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Optimal entrainment for removal of pinned spiral waves
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Cardiac fibrillation is caused by self-sustaining spiral waves that occur in the myocardium, some of which
can be pinned to anatomical obstacles, making them more difficult to eliminate. A small electrical stimulation is
often sufficient to unpin these spirals but only if it is applied during the vulnerable unpinning window. Even if
these unpinning windows can be inferred from data, when multiple pinned spirals exist, their unpinning windows
will not generally overlap. Using phase-based reduction techniques, we formulate and solve an optimal control
problem to yield a time-varying external voltage gradient that can synchronize a collection of spiral waves that
are pinned to a collection of heterogeneous obstacles. Upon synchronization, the unpinning windows overlap
so that they can be simultaneously unpinned by applying an external voltage gradient pulse at an appropriate
moment. Numerical validation is presented in bidomain model simulations. Results represent a proof-of-concept
illustration of the proposed unpinning strategy which explicitly incorporates heterogeneity in the problem
formulation and requires no real-time feedback about the system state.
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I. INTRODUCTION

Spiral waves are self-sustaining spatiotemporal patterns
that can occur in many different excitable systems [1–4]. In
cardiac systems, spiral waves in two-dimensional domains
(and scroll waves in three dimensions [5]) give rise to cardiac
arrhythmias such as tachycardia that result in an abnormally
fast resting heartbeat and fibrillation that can lead to cardiac
arrest [3,6–8]. The clinical standard for eliminating these ar-
rhythmias is to apply an intense shock across the myocardium,
usually requiring a voltage gradient of upwards of 5 V/cm
[9]. Generally, defibrillating shocks are intensely painful, and
repeated application of shocks causes additional damage to
already malfunctioning hearts [10–12]. These adverse effects
have motivated the search for low-energy strategies to elimi-
nate spiral waves.

Rather than eliminating spiral waves with a single large
resetting stimulus, low-energy strategies have been developed
by considering spiral wave dynamics in response to inputs.
Many strategies consider the dynamics of spiral waves us-
ing adjoint modes to the neutral symmetries, subsequently
viewing spiral wave behavior in terms of a rigidly rotating
core with spatial translation [6,13–15]. This understanding
has fostered the development of antitachycardia pacing strate-
gies [16–18] whereby traveling waves emanating from a
point source can replace spirals by driving them to an in-
excitable boundary. Additionally, the application of multiple
low-intensity defibrillating pulses instead of one large shock
has been shown to reduce the energy threshold required for
successful defibrillation [19–21]. Related studies have consid-
ered simplified models in the context of developing optimized
pulsing patterns [22,23]. Strategies that consider defibrillation
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through the application of high-frequency electric fields have
also been considered [24–26].

In realistic cardiac geometries, spiral waves have a ten-
dency to attach or become pinned to anatomical obstacles
that create tissue conductivity discontinuities such as blood
vessels, anatomical defects, or cleft spaces [27–29]. These
pinned spiral waves present an additional challenge in the de-
velopment of low-energy defibrillation techniques; unpinned
spirals are free to drift throughout the domain where they
can be absorbed through inexcitable boundaries, while pinned
spirals remain anchored in place. Various strategies have been
proposed for unpinning spirals using target waves [30,31]
or externally applied electric fields [28,32,33]. Generally, an
externally applied voltage field can unpin a spiral wave but
only when applied in a small window of time. Difficulties with
this strategy arise when multiple pinned spirals exist simulta-
neously, each with a different phase relative to its unpinning
window. The collection of unpinning windows is unlikely to
overlap on its own, making simultaneous unpinning difficult.
As suggested in [34], pacing frequencies can be determined
in order to adequately scan the phase window, but it is not
obvious how to generalize this strategy in situations with
multiple heterogeneous pinned spirals.

In this work we consider the problem of simultaneously un-
pinning a large collection of spirals pinned to a heterogeneous
collection of anatomical obstacles. Pinned spirals can often
be characterized according to a stable periodic orbit, allowing
for the use of phase-based reduction techniques [35–37] to
consider the dynamics with a low-dimensional representation.
Here we leverage these phase reduction techniques and imple-
ment a general strategy that can be used to identify periodic
stimuli that can efficiently synchronize multiple spirals so that
their unpinning windows overlap, subsequently allowing for
simultaneous unpinning. We focus on implementation using
a time-varying external voltage gradient as a control input.
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Notably, our approach explicitly allows for heterogeneity in
the period and the phase response to inputs of the pinned
spirals. Additionally, once an optimal entraining stimulus is
found, implementation does not require any state feedback
since the phase of the spirals is locked to the phase of the
exogenous input.

The organization of this paper is as follows: Section II
provides necessary background on numerical methods and
phase-based model order reduction techniques used in this
work. We also discuss the optimal control problem formula-
tion and method of solution in the context of synchronization
of a collection of heterogeneous spirals in order to align their
unpinning windows. Section III presents results when consid-
ering a four-dimensional model that replicates the dynamics
of human ventricular cells in conjunction with bidomain
model simulations [38,39]. Section IV provides concluding
remarks.

II. NUMERICAL METHODS AND OPTIMAL CONTROL
FORMULATION

A. Numerical simulation of bidomain equations

Numerical simulations use the bidomain model, which is
governed by the following equations [38,39]:

∇ · σ̄i∇Vi = βIm,

∇ · σ̄e∇Ve = −βIm,

Im = Cm
∂Vm

∂t
+ Iion,

Vm = Vi − Ve. (1)

Here, intracellular and extracellular potentials are given by Vi

and Ve, Vm is the transmembrane voltage, Cm = 1 μF/cm2

denotes the membrane capacitance, σ̄i and σ̄e are intra- and
extracellular conductivity tensors, β = 1000 cm−1 is the sur-
face area to volume ratio of the cell membrane, and ∇ denotes
the spatial gradient. The term Iion represents the cellular ionic
current density and is governed by a four-dimensional model
[40] that replicates the dynamics of the Ten Tusscher–Noble–
Noble–Panfilov model for human ventricular myocytes [41].

The model (1) is simulated using a square domain �

with no current flux across the intracellular boundary so that
σ̄i∇Vi · ν = 0, where ν is a unit vector normal to the tis-
sue boundary and the dot denotes the dot product. No flux
boundary conditions are taken on the top and bottom of the ex-
tracellular domain, with a time-varying electric flux imposed
on the left and right boundaries that would result from the
application of an external electric field. Conductivity tensors
are taken to be

σ̄i =
[

gix(x, y) 0
0 giy(x, y)

]
,

σ̄e =
[

gex(x, y) 0
0 gey(x, y)

]
, (2)

with nominal values gex, gey, gix , and giy equal to 0.8, 2.0 0.2,
and 2.0 mS/cm, respectively. These anisotropy ratios are iden-
tical to those used in [42]. With this setup, the principle fiber
direction is oriented vertically and the electric field is applied
horizontally, i.e., transverse to the principle fiber direction. We

FIG. 1. Panel A shows an example domain for the bidomain
model considered in this work. The domain is square with a discon-
tinuity incorporated by setting gix and giy to zero inside a circle of
diameter D. Panel B shows the result of an extracellular voltage gra-
dient (increasing from right to left) applied for an initial condition for
which all cells are quiescent. Action potentials are initiated at the left
edge of the circular discontinuity and the right edge of the domain.
Regions of hyperpolarization are also induced at the right edge of
the circular discontinuity and the left edge of the domain during the
application of the electric field, but these disappear quickly. Arrows
indicate the direction of travel of the depolarization waves.

model discontinuities in the tissue by setting gix and giy to zero
in a circular region at the center of the domain.

For simulation and analysis purposes, the bidomain equa-
tions (1) are typically manipulated to yield

∂Vm

∂t
= AiVm + AiVe − Iion/Cm, (3)

subject to the constraint

(Ai + Ae)Ve = −AiVm, (4)

where Ai ≡ ∇ · σ̄i∇/(βCm) and Ae ≡ ∇ · σ̄e∇/(βCm). The
operator splitting scheme from [43] is used to simulate Eq. (1).
Simulations are performed on a 100 × 100 grid using a spa-
tial discretization of 338 μm and a temporal discretization of
0.1 ms. The spiral dynamics are considered in the applications
to follow after simulating long enough for transients to die out
with solutions decaying to an underlying stable periodic orbit.
Panel A of Fig. 1 highlights the geometry described above
with simulations performed on the square domain with a
circular discontinuity with diameter D. For the geometry con-
sidered in this work, positive (resp. negative) voltage gradients
are associated with an increasing (resp. decreasing) extracel-
lular voltage from right to left. Panel B illustrates the influence
of a voltage gradient of 8.6 V/cm applied for 3 ms, starting
from an initial condition for which all cells are quiescent. The
discontinuity acts as a virtual electrode, and the application
of the electric field elicits an action potential emanating from
the left edge of the discontinuity that subsequently spreads
throughout the domain. As a result of the application of this
external electric field, action potentials are also initiated at the
right edge of the domain.

B. Asymptotic phase and phase reduction

The dynamics of the bidomain model equations gov-
erned by Eqs. (3) and (4) are difficult to consider directly
due to their high dimensionality, complexity, and nonlinear-
ity. Instead, the dynamics of pinned spiral waves will be
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analyzed using phase reduction [35–37]. To proceed, let
X (r, t ) = [Vm(r, t ) s(r, t )] be the state with s ∈ Rn repre-
senting a set of local auxiliary variables (gating variables,
ion concentrations, etc.) that set the transmembrane current
density. Here, r denotes the location on the spatial domain
�, with u(t ) ∈ R being the strength of the electric field. We
represent the dynamics of Eq. (3) as

∂X (r, t )

∂t
= F [X (r, t ), u], (5)

where F sets the system dynamics. Suppose that Eq. (5)
admits a stable, T-periodic limit cycle X γ (r, t ) when taking
u(t ) = 0, that is, in the absence of an external electric field.
For all initial conditions X ∗ in the basin of attraction of the
periodic orbit, one can define a unique phase θ (X ∗) ∈ [0, 2π )
using the notion of an asymptotic phase defined so that

lim
t→∞

∣∣∣∣X (r, t ) − X γ

(
r, t + T

2π
θ (X ∗)

)∣∣∣∣ = 0, (6)

where X (r, t ) gives the evolution of (5) under the flow with
initial condition X ∗ when taking u(t ) = 0. Correspondingly,
level sets of θ are often referred to as isochrons [44,45].
One can verify that according to the definition (6), dθ/dt =
2π/T ≡ ω when evolved under the unperturbed flow.

For an initial condition near the stable limit cycle, one can
analyze (5) using these asymptotic phase coordinates; from
the chain rule, one finds

dθ (X )

dt
= 〈∇θ (X ), ∂X/∂t〉,
= 〈∇θ (X ), F (X (r, t ), u)〉, (7)

where the gradient of θ is evaluated at the intersection of
X γ (r, t ) and the θ (X ) isochron. In the limit that the input
u(t ) is small, the dynamics associated with Eq. (5) are well
approximated according to

∂X (r, t )

∂t
= F [X (r, t ), 0] + ∂F

∂u
u(t ), (8)

where ∂F/∂u is also evaluated at the intersection of X γ (r, t )
and the θ (X ) isochron. As such, Eq. (7) can be manipulated to
yield

dθ

dt
=

〈
∇θ (X ), F (X (r, t ), 0) + ∂F

∂u
u(t )

〉
,

= ω +
〈
∇θ (X ),

∂F

∂u
u(t )

〉
,

= ω + Z (θ )u(t ). (9)

Note that in the second line above, 〈∇θ (X ), F (X (r, t ), 0)〉 =
ω as mandated by the definition of isochrons. In the third

line Z (θ ) ≡ 〈∇θ (X ), ∂F/∂u〉 is often referred to as a phase
response curve, which captures the effect of an input applied
at a particular phase of oscillation.

C. Direct method for inference of phase response curves

In order to apply the phase reduction from Eq. (9), it
is necessary to identify Z (θ ). This can be accomplished in
some situations by solving numerically for ∇θ (X ) by finding
appropriate solutions to an adjoint equation [46] (cf. [47]).
In other cases it is more convenient to infer Z (θ ) using the
direct method [3,48]. Given the complexity of the bidomain
equations governed by Eq. (3), we will employ the direct
method in this work, which is described below.

The direct method can be implemented by applying a pulse
of input u(t ) = a0 lasting t0 time units starting at a known
phase θ0. From Eq. (9), the difference in phase caused by the
application of the pulse input is given by �θ ≈ Z (θ0)a0t0. As
such, by inferring the change in phase �θ in response to this
input, a pointwise estimate of the phase response curve can be
estimated according to

Z (θ0) ≈ �θ

a0t0
. (10)

By repeating this procedure for multiple choices of θ0, Z (θ )
is taken to be a curve fit to the resulting data. Here, �θ

can be computed following the application of the input by
considering the change in oscillation timing once the pinned
spiral wave relaxes back to its limit cycle.

D. Entrainment of heterogeneous spirals using
a time-varying electric flux

Consider two oscillators governed by the phase-reduced
equations

θ̇1 = ω0 + Z (θ1)u(t ),

θ̇2 = ω0 + �ω + [Z (θ2) + �Z (θ2)]u(t ), (11)

where θ1 is the phase of a nominal oscillator with frequency
w0 and phase response curve Z (θ1). We also consider a sec-
ond oscillator with a natural frequency that differs from the
nominal by �ω ∈ [−�ω−,�ω+] and a phase response curve
that differs from nominal by −E−(θ ) � �Z (θ ) � E+(θ ). In-
tuitively, oscillator 1 captures the nominal system properties
and oscillator 2 accounts for uncertainty. We assume that both
u(t ) and �ω are order ε terms where 0 < ε 
 1. Defining a
new variable φ = θ2 − θ1, using Eq. (11) one finds

φ̇ = �ω + [Z (θ1 + φ) − Z (θ1) + �Z (θ1 + φ)]u(t ). (12)

Neglecting order ε terms from the dynamics given in Eq. (11),
one finds that θ1(t ) = θ1(0) + ω0t + O(ε). Substituting this
result into Eq. (12) yields

φ̇ = �ω + [Z (ω0t + φ) − Z (ω0t ) + �Z (ω0t + φ)]u(t ) + O(ε2), (13)

where θ1(0) is taken to be zero for simplicity. We take u0 to be a T -periodic input with period T = 2π/ω0 so that Eq. (13)
is T periodic. Noting that Eq. (13) is of the general form v̇ = εQ(v, t ), formal averaging techniques [44,49] can be applied to
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approximate (13) according to

�̇ = �ω + 1

T

∫ T

0
[Z (ω0t + �) − Z (ω0t ) + �Z (ω0t + �)]u(t )dt︸ ︷︷ ︸

f (�)

, (14)

where � is a good approximation for φ. Additionally, sta-
ble fixed points of Eq. (14) correspond to stable entrained
solutions of the unaveraged equations (13). Equation (14) is
often referred to as a coupling function, which admits stable
locked solutions for crossings of �̇ = 0 with negative slope.
As explained with a graphical argument in [50], provided that
the following two conditions are satisfied,

f (θ+) < −�ω+, (15)

f (−θ−) > �ω−, (16)

for some θ+ and θ−, the intermediate value theorem guaran-
tees that Eq. (14) admits a stable fixed point somewhere on the
interval [−�θ−,�θ+]. Note that because the oscillators from
Eq. (11) are not coupled, the above analysis can be applied to a

population of oscillators, each with properties that fall within
the range of allowable heterogeneity.

E. Optimal control formulation and numerical solution

Ultimately, the goal is to design an optimal electric field
flux u(t ) that will synchronize the phase of a collection of
heterogeneous pinned spirals so that their unpinning win-
dows overlap. Specifically, we seek to identify a stimulus u(t )
that satisfies the conditions (15) and (16) for a given choice
of θ+ and θ− and minimizes the cost functional C[u(t )] =∫ T

0 u2(t )dt . To achieve this goal, we will employ the strat-
egy proposed in [50]. A simplified derivation of this control
strategy is given here.

We start by manipulating the relations (15) and (16). One
can rewrite condition (15) as

1

T

∫ T

0

[ ∫ θ+

0
Z ′(ω0t + s)u(t )ds + �Z (ω0t + θ+)u(t )

]
dt < −�ω+, (17)

which will be satisfied provided

1

T

∫ T

0

[∫ θ+

0
Z ′(ω0t + s)u(t )ds + max

�Z
(�Z (ω0t + �θ+)u(t ))

]
dt < −�ω+. (18)

Likewise, Eq. (16) will be satisfied provided

1

T

∫ T

0

[∫ −θ−

0
Z ′(ω0t + s)u(t )ds + min

�Z
(�Z (ω0t − �θ−)u(t ))

]
dt > �ω−. (19)

With Eqs. (18) and (19) in mind, the optimal control input can be obtained using a Hamilton-Jacobi-Bellman approach [51] by
defining the system

ẏ =
⎡
⎣ȧ

ḃ
θ̇

⎤
⎦ =

⎡
⎢⎢⎣

1
T

∫ θ+
0 Z ′(ω0t + s)u(t )ds + 1

T max
�Z

(�Z (ω0t + �θ+)u(t ))
1
T

∫ −θ−
0 Z ′(ω0t + s)u(t )ds + 1

T min
�Z

(�Z (ω0t − �θ−)u(t ))

ω0 + Z (θ )u(t )

⎤
⎥⎥⎦. (20)

Here, a and b are auxiliary variables that correspond to
constraints (18) and (19). Then the desired energy-optimal
stimulus will minimize

J (y, u) =
∫ T

0
u2dt + q(y(T )), (21)

where
∫ T

0 u2dt gives a sense of the power consumed by the
stimulus, and q(y(T )) provides a penalty for failing to reach
the target set. Specifically, q(y(T )) is small when the end-
point conditions a(T ) < −�ω+, b(T ) > �ω−, and θ (T ) =
2π are satisfied. For final states for which these conditions are
not satisfied, q(y(T )) is a large penalty. A Hamilton-Jacobi-
Bellman equation can be solved to obtain the cost-to-go

function (also known as the value function)

V (y, τ ) = inf
umin�u(t )�umax∀t∈[τ,T ]

[∫ T

τ

u2dt + q(y(T ))
]
, (22)

and the optimal control at a given moment in time can be
obtained as the minimal solution to the Hamiltonian,

H(y,∇V, u) = u2(t ) + [∇V (y(t ), t )]T ẏ, (23)

subject to the allowable constraints. Subsequently, the full
optimal control over the interval t ∈ [0, T ] can be identified
by solving (20) using the optimal input with initial condi-
tion y(0) = [0, 0, 0]. More details about this optimal control
formulation and solution can be found in [50]. Intuitively,
this optimal control framework tends to yield inputs that are
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FIG. 2. Phase response curves (in units of rad cm/V s) for spirals
pinned to discontinuities of various diameters, D (in cm). The phase
of each spiral is most sensitive to inputs occurring between θ ∈
[1.5, 3.8] with significant variation in the amplitudes of the phase
response curves depending on the size of the discontinuity. Panels B
and C show snapshots corresponding to phases of θ = 0 and θ = π ,
respectively, for a discontinuity D = 0.88 cm. The phases are most
sensitive to input when the spiral tip is near the left side of the
discontinuity, i.e., the depolarizing side of the virtual electrode that
results when a positive voltage gradient is applied.

larger in magnitude when the slopes of the allowable phase
response curves are simultaneously large in magnitude. In
regions where there is a large amount of allowable heterogene-
ity or when the slopes are small in magnitude, the resulting
control input is usually close to zero.

III. RESULTS

We consider the bidomain model governed by Eqs. (3) and
(4) in the presence of circular discontinuities with size ranging
from D = 0.88 to D = 1.29 cm in diameter. Each of these
configurations supports a single spiral with a period ranging
from 317 to 414 ms in steady state. For each pinned spiral,
θ = 0 (resp., θ = π ) corresponds to a moment when the spiral
is near the bottom (resp. top) of the obstacle (for instance,
see panels B and C of Fig. 2). Phase response curves are
obtained by applying a voltage gradient of 2.6 V/cm lasting
9.6 ms, measuring the resulting phase difference, inferring
the resulting shift in phase caused by the pulse, and using
Eq. (10) to provide an estimate of the phase response curve.
This process is repeated for various initial phases to obtain
pointwise estimates of each phase response curve. Panel A
of Fig. 2 shows resulting phase response curves associated
with discontinuities of different sizes. The phase is only sen-
sitive to inputs for θ ∈ [1.5, 3.8] near the moment that the tip
of the spiral wave crosses the left side of the discontinuity
(corresponding to the depolarizing end of the virtual electrode
induced by a positive voltage gradient). Beyond this range an
applied voltage gradient does little to influence the phase. Ad-
ditionally, the size of the phase response curve increases with
increasing diameter of the discontinuity. This result is likely
related to two different factors. First, as noted in [46], phase
sensitivity functions associated with pinned spirals are con-
centrated near the discontinuity. Second, as observed in Fig. 5
of [19], the influence of an electric field near a discontinuity
grows with its size, e.g., with larger discontinuities serving

FIG. 3. Using the envelope obtained from the phase response
curves from Fig. 2, the optimal control problem is formulated as
described in Sec. II E and solved to yield an energy-optimal stimulus.
This periodic stimulus is shown in panel A along with two compari-
son stimuli which represent short and long impulses with magnitudes
chosen so that

∫ T
0 u2dt is identical for each stimulus. Panels B, C,

and D show representative traces of transmembrane voltage when
the optimal, short-impulse, and long-impulse periodic stimuli are
applied to pinned spirals. The different colors represent traces from
spirals pinned to discontinuities of different allowable sizes. The
optimal stimulus results in tight synchronization after approximately
3000 ms. The other stimuli are unable to synchronize the phases of
all spirals.

as virtual electrodes for weaker electric field strengths. These
factors ultimately translate to an increase in the magnitude of
the PRC as the size of the discontinuity increases.

The PRCs from Fig. 2 are used to the determine the
envelope �Z in the optimal entrainment strategy described
in Secs. II D and II E. We take ω0 = 0.0203 rad/ms, cor-
responding to an entrained period of 310 ms. Compared to
the unforced spiral periods, the entrained period is relatively
short. This is because the spiral with the fastest period (i.e.,
with D = 0.88 cm) is the least sensitive to input, as illustrated
in Fig. 2. We also take θ+ = θ− = 0.63 radians so that upon
entrainment the phase of each spiral will be within 1.26 ra-
dians, allowing for some overlap in the unpinning windows.
The absolute maximum value of the control input is taken to
be 1.8 V/cm. The resulting optimal input is shown in blue
in panel A of Fig. 3. For reference, the green and magenta
lines show large- and small-magnitude pulse inputs for which∫ T

0 u2dt are identical to the optimal input. The response to
these periodic inputs is shown in panels B–D where each trace
shows the transmembrane voltage at (x, y) = (1, 2) cm for
spirals with discontinuities of different allowable sizes. Panel
B shows results when using the optimal stimulus. The re-
sponse to the comparison periodic inputs shown in green and
magenta in panel A are shown in panels C and D, respectively.
Note that each simulation considers a single spiral wave on
a 3.38 × 3.38 cm domain in response to the indicated input,
and the voltage traces for each trial are superimposed. The
optimal stimulus tightly synchronizes the behavior of each of
the spiral waves (shown in panel B) after approximately ten
cycles. Synchronization is not achieved by the comparison
stimuli (panels C and D).
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FIG. 4. In panel A, unpinning windows for spirals pinned to
circular obstacles of varying diameter (in cm) are shown as hori-
zontal lines. The colored lines show representative transmembrane
voltage traces from individual spirals taken at (x, y) = (1, 2) cm after
the spirals have been entrained to the optimal stimulus. Unpinning
windows for the individual spirals are determined by first applying
the optimal stimulus shown in Fig. 3 until the spiral is fully entrained,
subsequently applying a voltage gradient of 8.6 V/cm lasting 3 ms,
recording whether the spiral is unpinned from the discontinuity, and
repeating this procedure for an adequate sampling of pulse timings.
The timing of these pulses is shown relative to the timing of the
entraining stimulus shown for reference in panel B. The overlap in
the unpinning windows is denoted by �. This window occurs slightly
after the optimal stimulus reaches its maximum value.

We also investigate the size of the unpinning window for
the spirals entrained by the energy-optimal stimulus with re-
sults shown in Fig. 4. In panel A, each color trace shows
the transmembrane voltage at (x, y) = (2, 1) from a single
spiral once it is entrained to the optimal stimulus. Numer-
ically, we determine each unpinning window by applying a
short duration voltage gradient of 8.6 V/cm lasting 3 ms. In
these simulations, once the spiral is unpinned it is absorbed
through the tissue boundary and subsequently eliminated. For
larger domains, an unpinned spiral would not necessarily be
absorbed by the tissue boundary because it would have more
room to meander. Horizontal lines in panel A of Fig. 4 indicate
the unpinning window, i.e., the time that the electric field can
be applied so that the spiral will subsequently be unpinned.
Because these spirals are entrained to the external voltage
field, these unpinning windows are shown relative to the tim-
ing of the optimal stimulus shown for reference in panel B.
This simultaneous unpinning window is close to the moment
that the magnitude of the optimal input from Fig. 3 is largest.
Note that this unpinning window for each individual spiral is
relatively small with a minimum window of 27 ms for the
spiral pinned to the D = 0.88 cm discontinuity. Nonetheless,
the optimal stimulus is able to sufficiently synchronize the
spirals so that the unpinning windows overlap.

Representative examples of successful and unsuccessful
unpinning are shown in panels A–F and G–L of Fig. 5, re-
spectively. For a spiral pinned to a discontinuity with diameter
D = 0.88 cm, a short-duration voltage gradient is applied
inside the pinning window with timing denoted by the black
arrow in panel A. The transmembrane voltage immediately
before the application of the pulse is shown in panel B. Re-
gions of depolarization begin to emerge on the left side of the

FIG. 5. Panels A–F (resp., G–L) show representative simulations
for voltage gradient pulses applied inside (resp., outside) of the
unpinning window. For each simulation, the spiral is first fully en-
trained to the optimal stimulus shown in Fig. 3. Panels A and G
highlight the unpinning window illustrated in Fig. 4 for reference.
The black arrows denote the timing of the application of the volt-
age gradient pulse. For the stimulus applied inside the unpinning
window, a wave front is created at the left end of the discontinuity,
which ultimately runs into the refractory tail of the preceding wave,
thereby stopping wave propagation. Snapshots of the transmembrane
voltage are shown in panels B–F; the timing of each snapshot given
is relative to the application of the voltage gradient pulse. For the
stimulus applied outside of the unpinning window, the pulse does not
substantially influence the timing of the spiral wave, and the wave
persists indefinitely. Because we are considering a small domain
(3.38 cm × 3.38 cm), the unpinned spiral is absorbed through the
tissue boundary. For a larger domain, an unpinned spiral could persist
and begin to meander.

discontinuity after the pulse is applied in panel C. In panel D,
the resulting wave front runs into the refractory tail of the spi-
ral wave, stopping wave propagation. Ultimately, the spiral is
absorbed by the tissue boundary, leading to quiescence 500 ms
after the application of the voltage gradient pulse, as shown in
panels D–F. In panels G–L, the same voltage gradient pulse
is applied outside of the unpinning window. Panels H and I
show the state of the spiral wave immediately before and after
the pulse is applied. This pulse occurs once the spiral wave tip
has already reached the left end of the discontinuity and the
subsequent influence on the phase of the spiral is diminished.
Panels J–L illustrate that the spiral continues to persist after
the application of the voltage gradient pulse.

Figure 6 shows unpinning results for spirals pinned to
discontinuities of various sizes. Panels A–D, E–H, I–L, and
M–P show results from independent simulations that receive
identical inputs. Spirals are initially out of phase 3375 ms
prior to the application of the unpinning pulse. The optimal
entraining stimulus is applied in each simulation for 3375 ms
to synchronize the phase of each of the spirals. At t = 0, a
voltage gradient pulse is applied inside the unpinning window
of the synchronized collection of spirals. For each simulation,
the resulting wave front runs into the tail of the preceding
wave and is eliminated. Note that while these results come
from independent simulations, they could also represent the
behavior of a collection of uncoupled pinned spirals on a
larger domain.

Finally, we consider the simultaneous unpinning of mul-
tiple spirals on a larger 6.76 × 6.76 cm domain. On this
domain, four circular discontinuities with diameter of either
D = 0.88 cm or D = 1.29 cm are considered, as denoted by
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FIG. 6. Panels A–D, E–H, I–L, and M–P show results from inde-
pendent simulations that receive identical inputs. Spirals are pinned
to obstacles of different sizes. As such, the spiral periods and phase
response curves are different. The times in each of the panels are
given relative to the application of the unpinning voltage gradient
pulse. Initially, the phases of each of the spirals are not aligned
at t = −3375 ms. The optimal entraining stimulus is subsequently
applied to synchronize the phases before the application of a voltage
gradient pulse at t = 0 that is inside the unpinning window. The
resulting wave front from the left end of the obstacle runs into the
refractory tail of the preceding wave causing the spiral wave to die
out.

the white dots in panels C–F of Fig. 7. This domain is large
enough to support four spiral waves, each pinned to one of
the four discontinuities. Here we employ the same strategy
used in Fig. 6 to unpin and eliminate these spirals, i.e., by first
applying the optimal entraining stimulus for approximately
3000 ms and subsequently applying a larger pulse aligned
with the unpinning window. Panel B shows the applied voltage

FIG. 7. Entrainment and subsequent unpinning of four pinned
spirals attached to discontinuities of different sizes. These simula-
tions are similar to those from Fig. 6, except here the spiral waves are
not independent from one another. Panel A shows the transmembrane
voltages of two representative points near the top-left and bottom-
right spirals at locations indicated by dots of corresponding color in
panels C–F. Panel B shows the applied voltage gradient. Snapshots
of the transmembrane voltage are shown in panels C–F; the timing
of each snapshot given is relative to the application of the voltage
gradient pulse.

FIG. 8. Application of a short pulse without first applying an
entraining stimulus in a simulation with multiple spirals. Panel A
shows the transmembrane voltages of two representative points near
the top-left and bottom-right spirals at locations indicated by dots
of corresponding color in panels C–F. Panel B shows the applied
voltage gradient. Snapshots of the transmembrane voltage are shown
in panels C–F. The voltage gradient pulse applied at t = 0 ms does
not unpin the spirals.

gradient, and panel A shows the transmembrane voltages of
two representative points near the top-left and bottom-right
spirals indicated by dots of corresponding color in panels C–F.
Panel C shows the state immediately before the entraining
stimulus is applied. Panel D shows the state immediately
after the application of the unpinning pulse. In panel E, spiral
wave front propagation has ceased with the spiral wave fronts
absorbed by the refractory parts of the domain. This ultimately
leads to quiescence in panel F. A nearly identical simulation is
shown in Fig. 8; in this case the optimal entraining stimulus is
not applied but the pulse input still occurs at t = 0 ms. Once
again, representative voltage traces are shown in panel A with
the applied voltage gradient shown in panel B. Panel C from
this simulation is identical to panel C from Fig. 7. Without
first applying the entraining stimulus, the pulse input does not
eliminate the spiral waves, as illustrated by the snapshots from
panels D–F.

IV. DISCUSSION AND CONCLUSION

In this work we leverage phase-based reduction techniques
to investigate an energy-optimal strategy to synchronize the
behavior of a set of spiral waves that are pinned to a hetero-
geneous collection of anatomical obstacles. This low-energy
electric field is designed so that upon entrainment, the unpin-
ning windows [28,32,33] of each spiral will overlap, allowing
for simultaneous unpinning with a single pulse. Because the
spirals become phase locked to the externally applied stim-
ulus, no explicit information about the phase of each spiral
is necessary. Rather, the unpinning pulse can be timed in
relation to the phase of the entraining stimulus. This method
is illustrated in a bidomain model (1) with the ionic cur-
rents governed by a four-dimensional model [40] that captures
the important characteristics of human ventricular myocytes.
Resulting optimal stimuli are able to simultaneously entrain
a collection of spirals with substantially different phase re-
sponse curves and natural frequencies so that they can be
subsequently be unpinned. Note that in this study, we only
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considered electric fields applied perpendicular to the fiber
direction. Other orientations would result in different phase
response curves but could readily be considered using the
proposed approach.

The proposed strategy explicitly takes heterogeneity into
account, thereby yielding a stimulus that can entrain a col-
lection of pinned spirals with varied properties. This can be
particularly useful in situations where phase response curves
cannot be directly measured, for instance, in an experimental
setting when the data collection required for implementation
of the direct method might be prohibitive. In these instances
an optimal entraining stimulus could still be designed if the
properties of the phase models (9) associated with a collection
of pinned spirals can be expected to fall within some prespeci-
fied window. A similar approach was considered in [52] in the
consideration of entrained neural oscillations.

This study presents a proof of concept illustrating that a
time-varying an external electric field could be used to syn-
chronize the phase of a heterogeneous collection of pinned
spirals so that they can be subsequently unpinned with a
stronger pulse. We do not explicitly consider subsequent elim-
ination strategies once the spirals are unpinned. The proposed
strategy could be used in conjunction with other previously
proposed low-energy spiral wave elimination strategies. For
instance, [53] considers resonant drift pacing strategy where
low-energy shocks are applied at the period of a given spiral
wave in order to promote spiral wave drift and subsequent
elimination by absorption through an inexcitable obstacle.
Antitachycardia pacing strategies [16–18] can also be used
to drive unpinned spirals to an inexcitable tissue boundary.
An understanding of the adjoint modes associated with spatial
translation [6,13–15] could also be useful for designing inputs
to appropriately guide unpinned spirals to locations where
they can be eliminated.

There are many limitations of the present study with a
number of questions left to address. Foremost, in this study
we only consider pinned spirals on a simple two-dimensional
domain with circular discontinuities. We have not taken a
realistic three-dimensional structure of the heart into account
and have not considered realistic geometries of pinned spiral
waves. These issues would certainly have an influence on
the phase response properties of the resulting phase-reduced
models of the form (9). The present study assumes that forced
behavior of the pinned spirals are well approximated by the
phase-reduced equations of the form (9). This approximation
requires that the state rapidly converges to an underlying
stable periodic orbit and does not allow for the consideration
of memory-based effects [54,55] due to pacing history. Such
effects may be important to consider for models with more
realistic ionic dynamics which would need to be considered
using phase-amplitude-reduced equations [56–58]. Addition-
ally, we do not explicitly consider coupling between pinned
spirals throughout the domain. While simulations shown in
Fig. 7 illustrate that coupled spiral waves can still be entrained
and unpinned using the proposed strategy, it would be of
interest to consider the issue of coupling more carefully. This
could be accomplished, for instance, by considering phase
sensitivity functions described in [46] in the context of gen-
eral reaction-diffusion systems. Given these limitations, we
emphasize that the present study represents a proof of concept
of the proposed spiral wave synchronization and subsequent
elimination strategy; further investigation in more realistic
models and experimental preparations would be warranted.
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