
to most of the resulting isostable response curves.

We will now show that for k = 1, . . . , N  - 2, \bfitI T\zeta +k(\theta )\bfitP \delta = 0 for all \theta . To do so,
consider that for any k, \bfitI k(t) is the periodic solution to the adjoint equation (A5)
from Appendix A,

d\bfitI k
dt

= (\kappa kI  - J(\bfitx (t))T )\bfitI k(t),

=

\left[     
\kappa kI  - AT (t) - BT (t)  - BT (t) . . .  - BT (t)

 - BT (t) \kappa kI  - AT (t) - BT (t) . . .  - BT (t)
...

. . .
...

 - BT (t)  - BT (t) . . . \kappa kI  - AT (t) - BT (t)

\right]     \bfitI k(t),

(24)

where I is the identity matrix, \kappa k = log(\lambda k)/T , \bfitx (t) \in \gamma N , J is the Jacobian evaluated
at \gamma N , A(t) \equiv 

\bigl( 
\partial F
\partial \bfitx + \partial G

\partial \bfitx 

\bigr) \bigm| \bigm| 
x(t)

, and B(t) \equiv 1
N

\partial G
\partial \=\bfitx 

\bigm| \bigm| 
x(t)

. Note that (24) and (B1)

from Appendix B are similar in structure. Following the same arguments as given in
Appendix B, one can show that all periodic solutions of (24) are of the form

(25) \bfitI \zeta +k(t) =

\left[   \chi 
\zeta +k
1 \bfitI R(t)

...

\chi \zeta +kN \bfitI R(t)

\right]   for k = 0, . . . , N  - 2,

where \bfitI R(t) \in \BbbR M is the periodic solution to d
dt\bfitI R(t) = (\kappa kI  - AT (t))\bfitI R(t), and

\chi \zeta +k1 , . . . , \chi \zeta +kN are real coefficients which sum to zero. Next, by direct evaluation,

(26) \bfitI T\zeta +k(t)\bfitP \delta = \bfitI TR(t)\bfitdelta 

\left(  N\sum 
j=1

(\alpha j\chi 
\zeta +k
j )

\right)  for k = 0, . . . , N  - 2.D
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290 DAN WILSON AND BARD ERMENTROUT

From (23), when \theta (t0) = 0, \bfitI T\zeta +k(t0)\bfitP \delta = 0 for k = 1, . . . , N  - 2. This can only

be true if either \bfitI TR(t0)\bfitdelta = 0 or
\sum N
j=1(\alpha j\chi 

\zeta +k
j ) = 0. However, \bfitI TR(t0)\bfitdelta \not = 0, other-

wise \bfitI T\zeta (0)\bfitP \delta = 0, which directly contradicts (23). Therefore,
\sum N
j=1(\alpha j\chi 

\zeta +k
j ) = 0

for k = 1, . . . , N  - 2, which directly implies that \bfitI T\zeta +k(\theta )\bfitP \delta = 0 for all \theta for k =
1, . . . , N  - 2. Intuitively, this result holds because the perturbations from (18) are of
low rank relative to the overall dimension of the system. This property is exploited
by choosing the basis (21) so that perturbations only modify a single mode from the
set of asynchronous eigenvectors, allowing the others to be ignored. This property
will be particularly useful in the full reduction to follow. Furthermore, this process
can be repeated for allM sets of asynchronous eigenvectors ET (\bfitmu Ai ) to form a similar
basis, where each contains N - 2 elements for which the inner product of the resulting
isostable response curves and the perturbation is always zero.

Using the bases described above in a full set of phase and isostable reduced equa-
tions of the system (18) and rearranging the indices on each isostable coordinate, we
arrive at

\.\theta = \omega +\bfitZ T (\theta )\bfitP \delta u(t) +

2M - 1\sum 
k=1

\bigl[ 
\psi k\bfitB 

kT (\theta )
\bigr] 
\bfitP \delta u(t) +

NM - 1\sum 
k=2M

\bigl[ 
\psi k\bfitB 

kT (\theta )
\bigr] 
\bfitP \delta u(t),

\.\psi i = \kappa i\psi i + \bfitI Ti (\theta )\bfitP \delta u(t) +

2M - 1\sum 
k=1

\bigl[ 
\psi k\bfitC 

k
i

T
(\theta )
\bigr] 
\bfitP \delta u(t) +

NM - 1\sum 
k=2M

\bigl[ 
\psi k\bfitC 

k
i

T
(\theta )
\bigr] 
\bfitP \delta u(t)

for i = 1, . . . , 2M  - 1,

\.\psi j = \kappa j\psi j +

2M - 1\sum 
k=1

\bigl[ 
\psi k\bfitC 

k
j

T
(\theta )
\bigr] 
\bfitP \delta u(t) +

NM - 1\sum 
k=2M

\bigl[ 
\psi k\bfitC 

k
j

T
(\theta )
\bigr] 
\bfitP \delta u(t)

for j = 2M, . . . , NM  - 1.(27)

In the above equation, we have separated the isostable coordinates for which \langle \bfitI i(\theta ),\bfitP \delta \rangle 
= 0. Recalling that u(t) = \scrO (\epsilon ), in Appendix C we show that for \epsilon small enough
relative to \kappa i in the limit as time approaches infinity, \psi i = \scrO (\epsilon ) for all i. Furthermore,
because \langle \bfitI j(\theta ),\bfitP \delta \rangle = 0 for some isostable coordinates, provided \kappa j is large enough
relative to \epsilon , \psi j = \scrO (\epsilon 2) for j = 2M, . . . , NM  - 1. Additionally, in Appendix C, we
show that on time scales of 1/\epsilon , one can assume Cki (\theta ) \equiv 0 while limiting the error in
the phase to \scrO (\epsilon 3). Taking this information together, and truncating all \scrO (\epsilon 3) terms,
we arrive at the reduction

\.\theta = \omega + \scrZ (\theta )u(t) +

2M - 1\sum 
k=1

\bigl[ 
\psi k\scrB k(\theta )

\bigr] 
u(t),

\.\psi i = \kappa i\psi i + \scrI i(\theta )u(t) for i = 1, . . . , 2M  - 1,(28)

where scalar functions of \theta , \scrZ (\theta ) \equiv \bfitZ T (\theta )\bfitP \delta , \scrB k(\theta ) \equiv \bfitB kT (\theta )\bfitP \delta , and \scrI i(\theta ) \equiv 
\bfitI Ti (\theta )\bfitP \delta are defined for notational convenience. Here, the phase coordinate andM - 1
isostable coordinates correspond to synchronous eigenvectors (19) andM isostable co-
ordinates correspond to asynchronous (20) eigenvectors. Additionally, as mentioned
in [69], for any \kappa i large enough in magnitude (i.e., if their associated Floquet mul-
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NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 291

tipliers are close enough to zero), perturbations to \psi k will quickly be forgotten and
these terms can also be neglected from the reduction (28).

3.2. A Computationally Efficient Reduction Strategy. The reduction strategy
detailed in section 3.1 is applicable for systems of arbitrary dimension. However, as
the number of oscillators in the system increases, so too does the number of states,
which can make calculation of the necessary functions difficult. As we will show
here, if the periodic orbits of the individual oscillators have Floquet exponents which
are large in magnitude, an intermediate reduction step can be performed in order to
reduce the computational complexity of the overall reduction.

To do so, consider the periodic orbit \gamma N of (18). As stated earlier, we assume
that along the periodic orbit \bfitx 1 = \bfitx 2 = \cdot \cdot \cdot = \bfitx N , so that individual oscillators are
synchronized. For such solutions,

(29)

d

dt

\left[     
\bfitx 1

\bfitx 2

...
\bfitx N

\right]     =

\left[     
\bfitF (\bfitx 1) +\bfitG (\=\bfitx ,\bfitx 1)
\bfitF (\bfitx 2) +\bfitG (\=\bfitx ,\bfitx 2)

...
\bfitF (\bfitx N ) +\bfitG (\=\bfitx ,\bfitx N )

\right]     +

\left[     
\alpha 1\bfitdelta 
\alpha 2\bfitdelta 
...

\alpha N\bfitdelta 

\right]     u(t)

=

\left[     
\bfitF (\bfitx 1) +\bfitG (\bfitx 1,\bfitx 1)
\bfitF (\bfitx 2) +\bfitG (\bfitx 2,\bfitx 2)

...
\bfitF (\bfitx N ) +\bfitG (\bfitx N ,\bfitx N )

\right]     +

\left[     
\alpha 1\bfitdelta 
\alpha 2\bfitdelta 
...

\alpha N\bfitdelta 

\right]     u(t)
and the system behaves as N uncoupled oscillators with identical states. Keeping this
in mind, consider a phase reduction of the following system:

(30) \.\bfitx = F (\bfitx ) +G(\bfitx ,\bfitx ) + \bfitp (t),

with \bfitp (t) \in \BbbR M being \scrO (\epsilon ) uniformly in time. Using a preliminary augmented phase
reduction, (30) can be transformed to phase and isostable coordinates of the form
(16)

\.\theta = \omega + \bfitz T (\theta )\bfitp (t) +

\beta \sum 
k=1

\bigl[ 
\bfitb k
T
(\theta )\psi k

\bigr] 
\bfitp (t),

\.\psi j = \kappa j\psi j + \bfiti Tj (\theta )\bfitp (t)(31)

for j = 1, . . . , \beta < M - 1. Here, \theta and \psi j are reduced phase and isostable coordinates,
functions \bfitz , \bfitb j , and \bfiti j are calculated for the single oscillator system (30) which can
be obtained numerically using isostable reduction techniques described in Appendix
A, \kappa j represent the Floquet exponents associated with each isostable coordinate, and
\omega is the natural frequency. Per the results of Appendix C, some of the terms of the
isostable coordinates of (31) have been truncated to take a form similar to (C1). The
dimensionality of (31) has also been reduced to \beta +1 compared to (30) assuming that
some isostable coordinates decay rapidly so that they can be neglected (cf. [69]); if
this is not the case, then there is no computational advantage to using an intermediate
reduction and the methods detailed in section 3.1 should be employed. Note that in
the formulation of the reduction (31), the dynamics need not be inherently oscillatory
without coupling (i.e., when G \equiv 0).
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292 DAN WILSON AND BARD ERMENTROUT

We use the intermediate reduction (31) by considering a rewritten version of the
main equations (18):

(32)
d

dt

\left[     
\bfitx 1

\bfitx 2

...
\bfitx N

\right]     =

\left[     
\bfitF (\bfitx 1) +\bfitG (\bfitx 1,\bfitx 1)
\bfitF (\bfitx 2) +\bfitG (\bfitx 2,\bfitx 2)

...
\bfitF (\bfitx N ) +\bfitG (\bfitx N ,\bfitx N )

\right]     +

\left[     
\alpha 1\bfitdelta u(t) +\bfitG (\=\bfitx ,\bfitx 1) - \bfitG (\bfitx 1,\bfitx 1)
\alpha 2\bfitdelta u(t) +\bfitG (\=\bfitx ,\bfitx 2) - \bfitG (\bfitx 2,\bfitx 2)

...
\alpha N\bfitdelta u(t) +\bfitG (\=\bfitx ,\bfitx N ) - \bfitG (\bfitx N ,\bfitx N )

\right]     ,
which can be reduced using the preliminary reduction (31) to
(33)

d

dt

\left[                 

\theta 1
\psi 1,1

...
\psi 1,\beta 

...
\theta N
\psi N,1
...

\psi N,\beta 

\right]                 
=

\left[                         

\omega +

\Biggl( 
\bfitz T(\theta 1)+

\beta \sum 
k=1

\Bigl[ 
\bfitb k
T
(\theta 1)\psi 1,k

\Bigr] \Biggr) \biggl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits 1)) - \bfitG (\bfitx (\bfits 1),\bfitx (\bfits 1))+\alpha 1\bfitdelta u(t)

\biggr) 
\kappa 1\psi 1,1+\bfiti T1 (\theta 1)

\bigl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits 1)) - \bfitG (\bfitx (\bfits 1),\bfitx (\bfits 1))+\alpha 1\bfitdelta u(t)

\bigr) 
...

\kappa \beta \psi 1,\beta +\bfiti T\beta (\theta 1)
\bigl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits 1)) - \bfitG (\bfitx (\bfits 1),\bfitx (\bfits 1))+\alpha 1\bfitdelta u(t)

\bigr) 
...

\omega +

\Biggl( 
\bfitz T(\theta N)+

\beta \sum 
k=1

\Bigl[ 
\bfitb k
T
(\theta N)\psi N,k

\Bigr] \Biggr) \biggl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits N)) - \bfitG (\bfitx (\bfits N),\bfitx (\bfits N))+\alpha N\bfitdelta u(t)

\biggr) 
\kappa 1\psi N,1+\bfiti T1 (\theta N)

\bigl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits N)) - \bfitG (\bfitx (\bfits N),\bfitx (\bfits N))+\alpha N\bfitdelta u(t)

\bigr) 
...

\kappa \beta \psi N,\beta +\bfiti T\beta (\theta N)
\bigl( 
\bfitG (\bfitx (\bfits ),\bfitx (\bfits N)) - \bfitG (\bfitx (\bfits N),\bfitx (\bfits N))+\alpha N\bfitdelta u(t)

\bigr) 

\right]                         

,

where \bfits i \equiv 
\bigl[ 
\theta 1 \psi i,1 . . . \psi i,\beta 

\bigr] T
, \bfitx (\bfits ) \equiv 1

N

\sum N
k=1 \bfitx (\bfits k), and \bfitx (\bfits k) gives the state

of oscillator k as a function of its isostable coordinates (see, e.g., (13)).
For \eta \in [0, 2\pi ), one can verify that when \bfits i =

\bigl[ 
\eta 0 . . . 0

\bigr] 
and u(t) = 0,

then \.\bfits i =
\bigl[ 
\omega 0 . . . 0

\bigr] 
for all i. This solution represents a periodic orbit of

(33). Furthermore, we will define \=\bfits \in \BbbR \beta +1 so that the first element of \=\bfits is equal

to Arg( 1
N

\sum N
j=1 e

i\theta j ) and the kth element of \=\bfits is equal to 1
N

\sum N
j=1 \psi j,k - 1 for k =

2, . . . , \beta + 1. By using Taylor expansion, one can show that when \bfits k  - \=\bfits is small for
all k, \bfitx (\bfits ) is well approximated by \bfitx (\=\bfits ). This allows us to rewrite (33) with the same
structure as (18), i.e., with unperturbed dynamics that settle to a limit cycle and an
effective perturbation:

(34)
d

dt

\left[     
\bfits 1
\bfits 2
...

\bfits N

\right]     =

\left[     
\bfitF R(\bfits 1) +\bfitG R(\=\bfits , \bfits 1)
\bfitF R(\bfits 2) +\bfitG R(\=\bfits , \bfits 2)

...
\bfitF R(\bfits N ) +\bfitG R(\=\bfits , \bfits N )

\right]     +

\left[     
\alpha 1\bfitdelta 

R
1 (\bfits 1)

\alpha 2\bfitdelta 
R
2 (\bfits 2)
...

\alpha N\bfitdelta RN (\bfits N )

\right]     u(t),
where

\bfitdelta Ri (\bfits i) \equiv 

\left[      
\Bigl( 
\bfitz T (\theta i) +

\sum \beta 
k=1

\Bigl[ 
\bfitb k
T
(\theta i)\psi i,k

\Bigr] \Bigr) 
\bfitdelta 

\bfiti T1 (\theta i)\bfitdelta 
...

\bfiti T\beta (\theta i)\bfitdelta 

\right]      ,

and \bfitF R and \bfitG R are found by collecting the remaining terms. Equation (34) separates
all terms of (33) which are multiplied by u(t) from the remaining terms, resulting in
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NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 293

a more familiar form. Furthermore, along the periodic orbit, where the states of each
oscillator are synchronized, \bfitdelta R1 = \bfitdelta R2 = \cdot \cdot \cdot = \bfitdelta RN so that the reduction methodology
outlined in section 3.1 can be applied to (34). Therefore, because \bfits i \in \BbbR \beta +1 for all i,
(34) can be reduced to a set of 2(\beta + 1) equations of the form (28)

\.\Theta = \omega +\bfitZ T (\Theta )\bfitQ (t)u(t) +

2\beta +1\sum 
k=1

\Bigl[ 
\Psi k\bfitB 

kT (\Theta )
\Bigr] 
\bfitQ (t)u(t),

\.\Psi i = Ki\Psi i + \bfitI Ti (\Theta )\bfitQ (t)u(t), i = 1, . . . , 2\beta + 1,(35)

where

\bfitQ (t) \equiv 

\left[     
\alpha 1\bfitdelta 

R
1 (\bfits 1(t))

\alpha 2\bfitdelta 
R
2 (\bfits 2(t))
...

\alpha N\bfitdelta N2 (\bfits N (t))

\right]     .
Here, \Theta and \Psi i are population phase and isostable coordinates in the reduction of
(34), the terms \bfitZ , \bfitB k, \bfitI k are functions of the reduction which can be calculated
numerically using methods from Appendix A, and Ki is associated with the Floquet
multiplier of the ith isostable coordinate. Since (35) and (31) have the same natural
frequency, when \Psi 1 = \cdot \cdot \cdot = \Psi 2\beta  - 1 = 0, \theta i = \Theta for all i. This fact allows us to Taylor
expand \bfitdelta Ri (\bfits i) in order to write it as a function of \Theta ,\Psi 1, . . . ,\Psi 2\beta +1 near the limit
cycle:
(36)

\bfitdelta Ri (\bfits i) =

\left[              

\Biggl( 
\bfitz T (\Theta ) + \bfitz \prime T (\Theta )

2\beta +1\sum 
k=1

\Bigl[ 
\partial \theta i
\partial \Phi k

\Phi k

\Bigr] 
+

\beta \sum 
k=1

\Biggl[ 
\bfitb k
T
(\Theta )

2\beta +1\sum 
j=1

\Bigl( 
\partial \psi i,k

\partial \Psi j
\Psi j

\Bigr) \Biggr] \Biggr) 
\bfitdelta \Biggl( 

\bfiti T1 (\Theta ) + \bfiti \prime 1
T
(\Theta )

2\beta +1\sum 
k=1

\Bigl[ 
\partial \theta i
\partial \Psi k

\Psi k

\Bigr] \Biggr) 
\bfitdelta 

...\Biggl( 
\bfiti T\beta (\Theta ) + \bfiti \prime \beta 

T
(\Theta )

2\beta +1\sum 
k=1

\Bigl[ 
\partial \theta i
\partial \Psi k

\Psi k

\Bigr] \Biggr) 
\bfitdelta 

\right]              
+

2\beta +1\sum 
k=1

\scrO ((\Phi k)
2) +\scrO (\Theta 2),

where \prime \equiv \partial /\partial \Theta . While (35) is composed of many terms, the only remaining variables
are \Theta ,\Psi 1, . . . ,\Psi 2\beta +1 so that (35) can be simplified to

\.\Theta = \omega + \scrZ (\Theta )u(t) +

2\beta +1\sum 
k=1

\bigl[ 
\Psi k\scrB k(\Theta )

\bigr] 
u(t),

\.\Psi i = Ki\Psi i + \scrI i(\Theta )u(t) for i = 1, . . . , 2\beta + 1,(37)

where functions \scrZ , \scrB k, and \scrI i are scalar functions of \Theta , found by appropriately
grouping the terms of (35). Notice that the structures of both (37) and (28) are
identical. Both equations provide the same information about (18), with the difference
that (37) represents the reduced behavior of the intermediate reduction (34) while (28)
is a direct reduction of (18).
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294 DAN WILSON AND BARD ERMENTROUT

While the computation of the reduced system detailed in this section requires
an extra coordinate transformation and computation of many intermediate functions,
this extra work can come at tremendous savings in computational efficiency provided
\beta , the number of states kept in the intermediate reduction, is smaller than M , the
number of states for each oscillator. This savings comes from the computation of the
phase and isostable response curves, for which the computational effort to calculate
and evaluate the Jacobians from (A5) grows quadratically with the number of states
in the system.

4. Example Reduction of a Coupled Population of Circadian Oscillators. We
now investigate the reduction strategy derived in the previous section applied to
populations of circadian oscillators. In each example, we are able to significantly
reduce the dimensionality of the perturbed equations while still retaining an accurate
representation of the system behavior.

In nearly all organisms, circadian rhythms provide the adaptive advantage of be-
ing able to predict and respond to daily fluctuations in their environment [70], [16].
While the mechanism and complexity of circadian timekeeping can be vastly different
between organisms, in mammals, the suprachiasmatic nucleus (SCN) is responsible
for maintaining circadian time throughout the body [56], [47]. This ``master clock""
is comprised of roughly 10,000 coupled neurons and entrains to external cues such as
light to regulate circadian timing. The individual cells within the SCN are capable of
maintaining oscillations when removed from the larger population [63], [28], suggest-
ing that the population level oscillations in the SCN are the result of synchronized
oscillations of individual cells.

Here, we will consider a model for the behavior of coupled SCN neurons [17],

\.ai = h1
Kn

1

Kn
1 + cni

 - h2
ai

K2 + ai
+ hc

KF

Kc +KF
+ \alpha iL(t),

\.ei = h3ai  - h4
ei

K4 + ei
,

\.ci = h5ei  - h6
ci

K6 + ci
,

\.di = h7ai  - h8
di

K8 + di
, i = 1, . . . , N.(38)

Here, the variables ai, ei, and ci represent concentrations of an mRNA of the clock
gene, the resulting protein, and the nuclear form of the protein, respectively, in
oscillator i, di is a neurotransmitter by which cells can communicate with each
other, time is in units of hours, F is the average value of that neurotransmitter,
i.e., F \equiv (1/N)

\sum N
k=1 di, L(t) a light perturbation, and \alpha i is a given oscillator's sensi-

tivity to light. In (38), it is assumed that the spatial transmission of neurotransmitters
is fast relative to the approximately 24-hour time scale of oscillations so that oscil-
lators are effectively coupled through their mean-field. In this example, \alpha 1 =  - 0.5,

\alpha N = 1, with the remaining coefficients evenly spaced so that \alpha i =  - .5 + 1.5 (i - 1)
(N - 1) .

With this choice of parameters, on average, light stimulation tends to activate the
production of ai, but in some oscillators, its production is moderately inhibited. Fur-
thermore, to prevent negative concentrations in any individual oscillator when light
stimulation is applied, \.ai(t) is set to zero if failure to do so would produce a negative
concentration. All parameters, with the exception of each \alpha i, are identical. We take
h1 = 0.840, h2 = 0.628, n = 8, with all remaining parameters identical to those in the
nominal parameter set given in Figure 1 of [17]. In the absence of light, the dynamics
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Fig. 5 In the intermediate reduction of (38), individual oscillators are reduced to an equation of the
form (31). The resulting reduction has one phase coordinate, \theta , and one isostable coordinate,
\psi 1. A representation of this reduced coordinate system is given in the top-left panel. The
function za(\theta ), is shown in the top-right panel, which represents the gradient of the phase
with respect to the variable a for locations on the limit cycle. According to this curve,
light applied at \theta \approx 3\pi /2 will advance the phase, while the same light applied at \theta \approx 0
will delay the phase. The function ia1(\theta ) is shown in the bottom-left panel. According to
this curve, light applied at \theta \approx 3\pi /2 (resp., \theta = 0) will decrease (resp., increase) the \psi 1

coordinate. The bottom-right panel shows b1,a(\theta ). This function gives a correction for the
local gradient of the phase when the state is perturbed from the limit cycle according to the
relation d\theta /da = za(\theta ) + \psi 1b1,a(\theta ).

of (38) settle to a limit cycle for which all oscillators are synchronized with period
T = 24.16 hours.

In order to calculate the augmented isostable reduction, one could do so either
directly using the methodology from section 3.1 or by first reducing the individual
oscillators and then finding the population reduction using the methodology described
in section 3.2. Here, we will illustrate the latter, as it provides more insight into the
overall reduction methodology. As detailed in section 3.2, a preliminary reduction
is performed on an individual oscillator from (38) taking F = di, i.e., replacing the
mean-field (average) value of di with the value for a single oscillator as mandated
by (32). An augmented phase reduction of the form (31) can be obtained for this
intermediate system, where all necessary functions are found by calculating the ap-
propriate solutions of the adjoint equation (A5) as detailed in Appendix A. While (38)
has four variables, and hence three isostable coordinates, all but one of these coordi-
nates decays rapidly, and we ignore the others. The resulting reduction requires two
dimensions: one for the phase coordinate, and one for the slowly decaying isostable
coordinate. In two dimensions, the limit cycle can be thought of as a circle, where
the phase represents the location on the periodic orbit, and the isostable coordinate
represents the location in the radial direction. The top-left panel of Figure 5 gives
a representation of this reduced coordinate system. In (38), light perturbations only
affect the a coordinate for a given oscillator; for this reason, the remaining panels of
Figure 5 only show the resulting response functions for perturbations to the variable
a for each oscillator in the intermediate reduction (31).
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296 DAN WILSON AND BARD ERMENTROUT

Fig. 6 Using the strategy detailed in section 3.2, the preliminary population of phase reduced os-
cillators (33) can be further reduced to an equation of the form (37). For an N = 10
system of oscillators, panels 1a, 2a, and 3a represent the population reduced coordinates
[\Theta ,\Psi 1,\Psi 2,\Psi 3] = [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively, where each dot represents
\psi i,1, \theta i for an individual oscillator. Note that in panel 2a the \psi 1 and \theta coordinates of the
individual oscillators are identical. The associated functions \scrI i(\Theta ) and \scrB i(\Theta ) are calculated
numerically and shown in panels 1b--3b and 1c--3c, respectively.

The preliminary reduction, with numerically determined functions shown in Fig-
ure 5, can be used to approximate the full system (38) with the augmented phase
reduction (33). Each oscillator from (38) has four variables, while the reduction (31)
uses two; in this case the preliminary reduction decreases the number of states from
4N to 2N . Equation (33) itself has a stable limit cycle which is used to calculate
the secondary phase reduction. A naive choice of isostable coordinates would require
us to keep track of all 2N  - 1 possible isostable coordinates in the subsequent re-
duction. However, by applying the reduction strategy from section 3.1, (33) can be
reduced from a system of the form (37) with 2N variables to a system of four variables:
\Theta , the population phase coordinate, and \Psi 1, \Psi 2, and \Psi 3, the population isostable
coordinates. Intuitively, this second reduction is made possible by exploiting the low-
dimensional nature of the allowed perturbations and ignoring the modes that are not
altered by the perturbations (see, for example, the explanation given in Figure 4).

The population limit cycle is a solution for which all oscillators are synchronized
and the location on the limit cycle can be inferred from the population phase \Theta .
The resulting isostable coordinates represent perturbations in directions away from
the limit cycle. For N = 10 oscillators we calculate the necessary functions of the
population reduction, with results shown in Figure 6. Panels 1a--1c of Figure 6 give
a visual representation of each isostable coordinate and can be interpreted as follows:
At [\Theta ,\Psi 1,\Psi 2,\Psi 3] = [0, 0, 0, 0], the state of each individual oscillator from (33) is
\theta i = 0, \psi i,1 = 0. Panel 1a, for instance, shows the state of each oscillator from (33)
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when [\Theta ,\Psi 1,\Psi 2,\Psi 3] = [0, 1, 0, 0] for the population oscillation. The solid black circle
represents the periodic orbit of each preliminary reduced oscillator (i.e., the curve
with \psi 1 = 0) and the inner and outer dashed circles represent isostable coordinates
of \psi i,1 = \pm 0.2. The population isostable coordinate \Psi 1 corresponds primarily to a
spread in phases \theta i of the individual oscillators, but also causes a small spreading of
\psi i,1. In the adjacent panels, \Psi 2 corresponds to an identical perturbation in \psi i,1 for
each oscillator, and \Psi 3 primarily spreads the values of \psi i,1 while slightly spreading the
phases. Panels 1b--3b correspond to the population isostable response curves for each
associated isostable coordinate, and panels 1c--3c show the correction to the phase
response curve as the corresponding isostable coordinate grows. Note the similarity
between the calculated functions in Figure 6 for the population reduction and those in
Figure 5 for the individual oscillator reduction. For instance, \scrI 2(\Theta ) and \scrB 2(\Theta ) have
the same shape as ia1 and b1,a, respectively. This is to be expected, as the coordinate
\Psi 2 represents a synchronous shift in each individual isostable coordinate \psi i,1.

Finally, to illustrate the advantage of using the augmented phase reduction over
the standard phase reduction, we investigate the effect of pulsatile light perturbations
for a population of N = 20 circadian oscillators. The left panels of Figure 7 show
the change in phase resulting from 2-hour duration light perturbations of magnitude
L = 0.01 (top-left panel) and L = 0.02 (bottom-left panel). Before each perturbation
is applied, the system is allowed to relax to its limit cycle solution, and perturbations
are applied starting at a known phase of oscillation. The resulting phase change, \Delta \Theta ,
is measured by comparing the phase of oscillation after returning to the limit cycle to
the phase had the system not received the perturbation. Using this procedure, blue
lines show numerically computed curves for the augmented reduced system (labeled
AR) from (37) and red lines give the result using the standard phase reduction (labeled
PR) from (2), which is obtained by calculating only the phase response curve for
perturbations to (38) and neglecting all isostable coordinates. The black dots give
numerical estimates for the full system of unreduced equations (labeled FS) given in
(38). Much like for the coupled theta oscillators from section 2, the predicted phase
change from augmented reduction is nearly identical to the phase change resulting
in simulations of the full system. Furthermore, as the magnitude of perturbations
increases, the standard phase reduction becomes a worse approximation of the full
system. These differences are also apparent when investigating each system's ability
to entrain to a periodic light perturbation of the form

(39) L(t) =

\Biggl\{ 
Lp if mod(t, Tp) \leq Dp,

0 otherwise.

Here, Lp is the magnitude of the pulse, Tp is the pulsing period, andDp is the duration
of each pulse. The right panel of Figure 7 shows Arnold tongues [64] for 1:1 locking
to the periodic light stimulus of duration Dp = 3 hours; regions between lines of iden-
tical colors represent sets of parameters which result in stable locking to the periodic
perturbation. These boundaries are found numerically by simulating the equations
for the full system (38), augmented reduction (37), and standard phase reduction (2).
The Arnold tongues for the full system (black curve) and the augmented reduction
(blue curve) are nearly identical, with the right branches extending vertically from
the natural period of 24.16 hours. The Arnold tongue for the standard phase reduced
system (red curve) is more centered around the natural period and does not match
the other two curves. The reason for this discrepancy becomes clear when we examine
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Fig. 7 For N = 20 circadian oscillators the full (38), augmented phase reduced (37), and standard
phase reduced (2) models are simulated in response to pulsatile perturbations. Results for
each model are shown in black, blue, and red, respectively. The left panels show numerically
computed phase changes for 2-hour light perturbations beginning at phase \Theta on the limit cycle
at two different intensities. The right panel shows Arnold tongues computed for periodic
perturbations of the form (39) applied to each model.

the left panels of Figure 7. When simulating the standard phase reduction, regard-
less of the magnitude of perturbations or pacing history, a significant portion of the
response curve is negative, allowing for positive light perturbations to slow down the
oscillation so that the standard reduced equations can entrain to perturbations with
a larger period. For both the augmented phase reduction and full system simula-
tions, as perturbations become larger in magnitude, the response curves are shifted to
more positive values, helping entrainment to perturbations with smaller period, but
hindering entrainment when the period becomes larger.

5. Direct Method for Augmented Phase Reduction. In the previous sections,
we explored numerical strategies for reducing a large population of identical oscillators
using both phase and isostable coordinates. In practice, however, the underlying
equations of a given system may be unknown, as is the case in most experimental
applications. Phase reduction is particularly useful in these contexts, as the iPRC
can generally be measured experimentally using the direct method [29], [50], whereby
short perturbations are applied when the system is at a known phase, the resulting
phase change is inferred, and this process is repeated over multiple trials with the
resulting data fit to a curve. This process has been used, for example, to calculate
the phase-dependent sensitivity of human circadian rhythms to light [71], and to
characterize the response of brain rhythms to electrical stimuli [4].

Here, we investigate a strategy for calculating an augmented isostable reduction
of a large and heterogeneous population of oscillators of the form (1). As is usually the
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case when employing the direct method for calculation of iPRCs, we will also assume
that we can only measure a single observable from this system. As we illustrated
in previous sections, while these large populations of oscillators may have a large
number of isostable coordinates, it is often sufficient to consider a small subset in
the augmented isostable reduction. For this reason, and because we have limited
information about the state of the system, we will assume that a general system (1)
can be well approximated by a reduction of the form

\.\theta = \omega + \scrZ (\theta )u(t) + \psi \scrB (\theta )u(t),(40)

\.\psi = \kappa \psi + \scrI (\theta )u(t).(41)

The above equation is identical to (28), except that we have dropped subscripted
indices because we have a single isostable coordinate. For this system (1), consider
some observable, obs(\bfitx (t)), which is a function of the system's state. In a model of
circadian oscillations, for example, this observable could be a measured concentration
of a neurotransmitter. In order to define phase coordinates, one must decide where
\theta = 0 on the periodic orbit which for the moment will be taken to be a local maximum
or minimum of the observable. The case where \theta = 0 corresponds to the crossing of
a predetermined threshold will be discussed next.

To begin, we must define isostable coordinates for the system (1). To this end,
we will assume that (1) can be well approximated by an augmented reduction with
a single isostable coordinate. Then, from (13), for small perturbations from the limit
cycle,

(42) \bfitx (\theta , \psi ) = \bfitx \gamma (\theta ) + \bfitq (\theta )\psi ,

where \bfitx \gamma (\theta ) gives the state as a function of \theta on the limit cycle, and \bfitq (\theta ) gives the
displacement from the periodic orbit as a function of both \theta and \psi . For small values
of \psi ,

(43) obs(t) \approx obs(\bfitx \gamma (\theta )) + E\psi ,

where E \equiv \partial obs
\partial \bfitx 

\bigm| \bigm| 
\bfitx \gamma (\theta )

\bfitq (\theta ). In order to define isostable coordinates for this system,

we must define some detectable event for which \theta \approx 0, for instance, a local maximum
or minimum of the observable.

In a computational model, it was convenient to define isostable coordinates in
reference to the eigenvectors of a Poincar\'e map. In the present case we assume that
we do not have access to the full model equations, and therefore cannot define isostable
coordinates in this way. Instead, we will define isostable coordinates as follows:

(44) \psi (\bfitx ) = lim
j\rightarrow \infty 

\bigl[ \bigl( 
obs(mj) - obs(m\infty )

\bigr) 
exp( - \kappa mj)

\bigr] 
.

Here, mj corresponds to the jth time at which an event close to \theta = 0 is detected
after the application of a perturbation and obs(m\infty ) is the steady state value. We
will explicitly assume that the system is at steady state before the application of the
stimulus, i.e., obs(m0) = obs(m\infty ). See Panel A of Figure 9 for a visual explanation
of these definitions. Here we take \kappa to be a representative rate at which solutions
approach the steady state value. Notice that isostable coordinates in (44) are defined
similarly to those from (8), i.e., the limit of an exponentially increasing function mul-
tiplied by a function decreasing exponentially at the same rate. Using this definition
of isostables, we can estimate the functions in the augmented isostable reduction (40)
and (41) with the steps presented in the section below.
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300 DAN WILSON AND BARD ERMENTROUT

5.1. A List of Steps to Infer the Functions and Parameters in the Augmented
Phase Reduction.

Step 1. Calculate the average period T over multiple unperturbed oscillations.
Take the natural frequency to be \omega = 2\pi /T .

Step 2. Using a protocol similar to the direct method, allow the unperturbed
system to relax to its periodic orbit. Apply a small perturbation of magnitude u(t) = \eta 
lasting for a duration of \Delta t units. For each perturbation, record obs(m0) (assumed to
be the steady state value) and n additional data points obs(m1), obs(m2), . . . , obs(mn)
as the system relaxes back to its periodic orbit (see panel A of Figure 9, for example).
Also, record the timesm0, . . . ,mn at which these events occur as well as the time tp at
which the perturbation is applied. The phase at which the perturbation is applied can
be estimated as \theta \approx (tp  - m0)\omega . Repeat this procedure multiple times, perturbing at
various values for \theta and for various strengths \eta . This data will be used to numerically
estimate all required functions and parameters in the augmented phase reduction.

Step 3. Estimate \kappa , the rate of decay of the isostable coordinate. To obtain a
single estimate for \kappa , for a single perturbation from Step 2, determine the coefficients
a and b for the exponential fit obs(mi) - obs(m0) = a exp(b(i - 1)). The decay rate, \kappa ,
is approximately equal to b/T . Take \kappa to be the average over multiple perturbations
to mitigate errors introduced by noise in the system.

Step 4. Estimate \scrI (\theta ), the isostable response curve using the data from Step 2.
Note that in (44), isostables are defined in the limit as the system approaches the
periodic orbit. However, precise measurements of the convergence to the periodic
orbit can be difficult in the presence of noise and other uncertainties. For this rea-
son, for each trial from Step 2, we approximate (44), the isostable shift caused by a
perturbation with

(45) \Delta \psi \approx (obs(m2) - obs(m0)) exp( - \kappa (m2  - tp)),

where the second event is chosen so that the system has had a chance to recover
after the perturbation, but is still sufficiently far from the periodic orbit so that the
left-hand side is not too small. Measurements obs(mk) with k > 2 could also be
used to approximate (44) provided (obs(mk) - obs(m0)) is not strongly influenced by
noise as the system dynamics approach the limit cycle. With this estimate, and the
approximation for the initial phase \theta \approx (tp  - m0)\omega , \scrI (\theta ) = \Delta \psi /\eta \Delta t. Using multiple
perturbations at different phases an estimation for the entire isostable response curve
can be obtained.

Step 5. Estimate both \scrZ (\theta ) and \scrB (\theta ). To do so, for a given perturbation from
Step 2, suppose \eta and \Delta t are small enough that \theta does not change much while the
perturbation is applied, i.e., \scrI (\theta (t)) \approx \scrI (\theta (tp)), \scrZ (\theta (t)) \approx \scrZ (\theta (tp)), and \scrB (\theta (t)) \approx 
\scrB (\theta (tp)). Furthermore, if \eta is large relative to \kappa ,

\psi (t) =

\int t

tp

[\kappa \psi + \scrI (\theta )\eta ] dt

\approx \scrI (\theta (tp))\eta (t - tp) for tp \leq t \leq tp +\Delta t.(46)
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With this information, we can infer the phase as a function of time,

\theta (t+\Delta t) = \theta (tp) +

\int tp+\Delta t

tp

[\omega + \scrZ (\theta )\eta + \psi \scrB (\theta )\eta ]

\approx \theta (tp) +

\int tp+\Delta t

tp

\bigl[ 
\omega + \scrZ (\theta (tp))\eta + \scrI (\theta (tp))\scrB (\theta (tp))\eta 2(t - tp)

\bigr] 
= \theta (tp) + \omega \Delta t+ \scrZ (\theta (tp))\eta \Delta t+

1

2
\scrI (\theta (tp))\scrB (\theta (tp))\eta 2\Delta t2.(47)

Comparing the perturbed phase, \theta p(t + \Delta t), to the phase had the perturbation not
occurred, \theta u(t+\Delta t), we have

(48) \Delta \theta \equiv \theta p(t+\Delta t) - \theta u(t+\Delta t) = \scrZ (\theta (tp))\eta \Delta t+
1

2
\scrI (\theta (tp))\scrB (\theta (tp))\eta 2\Delta t2.

In the above equation for each perturbation, the resulting \Delta \theta can be inferred from the
observable once the system reaches the periodic orbit, as is commonly done for the
direct method (see also Figure 9). This leaves \scrZ (\theta ) and \scrI (\theta )\scrB (\theta ) as the remaining
unknowns in (48). Over multiple iterations using different values of \theta and \eta , both
unknown functions can be obtained by finding a least squares fit to the data using
an appropriate basis (i.e., polynomials or sinusoids). The function \scrB (\theta ) can then be
found by dividing \scrI (\theta )\scrB (\theta ) by the \scrI (\theta ) that was calculated in Step 4. For this reason,
when fitting the functions to the data, given \scrI (\theta ) it is useful to constrain \scrI (\theta )\scrB (\theta ) so
that every root of the former is also a root of the latter.

A Remark About the Choice of \bfittheta = 0. Above, it is assumed that \theta = 0 cor-
responds to a local minimum or maximum of the observable. Practically, this would
require an accurate measurement of the moment that the local minimum or maximum
is achieved and requires E from (43) to be sufficiently large that obs(m2) - obs(m0)
can provide a useful signal in a noisy environment. If either of these requirements is
not fulfilled, defining \theta = 0 to correspond to a threshold crossing (e.g., when the volt-
age of a neuron crosses 0 mV in neurological applications) may be more appropriate.
In this case, \Delta \theta can be inferred in the usual way by measuring timing differences be-
tween threshold crossings. However, in this setting the measurement of an isostable
response curve will be different. In this setting, as illustrated in [65], a principle
isostable coordinate \psi (\bfitx ) can be defined according to (8) and the change in isostable
coordinate resulting from a perturbation can be determined according to

(49) \Delta \psi =
\kappa [2\pi (n - 1) - \omega (tn  - t1)]

c
\bigl[ 
exp(\kappa (tn  - tp)) - exp(\kappa (t1  - tp))

\bigr] .
Here, n \geq 2 denotes the nth threshold crossing after the perturbation, tn is the timing
of the nth threshold crossing, tp denotes the time that the perturbation is applied,
and c is a scaling factor that can be taken to be 1. Equation (49) can be used to
estimate \scrI (\theta ) as in Step 4 of the current section, and \kappa can be inferred using methods
described in [65]. After these terms are determined, \scrB (\theta ) and \scrZ (\theta ) can be found using
the strategy detailed in Step 5.

5.2. Example of the Direct Method Applied to a Circadian System. A sig-
nificant benefit of using the above procedure for calculating the augmented phase
reduction is that it does not require knowledge of the right-hand side of a general sys-
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Fig. 8 Representative traces of di(t) after initial transient behavior has died out in a heterogeneous
and noisy version of (38). The system dynamics are nearly periodic, where the aggregate

signal F (t) = 1
N

\sum N
i di achieves a local maximum every 24.15 hours on average.

tem (1). Therefore, it can be applied to an experimental system or to a system which
is too large to calculate response curves numerically. Here we apply the direct method
to a large, noisy, and heterogeneous population of 3000 oscillators from (38). In this
example, nominal parameters are chosen as h1 = 0.840, h2 = 0.605, hc = 1.2, n = 6,
and all other nominal parameters are taken to be identical to those given in Figure 1
of [17]. To incorporate heterogeneity into the model, the parameters h1, h2, h3, h4, h5,
and h6 are drawn from a normal distribution where the mean is the nominal parame-
ter value and the standard deviation is equal to 0.03. The sensitivity of each oscillator
to light is also chosen randomly as \alpha i = max(0.5 + 0.4\scrN (0, 1), 0), where \scrN (0, 1) is a
normal distribution with mean zero and unit variance. We also add independent and
identically distributed zero mean white noise with intensity 1.6\times 10 - 4 to the variable
ai for each oscillator. Model code is provided in supplementary material.

Figure 8 shows the behavior of this system in the absence of external perturba-
tions. Due to noise, the system behavior is not perfectly periodic; however, the aggre-
gate signal F (t) appears to be nearly periodic, with an average period of T = 24.15
hours so that \omega = 0.260, which is in line with estimates of the free running period of
the human circadian pacemaker [10]. In this example, we will assume that F (t) is an
aggregate signal that can be measured from the system, and we will use this as our
observable in order to apply the direct method in order to determine the necessary
terms and functions in the augmented phase reduction (40) and (41).

Following the steps outlined in the previous section, for a general system (1)
where the right-hand side is unknown, one can calculate all necessary functions in the
augmented phase reduction (40) and (41). Panel B of Figure 9 gives a plot of the
change in phase scaled by the stimulation strength for light perturbations lasting one
hour. This data is used to calculate the functions in the augmented phase reduction,
shown in panels C through F. Notice in panel B that when \theta \approx 3, \Delta \theta /\eta tends to
decrease as \eta becomes larger. This is reflected in the estimated curve \scrI (\theta )\scrB (\theta ) being
negative and large in magnitude at \theta \approx 3. In panel F, the function \scrB (\theta ) has a large
local maximum at \theta \approx 2.5, implying that as the isostable coordinate becomes more
positive, the effect of a perturbation at \theta \approx 2.5 will be shifted toward more positive
values. Conversely, \scrB (\theta ) has zeros at \theta \approx 0.5 and 4. At these phases, the effect of a
perturbation does not depend on the isostable coordinate.
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Fig. 9 Illustration of the direct method for calculating the terms in the augmented isostable reduc-
tion. Panel A gives an example of a set of measurements required from Step 2 of section
5.1. A perturbation is given at tp = 0 and the times mi and magnitudes obs(mi) at which F
achieves a local maximum are recorded. The dashed line represents the expected signal (based
on the natural frequency) that would be observed if the perturbation had not been given. Panel
B shows \Delta \theta /\eta for \Delta t = 1 hour perturbations of various strengths. These datapoints are used
to fit functions of the form

\sum 4
n=0[ui sin(n\theta ) + vi cos(n\theta )] to both \scrZ (\theta ) and \scrI (\theta )\scrB (\theta ). Panel

E shows individual datapoints for estimation of the isostable response curve, and a curve fit
to this data using the same basis. Panels C and D show fits of both \scrZ (\theta ) and \scrI (\theta )\scrB (\theta ) to
the data from panel B. Panel F shows \scrB (\theta ) as calculated from the fits in panels D and E.

Finally, we can use the augmented reduction (40) and (41) to investigate entrain-
ment in the heterogeneous 3000 oscillator system to a 24-hour light-dark cycle. Here,
the external light perturbations are

(50) L(t) =

\Biggl\{ 
0.07 if mod(t, 24) \leq 12,

0 otherwise.

Here, we specifically investigate the amount of time it takes to reentrain following
an abrupt time shift to simulate the effect of transcontinental flight on the circadian
pacemaker (i.e., jet lag). Using the full, unreduced system, the augmented phase
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Fig. 10 The top-left panel shows the recovery time as a function of the time shift for the full (FS),
phase reduced (PR), and augmented phase reduced (AR) models as black, red, and blue
lines, respectively. Top-right panels compare the effect of positive (solid lines) and neg-
ative (dashed lines) values of tshift on the recovery time, illustrating the ability of the
augmented phase reduction to reproduce the asynchrony of recovery times in each direction.
The bottom-left panels show the isostable and phase coordinates of the augmented phase
reduction for tshift = +7 and  - 7 (purple and orange lines, respectively) occurring at t = 48
hours. In the bottom-right panel, negative (resp., positive) isostable coordinates shift the
effect of perturbations toward more negative (resp., positive) values.

reduced system (40) and (41), and the standard phase reduced system (i.e., where
\.\theta = \omega + \scrZ (\theta )L(t)), each system is entrained to the 24-hour cycle long enough for
the transient behavior to decay. Then at some time for which mod(t, 24) = 0, we
abruptly shift t so that the 24-hour cycle is advanced by an amount tshift. Finally,
the recovery time trecovery is defined as the time it takes for the phase to return to
within one hour of its steady state behavior. The following results do not change
qualitatively if the initial time shift occurs at a different time in the circadian day.
The top-left panels of Figure 10 show the result of these simulations. Here, the
full system (black line) has a significant peak for tshift \approx 7 hours. For shifts of
this magnitude, the system delays its phase by approximately 17 hours, rather than
advancing it by 7 hours. In the standard phase reduced model, this transition occurs
for tshift \approx 10.5 hours, a significant mismatch. Using the augmented phase reduction,
the behavior is closer to the full model, with the peak occurring at tshift \approx 8.5 hours.
Furthermore, as shown in the top-right panels, both the full and augmented phase
reduced systems show a marked asymmetry between shifting forward and shifting
backward in time. Using the standard phase reduction, however, recovery times do
not depend as much on the direction of the shift. The reason for this asymmetry
becomes clear in the bottom panels of Figure 10. In the bottom-left panels, we show

D
ow

nl
oa

de
d 

05
/0

7/
19

 to
 1

92
.2

49
.3

.1
88

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NOT SO WEAKLY PERTURBED COUPLED OSCILLATORS 305

the time course of \psi and \theta shift(t) \equiv \theta (t) - \theta (0) - 24t/2\pi for tshift = +7 hours (purple
curve) and tshift =  - 7 hours (orange curve). Here, for a positive (resp., negative)
value of tshift, \psi decreases significantly (resp., increases slightly) during reentrainment.
In the bottom-right panel, we find that for negative values of \psi , the response to
perturbations, \scrZ (\theta ) + \psi \scrB (\theta ), predominantly becomes more negative, hindering the
phase advancement required for reentrainment. This feature of the augmented phase
reduction drives the asymmetry in recovery time for phase advancements and phase
delays.

6. Discussion and Conclusions. This paper investigates the applicability of aug-
mented phase reduction to oscillatory populations of coupled oscillators. In applica-
tions where phase reduction alone is insufficient to understand the behavior of a
population oscillation, if oscillators are identical and coupled through a mean-field,
only a small number of isostable coordinates is necessary to accurately characterize
the behavior of the system in response to larger perturbations. Using a strategy akin
to the direct method [29], [50] for computation of phase response curves, an aug-
mented isostable reduction could be obtained in experimental systems, or in systems
for which the underlying model equations are not known. Most notably, the neces-
sary number of isostable coordinates does not grow as the number of oscillators in the
system grows; rather, it depends on the dimension and complexity of the underlying
dynamics for the individual oscillators. Furthermore, we have developed more effec-
tive strategies for obtaining the required functions in the augmented reduction than
were proposed in [66], with a discussion on this issue given in Appendix A.

The augmented phase reduction presented in this work (28) predicts system be-
havior more accurately than standard phase reduction (2), particularly as perturba-
tions become larger. Indeed, while the standard phase reduction is based on a linear
approximation of isochrons near the limit cycle, the augmented phase reduction em-
ploys a second order approximation while still yielding a closed form set of equations.
However, the augmented phase reduction still truncates higher order terms in its
approximation of a system's isochrons and is not valid for perturbations of arbitrary
magnitude. In the examples presented in this work, this can be seen in Figure 7, where
predictions between the augmented phase reduced and full system models begin to
diverge as the applied perturbations become larger. Additionally, light perturbations
of relatively small magnitude were used to investigate reentrainment in section 5; for
larger perturbations the augmented reduction did not accurately capture the model
behavior. The resulting recovery times from Figure 10 are larger than those observed
physiologically [57]. Related work [59] could be viewed as a first step toward extending
the accuracy of the augmented reduction presented here; however, it is not obvious
how to use this framework to arrive at a closed set of reduced equations. It could
be particularly useful to develop reduction strategies with arbitrarily high orders of
accuracy in future work.

We illustrate the utility of this reduction strategy in a model with applications
to circadian oscillations. In this example, when simulating the full circadian model
(38), each additional oscillator adds four state variables, quickly increasing the di-
mensionality and complexity of the model. However, regardless of the number of
oscillators used, only one population phase coordinate and three population isostable
coordinates are required to accurately predict the effect of perturbations of moderate
magnitude. We emphasize that the model (38) used in this study is relatively simple,
with only four variables per oscillator, and assumes that light only affects the ex-
pression of mRNA in a manner strictly proportional to the magnitude of the applied
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perturbation. In reality, much more complicated mechanisms are thought to give rise
to mammalian circadian oscillations (cf., [39], [61]). While the specific model used
in this study is not as physiologically detailed as others, application of augmented
isostable reduction can help elucidate the mechanisms behind its observed behavior
with possible applications to living systems. Specifically, in humans, jet-lag is known
to last longer after eastward travel, as compared to westward travel [51], [62], [3].
This asymmetry has been attributed to factors such as a mismatch between daylight
hours and the body's corresponding phase response curve at the time of arrival in a
new time zone [57] and to the slightly greater than 24 hour free running period of
the circadian pacemaker [42]. The present study points to a third potential source
of asymmetry, namely, that during reentrainment, perturbations shift not only the
phase but also the arrangement of the oscillators. Interpreting the results in this
fashion, it may be useful to develop not only jet-lag reduction treatments that work
to adjust the timing of the body's internal circadian pacemaker, but also strategies
that attempt to restore the steady state arrangement of the oscillators once reentrain-
ment has occurred. By understanding the time-dependent effect of zeitgebers such
as light or melatonin on the arrangement of the oscillators in the body's circadian
clock, more effective strategies could be developed to speed reentrainment and miti-
gate the effects of jet-lag. Previous experimental and detailed computational studies
have hinted at such a hypothesis. For instance, [2], [22] observed that when SCN cells
are first desynchronized before entrainment, they tend to reentrain much more rapidly
than populations that were not initially desynchronized. The authors of [2] coined
this phenomenon ``phase tumbling""; in the context of our study, particularly in the
results from section 5, we believe that phase tumbling can be precisely understood
using the notion of an augmented phase reduction. Specifically, desynchronization
modifies the system's isostable coordinates resulting in a change in its response to
light perturbations in such a way that resynchronization to a new light schedule is
hastened.

Phase reduction has been particularly useful in experimental systems where the
full dynamical equations are unknown. For instance, in vitro control applications
have been successfully applied to oscillatory neurons [49], [67]. Also, phase response
curves have been calculated for melatonin [41] and light [32] in order to determine
the phase dependent effect of perturbations to circadian oscillations. Because the
direct method for calculation of an augmented phase reduction requires similar data
to the direct method for the calculation of phase response curves, we believe that this
strategy could be successfully applied experimentally. Furthermore, the direct method
proposed here is not limited to systems of coupled oscillators, and could be applied to
other oscillatory systems to determine how the phase response curve changes as the
system is perturbed from the limit cycle.

While phase reduction is an invaluable tool in the study of nonlinear limit cycle
oscillators, its assumptions break down as strong perturbations drive the system far-
ther from its stable limit cycle. The augmented phase reduction described in this work
provides a convenient means of addressing this fundamental limitation, and its appli-
cation in both experimental and numerical settings can predict and explain behaviors
that standard phase reduction is unable to address.

Appendix A. Computation of the iPRC, iIRC, and All Required Functions in
the Augmented Phase Reduction. In the augmented phase reduction (16) for a
general system (1), each of the functions \bfitZ (\theta ) \equiv \partial \theta 

\partial \bfitx 

\bigm| \bigm| 
\bfitx \gamma (\theta )

, \bfitB k(\theta ) \equiv 
\bigl( 

\partial 
\partial \psi k

\partial \theta 
\partial \bfitx 

\bigr) \bigm| \bigm| 
\bfitx \gamma (\theta )

,

\bfitI k(\theta ) \equiv \partial \psi k

\partial \bfitx 

\bigm| \bigm| 
\bfitx \gamma (\theta )

, and \bfitC k
j (\theta ) \equiv 

\bigl( 
\partial 
\partial \psi k

\partial \psi j

\partial \bfitx 

\bigr) \bigm| \bigm| 
\bfitx \gamma (\theta )

needs to be calculated. Recall here
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that \theta is the phase coordinate, \psi j is the jth isostable coordinate, and \bfitx \gamma (\theta ) is the
location on the periodic orbit, \gamma , as a function of \theta . When the system is small, as
is the case for the theta model example in section 2, the most straightforward way
to do this is by calculating phase and isostable coordinates over a discretized grid of
initial conditions and interpolating to obtain the desired functions. However, for larger
systems, such a method is not computationally feasible, as the number of interpolated
values grows exponentially with the dimensionality of the system.

The most common way of calculating the functions \bfitZ and \bfitI j is by using the
adjoint equation [14], [7], the solution to which gives the necessary derivatives along
the periodic orbit. To derive the adjoint equation, consider (1) with \bfitP \equiv 0, and
suppose we apply a small perturbation \Delta \bfitx at time t = 0 to any trajectory \bfitx (t) which
is a solution to (1). For \Delta \bfitx small enough, its evolution is well approximated by the
linearization

(A1)
d\Delta \bfitx 

dt
= J(\bfitx (t))\Delta \bfitx (t) +\scrO (| | \Delta \bfitx | | 2),

where J is the Jacobian of (1) evaluated at \bfitx (t). The corresponding phase shift
\Delta \theta \equiv \theta (\bfitx (t)+\Delta \bfitx (t)) - \theta (\bfitx (t)) and isostable shift \Delta \psi k \equiv \psi k(\bfitx (t)+\Delta \bfitx (t)) - \psi k(\bfitx (t))
can also be approximated by the linearization

(A2) \Delta \Lambda = \nabla \bfitx (t)\Lambda \cdot \Delta \bfitx (t) +\scrO (| | \Delta \bfitx | | 2)

for \Lambda = \theta and \psi k, where \nabla \bfitx (t)\Lambda is the gradient of \Lambda evaluated at \bfitx (t). As inspired
by [7], by taking the time derivative of (A2) to lowest order in | | \Delta \bfitx | | ,

d\Delta \Lambda 

dt
=

\biggl\langle 
d\nabla \bfitx (t)\Lambda 

dt
,\Delta \bfitx (t)

\biggr\rangle 
+

\biggl\langle 
\nabla \bfitx (t)\Lambda ,

d\Delta \bfitx (t)

dt

\biggr\rangle 
,(A3)

where \langle \cdot , \cdot \rangle is the Euclidean inner product. Equation (A3) can be simplified by not-
ing that in the absence of perturbation, d\Delta \theta /dt = 0 after the initial perturbation.
Furthermore, because isostable coordinates converge exponentially as their associated
trajectories approach the periodic orbit, d\Delta \psi k/dt = \kappa k\Delta \psi k = \kappa k\nabla \bfitx (t)\psi k \cdot \Delta \bfitx , where
\kappa k is defined as in (16).

With this information, starting with (A3), we can write\biggl\langle 
d\nabla \bfitx (t)\Lambda 

dt
,\Delta \bfitx (t)

\biggr\rangle 
=  - 

\biggl\langle 
\nabla \bfitx (t)\Lambda ,

d\Delta \bfitx (t)

dt

\biggr\rangle 
+
d\Delta \Lambda 

dt

=  - 
\bigl\langle 
\nabla \bfitx (t)\Lambda , J(\bfitx (t))\Delta \bfitx (t)

\bigr\rangle 
+
\bigl\langle 
\kappa \Lambda \nabla \bfitx (t)\Lambda ,\Delta \bfitx (t)

\bigr\rangle 
=  - 

\bigl\langle 
J(\bfitx (t))T\nabla \bfitx (t)\Lambda  - \kappa \Lambda \nabla \bfitx (t)\Lambda ,\Delta \bfitx (t)

\bigr\rangle 
.(A4)

In the above equation, the transpose is the adjoint of the real-valued matrix J(\bfitx (t)),
\kappa \Lambda = 0 for \Lambda = \theta and \kappa \Lambda = \kappa k for \Lambda = \psi k. Equation (A4) is true for any perturbation
\Delta \bfitx , so that the adjoint equation follows immediately from (A4),

(A5)
d\nabla \bfitx (t)\Lambda 

dt
=
\bigl( 
\kappa \Lambda I  - J(\bfitx (t))T

\bigr) 
\nabla \bfitx (t)\Lambda ,

where I is the identity matrix.
Equation (A5) can be used to solve for \bfitZ and \bfitI j by taking \bfitx (t) to be the periodic

orbit. For this choice, the periodic solution of (A5) with one additional boundary
condition gives the desired functions. Specifically, when calculating \bfitZ , we require
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\bfitZ T (\theta )\bfitF (\bfitx (\theta (t))) = \omega as a normalizing condition [14] (i.e., in the absence of per-
turbations, the phase increases at the natural frequency). When calculating \bfitI k, we
require that when \theta = 0, \langle \bfitI Tk (\theta ),\bfitv k\rangle = 1 as the normalizing condition [69], which
follows directly from the definition of isostable coordinates (8) (cf. [69]).

A strategy to calculate the functions \bfitB k(\theta ) and \bfitC k
j (\theta ) was detailed in [66],

whereby the Hessian matrix of second derivatives of the phase and isostable coor-
dinates with respect to the periodic orbit were calculated using an equation similar
to the adjoint equation (A5). Here, we give an alternative strategy which is com-
putationally easier to implement in high-dimensional systems and uses the adjoint
equation itself.

To do so, consider the trajectory

(A6) \bfitx \epsilon ,k(t) = \phi (t,\bfitx 0 + \epsilon \bfitv k),

where \phi represents the unperturbed flow of (1), \bfitx 0 is the location for which \theta = 0
on the periodic orbit, \bfitv k is the eigenvector which defines the kth isostable coordinate
per the definition of isostables in (8), and \epsilon is a small, positive constant. Notice that
with the definition in (A6), \bfitx 0,k(t) = \bfitx \gamma (t), i.e., the stable periodic orbit.

Using the definition of isostable coordinates (8), the solution (A6) represents a
trajectory which has been perturbed slightly from the periodic orbit to increase the
\psi k coordinate. Therefore, through Taylor expansion, one can show that to leading
order in \psi k,

(A7)
\partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \epsilon ,k(t)

 - \partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (t)

=

\biggl( 
\partial 

\partial \psi k

\partial \theta 

\partial \bfitx 

\biggr) \bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (t)

\psi k(\bfitx \epsilon ,k(t)).

Recalling that in the absence of perturbations, \.\psi k = \kappa k\psi k, where \kappa k is defined in
(11), we know that \psi k(\bfitx \epsilon ,k(t)) = \psi k(\bfitx \epsilon ,k(0)) exp(\kappa kt). Furthermore, based on the
definition of isostables in (8), \psi k(\bfitx \epsilon ,k(0)) = \epsilon . Substituting this information into (A7)
and rearranging, we have

(A8)

\biggl( 
\partial 

\partial \psi k

\partial \theta 

\partial \bfitx 

\biggr) \bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (t)

=
exp( - \kappa kt)

\epsilon 

\Biggl( 
\partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \epsilon ,k(t)

 - \partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (t)

\Biggr) 
.

All that remains is to calculate the gradient of \theta along the trajectory \bfitx \epsilon ,k(t). To do
so, notice that in the right-hand side of (A7), \psi k(\bfitx \epsilon ,k(T )) = exp(\kappa kT )\psi k(\bfitx \epsilon ,k(0)).
Therefore, \partial \theta 

\partial \bfitx 

\bigm| \bigm| 
\bfitx \epsilon ,k(t)

can be computed as the solution to

(A9)
d\nabla \bfitx \epsilon ,k(t)\theta 

dt
=  - J(\bfitx \epsilon ,k(t))T\nabla \bfitx \epsilon ,k(t)\theta 

that satisfies the boundary conditions

\partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \epsilon ,k(T )

 - \partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (T )

= exp(\kappa kT )

\Biggl( 
\partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \epsilon ,k(0)

 - \partial \theta 

\partial \bfitx 

\bigm| \bigm| \bigm| \bigm| 
\bfitx \gamma (0)

\Biggr) 
.(A10)

The solution of (A9) which satisfies the above boundary conditions is relatively
straightforward to calculate, for instance, with a Newton iteration. Once this solu-
tion is computed numerically, all terms in the right-hand side of (A8) are known (the
left-hand side is \bfitB k(\theta )). This process can be used to solve for all functions \bfitB k(\theta )
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necessary in the augmented phase reduction (16). This strategy outlined above is
significantly more efficient than solving for the Hessian matrices of the phase and
isostable coordinates, whose computational effort grows rapidly as the dimensionality
of the system increases (cf. [66]). In principle, the equations \bfitC k

j (\theta ) could also be
found in an analogous manner. However, practically this strategy does not work well
for the calculation of these functions for reasons not investigated here.

Appendix B. General Structure of the Eigenvectors of the Linearization to
the Poincaré Map for a Population of Identical Oscillators. Consider a population
of N identical oscillators with mean-field coupling from (18) in the main text. Also
consider a Poincar\'e map of the form (6) and its corresponding linearization J\phi , which
are used to define isostable coordinates. In order to determine an adequate reduction
for the system (18) it is necessary to understand the structure of the eigenvectors of
and multiplicity of the corresponding eigenvalues of J\phi . To this end, consider a small
perturbation \bfitx \epsilon = \bfitx 0 +\Delta \bfitx . Through Taylor expansion of (18), to leading order we
write
(B1)

d

dt
\Delta \bfitx (t) =

\left[     
A(t) +B(t) B(t) . . . B(t)

B(t) A(t) +B(t) . . . B(t)
...

. . .
...

B(t) B(t) . . . A(t) +B(t)

\right]     
\left[     
\Delta \bfitx 1

\Delta \bfitx 2

...
\Delta \bfitx N

\right]     +\scrO (| | \Delta \bfitx | | 2),

where A(t) \equiv 
\bigl( 
\partial F
\partial \bfitx + \partial G

\partial \bfitx 

\bigr) \bigm| \bigm| 
\gamma (t)

, B(t) \equiv 1
N

\partial G
\partial \=\bfitx 

\bigm| \bigm| 
\gamma (t)

, and \Delta \bfitx \equiv 
\bigl[ 
\Delta \bfitx T1 . . . \Delta \bfitx TN

\bigr] T
.

Here, we will show that the eigenvectors of J\phi have a special structure of the form

(B2) \bfitv Si =

\left[     
\bfitmu Si
\bfitmu Si
...

\bfitmu Si

\right]     \in \BbbR MN , \bfitv Ai =

\left[     
\bfitmu Ai

 - \bfitmu Ai /(N  - 1)
...

 - \bfitmu Ai /(N  - 1)

\right]     \in \BbbR MN , 1 \leq i \leq M,

where \bfitmu Si and \bfitmu Ai \in \BbbR M . To begin, consider any initial condition to (B1) \Delta \bfitx of the
form \bfitv Si or \bfitv Ai . Matrix multiplication and simplification of (B1) yields

\.\bfitmu Si = (A(t) +NB(t))\bfitmu Si ,

\.\bfitmu Ai = A(t)\bfitmu Ai .(B3)

The solutions to (B3) are [25]

\bfitmu Si (T ) = \Phi S(T, 0)\bfitmu Si (0),

\bfitmu Ai (T ) = \Phi A(T, 0)\bfitmu Ai (0),(B4)

where \Phi S(T, 0) and \Phi A(T, 0) are the state transition matrices of their respective time-
dependent linear systems. Furthermore, eigenvector solutions

\Phi S(T, 0)\bfitmu Si (0) = \lambda i\bfitmu 
S
i (0),

\Phi A(T, 0)\bfitmu Ai (0) = \lambda i\bfitmu 
A
i (0)(B5)

must correspond to eigenvector solutions of J\phi \bfitv 
S
i = \lambda i\bfitv 

S
i and J\phi \bfitv 

A
i = \lambda i\bfitv 

A
i .

One can show that \Phi S(T, 0) and \Phi A(T, 0) are both diagonalizable so that each
matrix has M linearly independent eigenvalues. To see this, toward contradiction,
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suppose either \Phi S(T, 0) or \Phi A(T, 0) is not diagonalizable. This implies that one of
these matrices contains a Jordan block of size larger than 1, so that solutions of (B3)
can admit solutions that decay as an exponential multiplied by a polynomial function
of time [25]. However, this is not possible because J\phi is diagonalizable admitting
no such solutions, and thus \Phi S(T, 0) and \Phi A(T, 0) are both diagonalizable. Recall-
ing that \Phi S(T, 0) and \Phi A(T, 0) \in \BbbR M\times M and that the eigenvectors of \Phi S(T, 0) and
\Phi A(T, 0) are related to eigenvectors of J\phi , this implies that there are M linearly inde-
pendent eigenvectors of J\phi of the form \bfitv Ai , and an additional M linearly independent
eigenvectors of the form \bfitv Si . Furthermore, due to symmetry in (B1), for any \bfitmu Ai from
1 \leq i \leq M (corresponding to the eigenvector \bfitv Ai of J\phi ), one can verify that the N  - 1
columns of the matrix

(B6) E(\bfitmu Ai ) =

\left[         

\bfitmu i  - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1)
 - \bfitmu i/(N  - 1) \bfitmu i  - \bfitmu i/(N  - 1)
 - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1)

...
... . . .

...
 - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1) \bfitmu i
 - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1)  - \bfitmu i/(N  - 1)

\right]         
with E(\bfitmu Ai ) \in \BbbR MN\times (N - 1) are also linearly independent eigenvectors of J\phi , each cor-
responding to the same eigenvalue. Linear independence can be shown by considering
a subset of the rows of E(\bfitmu Ai ), specifically the kth, M + kth, 2M + kth, . . . , and
(N  - 1)M + kth rows for k < M + 1, to create a matrix of the form

(B7) E
(k)
sub(\bfitmu 

A
i ) = \mu Ai,k

\left[       
1  - 1/(N  - 1) . . .  - 1/(N  - 1)

 - 1/(N  - 1) 1 . . .  - 1/(N  - 1)
...

...
. . .

...
 - 1/(N  - 1)  - 1/(N  - 1) . . . 1
 - 1/(N  - 1)  - 1/(N  - 1) . . .  - 1/(N  - 1)

\right]       ,

where \mu Ai,k is the kth element of \bfitmu Ai and E
(k)
sub(\bfitmu 

A
i ) \in \BbbR N\times (N - 1). By adding a column

of ones to the end of E
(k)
sub(\bfitmu 

A
i ) and using elementary row operations on the resulting

matrix, an upper triangular matrix can be obtained with nonzero elements on the

diagonal, thus implying E
(k)
sub(\bfitmu 

A
i ) and consequently that E(\bfitmu Ai ) has full rank.

To summarize, for the M eigenvalue and eigenvector pairs (\lambda i,\bfitmu 
S
i ) of \Phi S(T, 0),

there is exactly one corresponding eigenvalue and eigenvector pair (\lambda i,\bfitv 
S
i ) of J\phi .

Furthermore, for each of the M eigenvalue and eigenvector pairs (\lambda i,\bfitmu 
A
i ) of \Phi 

A(T, 0),
there are exactly N - 1 linearly independent eigenvectors of J\phi formed by the columns
of E(\bfitmu Ai ) with corresponding eigenvalue \lambda i. This accounts for all NM eigenvectors of
J\phi . We will refer to the eigenvectors which comprise the columns of E(\bfitmu Ai ) as a set
of asynchronous eigenvectors, and the eigenvectors of the form \bfitv Si will be referred to
as synchronous eigenvectors.

It will be important to note that all eigenvectors which comprise the columns of
E(\bfitmu Ai ) are orthogonal to all eigenvectors of the form \bfitv Si . Also, the columns of E(\bfitmu Ai )
sum to zero. Furthermore, because the periodic orbit of (18) is asymptotically stable,
exactly one eigenvalue of J\phi must be equal to one. Since all \bfitv Ai are repeated, this
eigenvector must be of the form \bfitv Si . For all other eigenvectors of J\phi , the corresponding
eigenvalues must have an absolute value of less than 1.
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Appendix C. An Approximation to the Augmented Phase Reduction in the
Limit of Small Forcing. In previous work [66] an augmented isostable reduction of
the form (16) was derived. Here, we will consider the equation

\.\theta \epsilon = \omega +\bfitZ T (\theta \epsilon )\bfitP (t) +

n - 1\sum 
k=1

\bigl[ 
\bfitB kT (\theta \epsilon )\psi k,\epsilon 

\bigr] 
\bfitP (t),

\.\psi j,\epsilon = \kappa j\psi j,\epsilon + \bfitI Tj (\theta \epsilon )\bfitP (t),(C1)

which is identical to (16) with all functions \bfitC k
j = 0. We will show that provided

\bfitP (t) = \scrO (\epsilon ) uniformly in time and \epsilon is sufficiently small in relation to the minimum
of | \kappa j | over all j, then when comparing the solutions of (C1) and (16) with the same
initial conditions, \theta (t) - \theta \epsilon (t) \sim \scrO (\epsilon 3) for t \sim \scrO (1/\epsilon ).

To begin, let \bfitx be some initial condition on the periodic orbit (i.e., with \psi j(0) = 0

for all j). By taking the absolute value of each term of \.\psi j for any j from (16), one
can show

(C2) \.| \psi j | \leq \kappa j | \psi j | +max
\theta ,t

\bigm| \bigm| \bfitI Tj (\theta )\bfitP (t)
\bigm| \bigm| + (n - 1)max

\theta ,t,k

\bigm| \bigm| \bigm| \bfitC k
j

T
(\theta )\bfitP (t)

\bigm| \bigm| \bigm| max
j

| \psi j | .

Equation (C2) uses the fact that \kappa j < 0 for all j. Setting the left-hand side of (C2)
to zero implies

(C3)  - \kappa j | \psi j | \leq max
\theta ,t

\bigm| \bigm| \bfitI Tj (\theta )\bfitP (t)
\bigm| \bigm| + (n - 1)max

\theta ,t,k

\bigm| \bigm| \bigm| \bfitC k
j

T
(\theta )\bfitP (t)

\bigm| \bigm| \bigm| max
j

| \psi j | 

for t \geq 0. Equation (C3) is valid for any isostable coordinate so that

(C4)  - \kappa \xi max
j

| \psi j | \leq max
\theta ,t,j

\bigm| \bigm| \bfitI Tj (\theta )\bfitP (t)
\bigm| \bigm| + (n - 1) max

\theta ,t,k,j

\bigm| \bigm| \bigm| \bfitC k
j

T
(\theta )\bfitP (t)

\bigm| \bigm| \bigm| max
j

| \psi j | ,

where \xi = argmaxj | \psi j | . Provided minj [ - \kappa j ] is large relative to \epsilon (recall that \bfitP (t) =

\scrO (\epsilon )), it follows that
\bigl( 
minj [ - \kappa j ]  - (n  - 1)max\theta ,t,k,j

\bigm| \bigm| \bfitC k
j
T
(\theta )\bfitP (t)

\bigm| \bigm| \bigr) > 0 and the
following bound is obtained:

(C5) max
j

| \psi j | \leq 
max\theta ,t,j

\bigm| \bigm| \bfitI Tj (\theta )\bfitP (t)
\bigm| \bigm| 

minj [ - \kappa j ] - (n - 1)max\theta ,t,k,j

\bigm| \bigm| \bigm| \bfitC k
j
T
(\theta )\bfitP (t)

\bigm| \bigm| \bigm| .
Furthermore, provided \epsilon is small enough so that the denominator of (C5) is order 1,
the above equation implies that maxj | \psi j | = \scrO (\epsilon ).

Next, let \Delta \theta \equiv \theta \epsilon  - \theta and \Delta \psi j \equiv \psi j,\epsilon  - \psi k, i.e., the difference between the
solutions of (C1) and (16). Using these definitions, one can derive

\Delta \.\theta =\bfitZ \prime T (\theta )\bfitP (t)\Delta \theta +

n - 1\sum 
k=1

\biggl[ 
\bfitB k\prime T (\theta )\Delta \theta \psi k +\bfitB kT (\theta )\Delta \psi k

\biggr] 
\bfitP (t)(C6)

+\scrO (\Delta \theta 2) +

n - 1\sum 
k=1

\scrO (\Delta \psi 2
k),

\Delta \.\psi j =\kappa j\Delta \psi j + \bfitI \prime T (\theta )\bfitP (t)\Delta \theta  - 
n - 1\sum 
k=1

\bigl[ 
\bfitC k
j

T
(\theta )\psi k

\bigr] 
\bfitP (t) +\scrO (\Delta \theta 2).(C7)
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Equations (C6) and (C7) are derived by subtracting (16) from (C1) and Taylor ex-
panding the result, with \prime \equiv \partial /\partial \theta . Using the above equations, we can bound the
growth of \Delta \theta as follows:

(C8)

d

dt
| \Delta \theta | \leq max

\theta ,t

\bigm| \bigm| \bigm| \bfitZ \prime T (\theta )\bfitP (t)
\bigm| \bigm| \bigm| +max

\theta ,t

\bigm| \bigm| \bigm| \bigm| \bigm| 
n - 1\sum 
k=1

\biggl[ 
\bfitB k\prime T (\theta )

\biggr] 
\bfitP (t)

\bigm| \bigm| \bigm| \bigm| \bigm| max
k,t

| \psi k| \underbrace{}  \underbrace{}  
K1

| \Delta \theta | 

+max
\theta ,t

\bigm| \bigm| \bigm| \bigm| \bigm| 
n - 1\sum 
k=1

\Bigl[ 
\bfitB kT (\theta )

\Bigr] 
\bfitP (t)

\bigm| \bigm| \bigm| \bigm| \bigm| max
k,t

| \Delta \psi k| \underbrace{}  \underbrace{}  
K2

= K1| \Delta \theta | +K2.

Recall from (C5) that maxk,t | \psi k| = \scrO (\epsilon ), which implies that maxk,t | \Delta \psi k| can be no
larger than \scrO (\epsilon ). Therefore, since \bfitP (t) = \scrO (\epsilon ) uniformly in time, K1 is no larger
than \scrO (\epsilon ) and K2 is no larger than \scrO (\epsilon 2). Using (C8), this allows us to write

| \Delta \theta (t)| \leq K2

K1
(eK1t  - 1)

= K2t+\scrO ((K2t)
2).(C9)

Therefore, on the time scale of t \sim 1/\epsilon , the above equation implies \Delta \theta (t) is no larger
than \scrO (\epsilon 2). Now, using (C7), we can also bound the growth of \Delta \psi j as

d

dt
| \Delta \psi j | \leq \kappa j | \Delta \psi j | +max

\theta ,t

\bigm| \bigm| \bigm| \bfitI \prime T (\theta )\bfitP (t)
\bigm| \bigm| \bigm| max

t
| \Delta \theta | +max

\theta ,t

\bigm| \bigm| \bigm| \bigm| \bigm| 
n - 1\sum 
k=1

\bigl[ 
\bfitC k
j

T
(\theta )
\bigr] 
\bfitP (t)

\bigm| \bigm| \bigm| \bigm| \bigm| max
k

| \psi k| 

\leq max
\theta ,t

\bigm| \bigm| \bigm| \bfitI \prime T (\theta )\bfitP (t)
\bigm| \bigm| \bigm| max

t
| \Delta \theta | \underbrace{}  \underbrace{}  

K3

+max
\theta ,t

\bigm| \bigm| \bigm| \bigm| \bigm| 
n - 1\sum 
k=1

\bigl[ 
\bfitC k
j

T
(\theta )
\bigr] 
\bfitP (t)

\bigm| \bigm| \bigm| \bigm| \bigm| max
k,t

| \psi k| \underbrace{}  \underbrace{}  
K4

,(C10)

where the second line is obtained by noting that \kappa j < 0. Using (C9), on the time scale
of t \sim 1/\epsilon , maxt | \Delta \theta | is at most \scrO (\epsilon 2). Therefore on this time scale, K3 is at most
\scrO (\epsilon 2). Furthermore, since maxk | \psi k| is at most \scrO (\epsilon ), K4 is at most \scrO (\epsilon 2). Using
(C10) on the time scale of t \sim 1/\epsilon , maxk | \Delta \psi k| can be no larger than \scrO (\epsilon 2). We can
now use this revised bound to show that K2 from (C8) is no larger than \scrO (\epsilon 3) on
t \sim 1/\epsilon which, using (C9) implies that

(C11) | \Delta \theta (t)| \leq \scrO (\epsilon 3) for t \sim 1/\epsilon .

To summarize, for any initial condition that is sufficiently close to the periodic
orbit \gamma , for perturbations of \scrO (\epsilon ) uniformly in time and small enough relative to the
minimum of | \kappa j | over all j, the difference \theta (t)  - \theta \epsilon (t) between solutions of (16) and
(C1) remain \scrO (\epsilon 3) on the time scale of t \sim 1/\epsilon . Because we are often only practically
interested in the phase of a system, we primarily use (C1) for applications in this
work.
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