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We use the theory of isostable reduction to incorporate higher order effects that are lost in the first order
phase reduction of coupled oscillators. We apply this theory to weakly coupled complex Ginzburg-Landau
equations, a pair of conductance-based neural models, and finally to a short derivation of the Kuramoto-
Sivashinsky equations. Numerical and analytical examples illustrate bifurcations occurring in coupled
oscillator networks that can cause standard phase-reduction methods to fail.
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Self-sustaining oscillatory behaviors can widely be
observed in the physical, chemical, and biological sciences
[1,2]. Phase reduction is a tremendously powerful tool to
represent the timing of a high-dimensional limit cycle
oscillation [1,3,4], and has been extensively used to study
the dynamics of coupled oscillators in the weakly coupled
limit. Studies using phase reduction as a starting point have
been used successfully to elegantly characterize compli-
cated patterns that emerge in groups of weakly interacting
oscillators [5–8].
While phase reduction is useful in many applications, its

applicability degrades as coupling strength increases, often
leading to incorrect predictions about dynamical behavior.
Because of this limitation, recent years have seen a flurry of
interest in the development and use of nonlinear model
reduction strategies to characterize the dynamical behavior
of coupled limit cycle oscillators in situations where the
weak coupling approximation is not sufficient [9–16]. In
general, this is a difficult task for an n-dimensional model
as greater accuracy coupling functions must usually be
found by considering the dynamical behavior of n − 1
coordinates transverse to a limit cycle.
In this Letter, we approach this problem from the per-

spective of phase-isostable reduced coordinates [13,17], in
which Floquet theory [18] provides a foundation from
which to define a set of globally exponentially decaying
coordinates in an analytically tractable nonlinear reduction
framework. Subsequent analysis is used to predict and
illustrate bifurcations that emerge as coupling strength
increases in high-dimensional systems of coupled oscil-
lators. As shown in examples to follow, this phase-isostable
reduction framework can be implemented analytically for
some models. Additionally, the general framework pre-
sented here can be used as a starting point for future
research on the behavior of limit cycle oscillators beyond
the weak coupling limit.

We consider the dynamics of N identical coupled
oscillators:

X0
i¼FðXiÞþϵ

XN
j¼1

aijGðXi;XjÞ; Xi∈Rn;i¼1;…;N: ð1Þ

where 0 ≡ d=dt, 0 < ϵ ≪ 1, G denotes coupling inter-
actions that are of the same form between oscillators and
only differ with respect to weights aij, and F gives the
uncoupled dynamics so that X0 ¼ FðXÞ has a stable P-
periodic limit cycle YðtÞ. For simplicity of exposition, we
assume that all but one of the n − 1 nonzero Floquet
multipliers is sufficiently close to 0 so that only a single
isostable coordinate is required per oscillator (cf. [17]).
Let κ < 0 be the corresponding Floquet exponent and ρðtÞ
the corresponding eigenfunction and introduce the phase
θi and (isostable) amplitude, ψ i coordinates, XiðtÞ ¼
Y(θiðtÞ)þ ψ iðtÞρ(θiðtÞ). Here, θi ∈ S1 and ψ i ∈ R gives
the distance from the periodic orbit parametrized by ρ.
Letting UiðtÞ≡P

N
j¼1 aijGðXi; XjÞ denote the sum of

coupling inputs we can use the theory of isostable reduction
[13,17] to get

θ0i ¼ 1þ ϵ½ZðθiÞ þ ψ iBðθiÞ� ·UiðtÞ;
ψ 0
i ¼ κψ i þ ϵ½IðθiÞ þ ψ iCðθiÞ� ·UiðtÞ: ð2Þ

The four functions Z, I, B, C are all computable from the
ordinary differential equation X0 ¼ FðXÞ by solving
an appropriate boundary value problem [13]. The function
ZðθÞ is the phase-sensitivity function (cf. [1] Eq. 3.2.8).
A related phase-amplitude approach was considered
in [15] to analyze oscillatory dynamics subject to
noise. Since ψ i are small GðXi;XjÞ≈G(YðθiÞ;YðθjÞ)þ
ψ iρðθiÞG1(YðθiÞ;YðθjÞ)þψ jρðθjÞG2(YðθiÞ;YðθjÞ), where
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G1;2 are the partial derivatives of G with respect to its two
arguments. Keeping only the lowest order terms, we use the
definition of Ui to see that

θ0i ¼ 1þ ϵ
X
j

aij½ZðθiÞ · G(YðθiÞ; YðθjÞ)

þ ψ ih2ðθi; θjÞ þ ψ jh3ðθi; θjÞ�;
ψ 0
i ¼ κψ i þ ϵ

X
j

aijIðθiÞ ·G(YðθiÞ; YðθjÞ); ð3Þ

where

h2ðθi; θjÞ ¼ ZðθiÞ · G1(YðθiÞ; YðθjÞ)ρðθiÞ
þ BðθiÞ ·G(YðθiÞ; YðθjÞ);

h3ðθi; θjÞ ¼ ZðθiÞ · G2(YðθiÞ; YðθjÞ)ρðθjÞ:

If we neglect the amplitude ψ i, then we obtain the usual
first order phase reduction.
Substituting θi ¼ tþ ϕi and ψ i ¼ ϵri into Eq. (3) we

solve the resulting linear equation for ri:

rj ¼
X
k

ajk

Z
∞

0

eκsIðθj − sÞ ·G(Yðθj − sÞ; Yðθk − sÞ)ds

≡X
k

ajkf4ðθj; θkÞ:

Plugging this into the equation for ϕi we get

ϕi
0 ¼ ϵ

X
j

aijZðtþ ϕiÞ ·G(Yðtþ ϕiÞ; Yðtþ ϕjÞ)

þ ϵ2
X
j

aij½riðtÞh2ðtþ ϕi; tþ ϕjÞ

þ rjðtÞh3ðtþ ϕi; tþ ϕjÞ�:

Finally, we average the right hand sides over a period P:

ϕi
0 ¼ ϵ

X
j

aijH1ðϕj − ϕiÞ

þ ϵ2
X
jk

½aijaikH24ðϕj − ϕi;ϕk − ϕiÞ

þ aijajkH34ðϕj − ϕi;ϕk − ϕiÞ�;
H1ðηÞ ¼ hZðtÞ · G(YðtÞ; Yðtþ ηÞ)i;

H24ðη; ξÞ ¼ hf4ðt; tþ ξÞh2ðt; tþ ηÞi;
H34ðη; ξÞ ¼ hf4ðtþ η; tþ ξÞh3ðt; tþ ηÞi; ð4Þ

where hfðtÞi ¼ ð1=PÞ R P
0 fðtÞdt.

N ¼ 2.—When N ¼ 2, and coupling is symmetric, then
a11 ¼ a22 ¼ 0 and a12 ¼ a21 ¼ 1 and we get

ϕi
0 ¼ ϵH1ðϕj − ϕiÞ þ ϵ2½H24ðϕj − ϕi;ϕj − ϕiÞ

þH34ðϕj − ϕi; 0Þ�;

where i ¼ 1, 2 and j ¼ 2, 1 Finally, this system of two
equations reduces to a single equation for the phase
difference, ϕ ¼ ϕ2 − ϕ1:

ϕ0 ¼ ϵ½g1ðϕÞ þ ϵ(g2ðϕÞ þ g3ðϕÞ)�; ð5Þ

where g1ðϕÞ ¼ H1ð−ϕÞ −H1ðϕÞ, g2ðϕÞ ¼ H24ð−ϕ;−ϕÞ−
H24ðϕ;ϕÞ, and g3ðϕÞ ¼ H34ð−ϕ; 0Þ −H34ðϕ; 0Þ. Stable
equilibria of Eq. (5) correspond to stable locking of the
coupled oscillator system. For example, it is clear that perfect
synchrony, ϕ ¼ 0 is always a solution since the functions
gkðϕÞ are odd and periodic. Synchrony will be stable if
g01ð0Þ þ ϵ½g02ð0Þ þ g03ð0Þ� < 0. If g01ð0Þ is near 0, then, the
higher order terms have a significant role in determining
stability and can also introduce additional fixed points. We
will see both of these phenomena in the examples below.
We also remark that if GðX1; X2Þ ¼ DðX2 − X1Þ, i.e.,

diffusive coupling, then

H1ðϕÞ ¼ hZðtÞ ·D(Yðtþ ϕÞ − YðtÞ)i;
H24ðϕ;ϕÞ ¼ hf4ðt; tþ ϕÞ½−ZðtÞ ·DρðtÞ

þ BðtÞ ·D(Yðtþ ϕÞ − YðtÞ)�i;
H34ðϕ; 0Þ ¼ hf4ðtþ ϕ; tÞZðtÞ ·Dρðtþ ϕÞi: ð6Þ

Complex Ginzburg-Landau model.—Consider a pair of
coupled complex Ginzburg-Landau (CGL) oscillators (in
real coordinates):

x0j ¼ xjð1 − x2j − y2jÞ − qðx2j þ y2jÞyj
þ ϵ½xk − xj − dðyk − yjÞ�;

y0j ¼ yjð1 − x2j − y2jÞ þ qðx2j þ y2jÞxj
þ ϵ½yk − yj þ dðxk − xjÞ�; ð7Þ

for j ¼ 1, 2 and k ¼ 3 − j. With ϵ ¼ 0, this system admits a
periodic solution, Y¼ðcosqt;sinqtÞ≔ðC;SÞ and the rel-
evant functions are Z¼ðC−S=q;SþC=qÞ, ρ ¼ ðqSþ C;
S − qCÞ, I ¼ ðC; SÞ, and B ¼ (ð1þ q2Þ=q)ðS;−CÞ.
Additionally, P ¼ 2π=q and κ ¼ −2. Note here that
because the natural frequency is scaled to be 1 in
Eq. (2) the phase takes values in the range of 0 to P.
We can then evaluate Eq. (5) and from these obtain the
locking equation:

ϕ0 ¼ −ϵ
2

q
sin qϕ½1 − dqþ ϵd2ð1þ q2Þ cos qϕ�: ð8Þ

The standard phase reduction ignores the Oðϵ2Þ terms and
shows exactly two fixed points ϕ ¼ 0 (synchrony) and ϕ ¼
π=q (antiphase). If ϵ > 0 then synchrony (antiphase) is
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stable if and only if 1 − dq > 0 (respectively, 1 − dq < 0)
and when ϵ < 0, these are reversed. The coupled CGL
model allows for an exact expression for all the locking
regions and their stability [19]. The true critical curves for
the stability of synchrony (s) and antiphase (a) are

ϵs ¼
dq − 1

d2 þ 1
;

ϵa ¼
1 − dq

d2 − 2dqþ 3
; ð9Þ

along with ϵ ¼ 0. These curves are shown in Fig. 1 for
q ¼ 1. In particular, there are additional fixed points and
also bistability between synchrony and antiphase for finite
nonzero coupling as shown by the shaded regions. Using
the higher order locking Eq. (8), we can compute the
stability of synchrony and antiphase to get the approximate
curves:

ϵs;approx ¼
dq − 1

d2ð1þ q2Þ ;

ϵa;approx ¼
1 − dq

d2ð1þ q2Þ : ð10Þ

These are shown by the thick solid and dashed lines in
the figure. The agreement is good near the bifurcation
point d ¼ 1 (when 1 − dq ¼ 0), where they are tangent
to the true curves. Furthermore, all regions are captured
qualitatively.
Loss of bistability in a conductance based neural

model.—Here, we use (5) to analyze phase locking in
a conductance-based model of synaptically coupled
neurons [20]:

CV 0
i¼−ILðViÞ− INaðVi;hiÞ− IKðVi;hiÞ− ITðVi;riÞ

þ Ib− ϵ
X
j≠i

IsynðVi;wjÞ;

h0i¼ ½h∞ðViÞ−hi�=τhðViÞ;
r0i¼ ½r∞ðViÞ−ri�=τrðViÞ;
w0
i¼ αð1−wiÞ=f1þ exp½−ðVi−VTÞ=σT �g−βwi; ð11Þ

with i ¼ 1, 2. Here, Vi denotes the transmembrane voltage
of the ith neuron, hi and ri are associated gating variables,
and wi is a synaptic variable. Leak, sodium, potassium,
low-threshold calcium current, and baseline current are
IL ¼ gLðVi − ELÞ, INa ¼ gNam3

∞ðViÞhiðVi − ENaÞ, IK ¼
gK½0.75ð1 − hiÞ�4ðVi − EKÞ, IT ¼ gTp2

∞ðViÞriðVi − ETÞ,
and Ib ¼ 2.9 μA=cm2, respectively. We take gL ¼ 0.15,
gNa ¼ 3, gK ¼ 5, and gT ¼ 10 mS=cm2, reversal potentials
are EL ¼ −75, ENa ¼ 3, EK ¼ −90, and ET ¼ 0 mV,
and C ¼ 1 μF=cm2. Synaptic current IsynðVi;wjÞ¼
wjðVi−VsynÞ, Vsyn ¼ 0 mV, α ¼ 3ms−1, VT ¼ −20 mV,
σT ¼ 0.8 mV, and β ¼ 0.15 ms−1 and ϵ sets the magnitude
of the coupling. All other functions are identical to those
from [20].
In the absence of coupling, each neuron settles to a limit

cycle solution with period P ¼ 24.2 ms. The limit cycles
have one non-negligible Floquet multiplier of 0.67 (the
exponent, κ ¼ −0.01654/msec), the remaining Floquet
multipliers are close to zero so that they can be ignored
from the reduction (2). Using methods described in [13] the
reduced functions Z, B, I, and C from (2) are calculated
numerically and subsequently used to determine the func-
tions H1, H24, H34, and f4 from (4). First and second order
coupling functions calculated numerically and shown in
panels B and D of Fig. 2 for different values of ϵ. For low
coupling strengths (in the limit of small coupling), both first
and second approximations (gray and blue curves, respec-
tively) predict bistability of (11) whereby both the syn-
chronous and antiphase states are stable. Panel A confirms
this in full model simulations. However, as ϵ increases, the
synchronous state loses stability, as seen in panel C. This
behavior is predicted from the second order accurate
approximation from panel D. Note that (5) does not
necessarily characterize the transient convergence to the
limiting solution; application of Floquet theory to the
synchronized limit cycle solution of (11) identifies a pair
of complex conjugate Floquet exponents. This explains the
intersecting black lines in panel A.
A concise derivation of the Kuramoto-Sivashinsky equa-

tions.—We can use the isostable formulation to analyze
weakly coupled partial differential equations as well as
ordinary differential equations by assuming spatial depend-
ence in the phase and isostable coordinates. For example,
the KS equation arises from a perturbative analysis of the
equation:

FIG. 1. Above, the intersection of ϵa and ϵs as given by (9)
define regions for which locking (either synchronous or anti-
phase) is stable for the CGL model (7) when q ¼ 1 and ðd; ϵÞ
vary. Synchrony is only stable in regions I,II; antiphase is only
stable in I,III. Thick solid and dashed lines show ϵs;approx and
ϵa;approx, respectively, determined from the higher order phase
approximation.
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utðx; tÞ ¼ FðuÞ þ ϵDuxx;

when ut ¼ FðuÞ has a stable periodic orbit YðtÞ. (Note the
analysis is the same in multiple space dimensions.) In this
case, uðx; tÞ ≈ Y(tþ ϕðx; tÞ) and ϕ solves

ϕt ¼ ϵðβϕ2
x þ αϕxx þ γϕxxxxÞ;

where [1]

α ¼ hZðtÞ ·DY 0ðtÞi;
β ¼ hZðtÞ ·DY 00ðtÞi:

Here, we also show that the coefficient γ can be directly
related to the terms of the phase-amplitude equations (2).
Recall the first order phase equation for a pair of diffusively
coupled oscillators Eq (6). We can use these to see α ¼
H0

1ð0Þ and β ¼ H00
1ð0Þ. If α is Oð1Þ, then the fourth

derivative terms do not come into play; however, if α is
small, then they matter. To emphasize this point, we write
D ¼ D0 þ ϵD1 so that α ¼ α0 þ ϵα1 and D0 is chosen so
that α0 ¼ 0. (Note that D cannot be a scalar multiple of the
identity since hZðtÞY 0ðtÞi ¼ 1. We also assume that D1 is
not a multiple of D0 so that α is not 0 for ϵ ≠ 0.) The
coefficient γ is quite complicated to compute (see
Eq. 4.2.26 in [1]). We now show that it is directly related
to the second order phase functions. To simplify the

analysis, as above, we assume a single isostable coordinate.
As in the discretely coupled systems, we write

uðx; tÞ ¼ YðθÞ þ ψρðθÞ;

so that

uxx ¼ Y 00ðθÞθ2x þ Y 0ðθÞθxx
þ 2ψxθxρ

0ðθÞ þ ψxxρðθÞ þ ψθ2xρ
00ðθÞ þ ψθxxρ

0ðθÞ:

With this, we can write the isostable equations for the
partial differential equation

θt ¼ 1þ ϵ½ZðθÞ þ ψBðθÞ� · ðD0 þ ϵD1Þuxx;
ψ t ¼ κψ þ ϵ½IðθÞ þ ψCðθÞ� · ðD0 þ ϵD1Þuxx:

Our assumption on D0 (α0 ¼ 0) enables us to make the
ansatz, θ ¼ tþ ϵϕ and ψ ¼ ϵ2r, from which

uxx ¼ ϵY 0ðθÞϕxx þ ϵ2½Y 00ðθÞϕ2
x þ rxxρðθÞ� þOðϵ3Þ:

[We remark that the scaling of ϕ, ψ has changed by order ϵ
here. This is a consequence of our assuming that α is not
Oð1Þ, but rather OðϵÞ and is made in order for the order ϵ
terms to ultimately vanish.] Proceeding as above, we find

rðx; θÞ ¼ ϕxx

Z
∞

0

eκsIðθ − sÞD0Y 0ðθ − sÞds≡ ϕxxf4ðθÞ:

and plugging into the equation for ϕ, we get

ϕt ¼ ϵZðθÞ ·D0Y 0ðθÞϕxx

þ ϵ2ZðθÞ · fD1Y 0ðθÞϕxx

þD0½Y 00ðθÞϕ2
x þ ρðθÞf4ðθÞϕxxxx�g:

Averaging this over θ, we obtain the KS equations with
α ¼ α1 ¼ hZðtÞ ·D1Y 0ðtÞi, β ¼ hZðtÞ ·D0Y 00ðtÞi, and

γ ¼
�Z

∞

0

dseκsIðt − sÞ ·D0Y 0ðt − sÞZðtÞ ·D0ρðtÞ
�
:

Recalling the definitions of H24 and H34 from Eq. (6)
above, we see that

γ ¼ −
∂H34ðϕ; 0Þ

∂ϕ
����
ϕ¼0

¼ −
∂H24ðϕ;ϕÞ

∂ϕ
����
ϕ¼0

¼ 1

4
½g02ð0Þ þ g03ð0Þ�:

Remarkably, while BðθÞ plays a role in higher order
diffusive coupling, it is irrelevant to γ. This calculation

FIG. 2. Solid black lines in panels A and C show the phase
differences from full simulations of (11) for different initial
conditions and coupling strengths. Here, ϕ is inferred directly
from numerical simulations of the full model (11). PanelsB andD
illustrate corresponding coupling functions calculated according
to (5). Dashed (respectively, solid) red lines denote unstable
(respectively, stable) fixed points predicted by the second order
accurate coupling functions. The loss of stability due to changes in
coupling strength can never be predicted by first order accurate
methods alone because the shape of the resulting coupling function
cannot changewith ϵ. On the other hand, the second order accurate
strategy used here reflects the observed behavior perfectly.

PHYSICAL REVIEW LETTERS 123, 164101 (2019)

164101-4



can be generalized to the case of multiple isostables with
the same result: the coefficient γ is just one fourth of the
slope of the higher order phase-interaction function evalu-
ated at synchrony.
Conclusions.—To conclude, we have developed a frame-

work that can be used to determine the coupling functions
with accuracy beyond that of the standard phase-reduced
framework. Our analysis indicates that the coupling strength
can have a profound influence on the shape of coupling
functions, ultimately resulting in qualitative differences in
steady state behavior that first order phase-reduction meth-
ods are unable to predict. Numerical examples presented
here illustrate the necessity of incorporating higher order
effects when the dynamics are close to a bifurcation.
Because of the generality of the approach presented here,
we expect this method to shed light on the mechanisms
governing synchronization in larger populations of limit
cycle oscillators. Interesting future extensions will consider
limiting behaviorwithN > 2 oscillators that can yield richer
limiting behaviors (e.g., rotating block and chimera states).
Finally, the results presented here are accurate to Oðϵ2Þ in
the coupling strength. In order to understand bifurcations
that occur at even higher coupling strengths other methods
that give a fuller representation of the phase and amplitude
coordinates will need to be used.
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