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A B S T R A C T

Many challenging problems that consider the analysis and control of neural brain rhythms have been motivated
by the advent of deep brain stimulation as a therapeutic treatment for a wide variety of neurological
disorders. In a computational setting, neural rhythms are often modeled using large populations of coupled,
conductance-based neurons. Control of such models comes with a long list of challenges: the underlying
dynamics are nonnegligibly nonlinear, high dimensional, and subject to noise; hardware and biological
limitations place restrictive constraints on allowable inputs; direct measurement of system observables is
generally limited; and the resulting systems are typically highly underactuated. In this review article, we
highlight a collection of recent analysis techniques and control frameworks that have been developed to
contend with these difficulties. Particular emphasis is placed on the problem of desynchronization for a
population of pathologically synchronized neural oscillators, a problem that is motivated by applications
to Parkinson’s disease where pathological synchronization is thought to contribute to the associated motor
control symptoms. We also discuss other recent neural control applications that consider entrainment, phase
randomization, synchronization, and clustering.
. Introduction

Deep brain stimulation (DBS) is an FDA approved medical treatment
sed by over 100,000 patients worldwide (Lozano & Lipsman, 2013)
hereby high frequency electrical current pulses are injected into an
ppropriate brain region. DBS was initially developed as a treatment
or medication resistant Parkinson’s disease (Benabid, Pollak, Louveau,
enry, & Rougemont, 1987; Koller, et al., 1997). More recently, DBS
as shown promise as a potential treatment for a variety of other
eurological disorders including depression (Mayberg, et al., 2005),
lzheimer’s disease (Laxton, et al., 2010), Tourette syndrome (Schrock,
t al., 2015), epilepsy (Li & Cook, 2018), and obsessive-compulsive dis-
rder (Greenberg, et al., 2006). From a purely electrical perspective, the
ction of DBS is relatively well-understood, with DBS pulses inducing
ome combination of activation or inhibition in the neurons adjacent to
he probe (Anderson, Farokhniaee, Gunalan, Howell, & McIntyre, 2018;
cIntyre, Mori, Sherman, Thakor, & Vitek, 2004). By contrast, the

ynamical mechanisms that influence the aggregate behavior of large
opulations of neurons are not well understood, leading to many open
uestions and control problems associated with DBS as a therapeutic
reatment for a variety of neurological disorders.
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In this review article, we highlight a collection of techniques that
have been developed to handle the difficulties associated with analysis
and control of neural brain rhythms. Specifically, this review is focused
on control of aggregate oscillations that emerge in large populations
of coupled neurons which are often modeled using conductance-based
ordinary differential equations (ODEs) to describe the flow of cur-
rent across a cell membrane (Ermentrout & Terman, 2010). From the
perspective of classical feedback control, the control design problem
for neural populations is particularly challenging: conductance-based
ODE models of spiking neurons are complex and highly nonlinear,
one wishes to control a large number of neurons using a single con-
trol stimulus, the magnitude of the stimulus is constrained by bi-
ological and hardware implementation limitations, voltage is typi-
cally the only directly measurable state, and such measurements are
quite noisy. In these applications, techniques such as feedback lin-
earization (Khalil, 2002) are typically not useful. Additionally, because
of the high-dimensional nature of these control problems, the direct
implementation of nonlinear control techniques is computationally
prohibitive in many practical applications.
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Because of these aforementioned difficulties, it is often useful to
work in a coordinate framework that is more amenable to both mathe-
matical analysis and implementation of nonlinear control algorithms.
With respect to tonically firing neurons (i.e., those with a nominal
stable limit cycle), Art Winfree made great strides in developing such
a coordinate framework by introducing the notion of an asymptotic
phase (Winfree, 1967, 2001). The key insight here was that the be-
havior of a general limit cycle oscillator in response to perturbations
could be characterized in terms of the timing of oscillations rather
than in reference to the underlying state variables. In subsequent years,
these ideas were formalized using the notion of isochrons (Brown,
Moehlis, & Holmes, 2004; Guckenheimer, 1975; Kuramoto, 1984; Win-
free, 2001), i.e., level sets of initial conditions that have the same
asymptotic convergence to the limit cycle. By restricting one’s atten-
tion to a small neighborhood of the limit cycle, one can obtain a
1-dimensional phase reduced equation (Ermentrout & Terman, 2010;
Izhikevich, 2007; Kuramoto, 1984) that can accurately capture the
response to weak perturbations. Such phase reductions have been used
for upwards of half a century to understand complex emergent patterns
in weakly perturbed neurons and other oscillators (Brown, Holmes, &
Moehlis, 2003; Ermentrout & Kopell, 1991; Kuramoto, 1997; Moehlis,
Shea-Brown, & Rabitz, 2006; Wilson & Moehlis, 2014c; Winfree, 1974).
More recent applications have highlighted the utility of additionally
considering the amplitude dynamics in a phase reduced coordinate
framework in order to extend applicability beyond the weakly per-
turbed paradigm (Castejón, Guillamon, & Huguet, 2013; Letson &
Rubin, 2020; Shirasaka, Kurebayashi, & Nakao, 2017; Wedgwood, Lin,
Thul, & Coombes, 2013; Wilson, 2020c, 2022; Wilson & Ermentrout,
2018b).

In the context of control of neural populations and neural rhythms,
there are a variety of objectives to consider. A significant focus in
this review article is on the desynchronization of a pathologically syn-
chronized population of neural oscillators. These works are primarily
motivated by applications to Parkinson’s disease. Evidence suggests
that pathological synchronization among neurons in the basal ganglia
contributes to the motor control symptoms of Parkinson’s disease, and
that DBS helps to restore normal function by disrupting this synchro-
nization (Chen, et al., 2007; Kuhn, et al., 2008; Levy, Hutchison,
Lozano, & Dostrovsky, 2000). In pursuit of this control objective, a
variety of model order reduction, analysis, and control techniques have
been developed in recent years that can be applied to large populations
of coupled, periodically firing neurons. Other objectives including en-
trainment, phase randomization, synchronization, and clustering also
have relevance in neural control applications, and are discussed as part
of the applications considered in this review article.

The organization of this article is as follows: Section 2 gives nec-
essary background information on standard phase-based model order
reduction techniques which provide a foundation for the implemen-
tation of many of the control techniques highlighted in this review.
Appendix A expands on these methods with a discussion of isostable
coordinate-based phase–amplitude reduction methods that are used
in many of the applications considered in the latter portions of this
article. Section 3 discusses reduction techniques for large populations
of nonlinear oscillators. Model independent control techniques are
discussed in Section 4. Such strategies can be particularly useful when
the underlying model is unknown and limited information about the
underlying system is available. Sections 5–8 consider problems where
the goal is desynchronization of a pathologically synchronized neural
rhythm: Section 5 discusses the method of chaotic desynchronization
that can be used to manipulate finite time Lyapunov exponents so
that nearby trajectories diverge, Section 6 considers approaches that
target clustered states, e.g., that split the population into distinct clus-
ters, and Section 7 discusses the direct control of phase distributions.
Section 8 considers phase randomization techniques to drive a collec-
tion of oscillators to a phaseless set where they can subsequently be
2

desynchronized by inherent noise. A collection of open-loop control
strategies are considered in Section 9 for use when real-time state
measurements are unavailable. Section 10 discusses a set of control
problems where entrainment is the control objective, as is often the case
when considering circadian oscillations. Finally, Section 12 provides
concluding remarks.

2. Isochrons and phase reduction

The ordinary differential equations used to describe the dynamics
of large populations of neurons are typically high-dimensional and
nonnegligibly nonlinear. Both of these factors generally preclude direct
analysis of the equations associated with these models. When consider-
ing oscillatory dynamics, phase reduction is one strategy that is often
used to understand complex emergent patterns in weakly perturbed
oscillators (Brown et al., 2003; Ermentrout & Kopell, 1991; Kuramoto,
1997; Moehlis et al., 2006; Wilson & Moehlis, 2014c; Winfree, 1974).
Here, we provide a brief review of the notion of phase for oscilla-
tory dynamical systems (such as a tonically firing neuron) and give
a description of the phase reduction strategy that can be used to
characterize the behavior of limit cycle oscillators in terms of the timing
of oscillations (rather than their full state dynamics).

While phase reduction is a powerful tool, we note that it is only
valid in the weakly perturbed regime, i.e., when considering inputs
that are small enough so that the state remains close to its underlying
limit cycle. In applications requiring larger magnitude inputs, informa-
tion about amplitude-based effects must be incorporated. Appendix A
provides a detailed discussion on various phase–amplitude reduction
methods that use isostable coordinates to encode for these amplitude-
based effects. These methods are employed in applications considered
in the latter parts of this article.

2.1. Isochrons

To begin, consider an autonomous vector field
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥), 𝑥 ∈ R𝑛, (𝑛 ≥ 2) (1)

aving a stable hyperbolic periodic orbit 𝑥𝛾 (𝑡) with period 𝑇 . We define
he set of all points in the basin of attraction as . For each point 𝑥∗ in

there exists a unique 𝜃(𝑥∗) such that (Coddington & Levinson, 1955;
uckenheimer, 1975; Josic, Shea-Brown, & Moehlis, 2006; Kuramoto,
984; Malkin, 1949; Winfree, 1967, 1974, 2001)

lim
𝑡→∞

|

|

|

|

𝑥(𝑡) − 𝑥𝛾
(

𝑡 + 𝑇
2𝜋

𝜃(𝑥∗)
)

|

|

|

|

= 0, (2)

where 𝑥(𝑡) is a trajectory starting with the initial point 𝑥∗. The function
(𝑥) is called the asymptotic phase of 𝑥, and takes values in [0, 2𝜋).
ther conventions, related to this through a simple rescaling, define

he asymptotic phase to take values in [0, 𝑇 ) or in [0, 1).
Let 𝑥𝛾0 be the point on the periodic orbit where the phase is zero.

common convention is to choose 𝑥𝛾0 as corresponding to the global
aximum of the first coordinate on the periodic orbit, although, other

onventions can be used (for instance having 𝑥𝛾0 corresponding to
he crossing of an arbitrarily chosen Poincaré section). An isochron is
efined as a level set of 𝜃(𝑥), that is, the collection of all points in
he basin of attraction of 𝑥𝛾 with the same asymptotic phase (Winfree,
967, 2001). By convention, we will denote 𝛤𝜁 as the set of all 𝑥 for
hich 𝜃(𝑥) = 𝜁 . We note that if 𝑥(0) is a point on a periodic orbit, the

sochron associated with that point is the set of all initial conditions
�̃�(0) such that ‖𝑥(𝑡) − �̃�(𝑡)‖ → 0 as 𝑡 → ∞. Isochrons extend the notion
f phase of a stable periodic orbit to the basin of attraction of the
eriodic orbit. It is conventional to define isochrons so that the phase of
trajectory on the periodic orbit advances at a constant rate according

o
𝑑𝜃 = 2𝜋 ≡ 𝜔 (3)

𝑑𝑡 𝑇
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Fig. 1. Periodic orbit (black solid), 𝑉 -nullcline (red dashed), and 𝑛-nullcline (black
dashed), and twenty isochrons equally spaced in phase (as indicated by color) for the
two-dimensional reduced Hodgkin–Huxley model in the absence of noise, coupling, and
control. The location of the unstable fixed point (phaseless point) for this system is at
the intersection of the nullclines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

both on and off the periodic orbit. Points at which isochrons of a
periodic orbit cannot be defined form the phaseless set (Winfree, 1974),
which will be important for the phase randomization control strategies
discussed in Section 8. Isochrons for a single neuron from the two-
dimensional reduced Hodgkin–Huxley model (Rinzel, 1985) given in
Appendix B are shown in Fig. 1, where 𝑥 = [𝑉 , 𝑛].

Isochrons can be shown to exist for any stable hyperbolic periodic
orbit. They are codimension one manifolds as smooth as the vector
field, and transversal to the periodic orbit 𝑥𝛾 . Their union covers an
open neighborhood of 𝑥𝛾 . This can be proved directly by using the Im-
plicit Function Theorem (Coddington & Levinson, 1955; Guckenheimer,
1975), and is also a consequence of results on normally hyperbolic
invariant manifolds (Wiggins, 1994). Methods for calculating isochrons
numerically are summarized in Monga, Wilson, Matchen, and Moehlis
(2019).

2.2. Phase reduction and phase-based control

Control theory seeks to design inputs to a dynamical system which
change its behavior in a desired way. With this in mind, we consider
the perturbed system
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥) + 𝑈 (𝑥, 𝑡), (4)

where 𝑈 (𝑥, 𝑡) is a small control input. The evolution of this system in
terms of isochrons is (Brown et al., 2004; Kuramoto, 1984)
𝑑𝜃
𝑑𝑡

= 𝜕𝜃
𝜕𝑥

⋅
𝑑𝑥
𝑑𝑡

= 𝜕𝜃
𝜕𝑥

⋅ (𝐹 (𝑥) + 𝑈 (𝑥, 𝑡))

= 𝜔 + 𝜕𝜃
𝜕𝑥

⋅ 𝑈 (𝑥, 𝑡). (5)

Evaluating on the periodic orbit 𝑥𝛾 for the unperturbed system gives,
to leading order,
𝑑𝜃
𝑑𝑡

= 𝜔 +𝑍(𝜃) ⋅ 𝑈 (𝑥𝛾 , 𝑡), (6)

where

𝑍(𝜃) = 𝜕𝜃
𝜕𝑥

|

|

|

|𝑥𝛾 (𝜃)
≡ ∇𝑥𝛾 𝜃. (7)

Here 𝑍(𝜃) ∈ R𝑛 is the gradient of phase variable 𝜃 evaluated on the pe-
riodic orbit, and is referred to as the (infinitesimal) phase response curve
3

(PRC) (Ermentrout, 1996; Ermentrout & Terman, 2010; Hansel, Mato,
& Meunier, 1995; Netoff, Schwemmer, & Lewis, 2012; Winfree, 2001).
It quantifies the effect of a small magnitude external perturbation on
the phase of a periodic orbit. We call (6) the standard phase reduction.
Further discussion of phase response curves is given in Monga et al.
(2019).

Since phase-reduced models have lower dimension than the full
models from which they came, optimal control problems for phase-
reduced models give lower-dimensional boundary value problems, and
thus are simpler to solve. Many applications in this article will consider
control problems for which the control input is a rank-1 perturbation,
i.e., 𝑈 (𝑥𝛾 , 𝑡) = 𝛿𝑢(𝑡) where 𝛿 ∈ R𝑛 and 𝑢(𝑡) ∈ R is the control stimulus.
When 𝛿 has only one non-zero entry, this captures input that only
affects a single state variable, for instance, control in the form of
an injected electrical current which only affects the equation for the
transmembrane voltage. Additionally, if the control input only depends
on time, and not on the state variables, the standard phase reduction
becomes (see, for example, Brown et al., 2004)
𝑑𝜃
𝑑𝑡

= 𝜔 + 𝑧(𝜃)𝑢(𝑡), (8)

where 𝑧(𝜃) = 𝑍(𝜃) ⋅ 𝛿.

3. Reduction techniques for coupled oscillator populations

3.1. Phase difference coupling

One of the most well-studied models describing coupled population
oscillations is the Kuramoto model (Kuramoto, 1984), (cf., Strogatz,
2000):

𝑑𝜃𝑘
𝑑𝑡

= 𝜔𝑘 +
𝐾
𝑁

𝑁
∑

𝑗=1
sin(𝜃𝑗 − 𝜃𝑘), 𝑘 = 1,… , 𝑁, (9)

where 𝜃𝑘 is the phase of oscillator 𝑘 with natural frequency 𝜔𝑘 with
frequencies distributed according to some probability distribution 𝑔(𝜔)
that is symmetric about its mean frequency, and 𝐾 is the coupling
strength. Many mean-field models, including the Kuramoto model (9),
consider phase difference coupling despite the fact that this formulation
rarely explicitly occurs in nature. Nonetheless, phase difference cou-
pling can be used as a reasonable approximation for models of the form
(4) provided coupling is sufficiently weak. To illustrate this, consider
two coupled oscillators
𝑑𝑥𝑗
𝑑𝑡

= 𝐹 (𝑥𝑗 ) + 𝜖𝐺𝑗 (𝑥𝑗 , 𝑥𝑘), (10)

where 𝑗 = 1, 2 and 𝑘 = 3−𝑗 with 0 < 𝜖 ≪ 1. Supposing that 𝑑𝑥∕𝑑𝑡 = 𝐹 (𝑥)
has a stable limit cycle 𝑥𝛾 (𝑡), changing to phase coordinates using the
strategy described in Section 2.2 yields
𝑑𝜃𝑗
𝑑𝑡

= 𝜔 + 𝜖𝑍(𝜃𝑗 ) ⋅ 𝐺𝑗 (𝑥𝛾 (𝜃𝑗 ), 𝑥𝛾 (𝜃𝑘)). (11)

Above, it is assumed that 𝑥𝑗 ≈ 𝑥𝛾 (𝜃𝑗 ) because the coupling is small.
Defining 𝜙𝑗 = 𝜃𝑗 − 𝜔𝑡 yields

𝑑𝜙𝑗
𝑑𝑡

= 𝜖𝑍(𝜙𝑗 + 𝜔𝑡) ⋅ 𝐺𝑗 (𝑥𝛾 (𝜙𝑗 + 𝜔𝑡), 𝑥𝛾 (𝜙𝑘 + 𝜔𝑡)). (12)

Because 𝑍 and 𝑥𝛾 are both 𝑇 -periodic, we can apply the method of
averaging (Guckenheimer & Holmes, 1983) to yield
𝑑𝜙1
𝑑𝑡

= 𝜖𝐻1(𝜙2 − 𝜙1),

𝑑𝜙2
𝑑𝑡

= 𝜖𝐻2(𝜙1 − 𝜙2), (13)

where Eq. (13) provides a good approximation to (12) taking 𝐻𝑗 (𝜙) =
1
𝑇 ∫ 𝑇0 𝑍(𝜔𝑡) ⋅ 𝐺𝑗 (𝑥𝛾 (𝑡), 𝑥𝛾 (𝑡 + 𝜙))𝑑𝑡. Intuitively, the method of averaging
is used here to approximate the solution of the weakly perturbed, time
periodic ordinary differential equation (12) by an average system (13).
This general approach is valid in the limit that 𝜖 is small and yields a
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time-invariant set of equations that usually simplifies the subsequent
analysis. Noting that 𝜙2 − 𝜙1 = 𝜃2 − 𝜃1, the desired form of phase
difference coupling can be recovered with an appropriate change of
variables. Note that the derivation above is for two oscillators, but can
be readily extended to accommodate an arbitrarily large population.

Transformations that consider phase difference coupling provide
a useful starting point for assessing the emergence of spontaneous
synchronization in a population of coupled neurons (Brown et al.,
2003; Ermentrout & Terman, 2010; Hoppensteadt & Izhikevich, 1997;
Vreeswijk, Abbott, & Ermentrout, 1994; Wilson, Faramarzi, Moehlis,
Tinsley, & Showalter, 2018) and entrainment to an exogenous in-
put (Pyragas, Fedaravičius, Pyragienė, & Tass, 2018; Wilson, Holt,
Netoff, & Moehlis, 2015; Zlotnik & Li, 2012). Recent works have
investigated strategies for obtaining coupling functions that are accu-
rate beyond first order accuracy (Gengel, Teichmann, Rosenblum, &
Pikovsky, 2020; Park & Wilson, 2021; Rosenblum & Pikovsky, 2019;
Wilson & Ermentrout, 2019b). Such techniques can be used to under-
stand how the shape of the coupling functions changes as the coupling
strength increases, and subsequently how the coupling strength itself
influences the network dynamics.

3.2. Ott-Antenson ansatz

Brain regions can contain on the order of billions of neurons.
For large populations of neurons, rather than examining individual
neurons, it may be more appropriate to consider information about
population-level activity by considering a probability density of neu-
rons at a given phase. More specifically, in the limit as 𝑁 → ∞,
the population of oscillators can be analyzed in terms of probability
distributions 𝜌(𝜃, 𝜔, 𝑡) rather than discrete oscillators. Note here that
the natural frequency of each oscillator is often assumed to be drawn
randomly from a distribution. In these cases the probability distribution
𝜌 is considered a function of both 𝜃 and 𝜔.

In some very specific circumstances, further simplifications are
available allowing for a concise description of the population dynamics.
Ott–Antonsen reduction (also known as the Ott–Antonsen ansatz) (Ott
& Antonsen, 2008) can be used to accomplish this task. This seminal
paper showed that under a specific set of conditions, probability dis-
tributions associated with a population of coupled oscillators evolve
in time on an invariant manifold. Additionally, if the distribution of
nominal frequencies is Lorentzian, the evolution on this manifold can
be described by a single ordinary differential equation. Note that other
frequency distributions can be used (Martens, Barreto, Strogatz, Ott, So,
& Antonsen, 2009; Ott & Antonsen, 2008) resulting in different reduced
order differential equations.

Application of the Ott–Antonsen ansatz can be used to greatly sim-
plify the analysis of a large population of neurons. Indeed, Montbrió,
Pazó, and Roxin (2015) uses this approach to characterize a biophysi-
cally relevant population of tonically firing neurons in terms of firing
rate and mean membrane potential. Similar strategies have been used
to investigate dynamical behaviors of macroscopic brain rhythms (Du-
mont & Gutkin, 2019; Schmidt, Avitabile, Montbrió, & Roxin, 2018).
For a comprehensive review of other mean field reduction strategies
with an emphasis on neural oscillators, the interested reader is referred
to Bick, Goodfellow, Laing, and Martens (2020).

4. Model independent control strategies

Given the complexity of the larger brain circuit that gives rise to
many pathological conditions, model independent control algorithms
that do not require an accurate description of the underlying dynamics
can be an attractive choice in many situations. Below, we highlight a
few such strategies.

4.1. Adaptive deep brain stimulation

In a clinical setting, DBS as a treatment for Parkinson’s disease is
generally applied in an open loop manner by injecting pulses of current
4

𝑦

in a therapeutic range of 130–180 Hz (Kuncel & Grill, 2004; Volkmann,
Herzog, Kopper, & Deuschl, 2002). There has been a growing interest
in closing the loop, for example, by using an adaptive or demand
controlled approach. Such a strategy could reduce the power required
by an implantable device and limit unwanted side effects by turning
off the device when it is not needed; effective adaptive DBS (aDBS)
implementation could eliminate the time consuming process of tuning
the parameters of the DBS probe (pulse width, frequency, etc.).

The identification of a suitable control variable is still an open
problem for the development of general aDBS strategies. Initial inves-
tigations using local field potentials (LFPs) as a control variable have
been promising (Little, et al., 2013; Meidahl, Tinkhauser, Herz, Cagnan,
Debarros, & Brown, 2017; Priori, Foffani, Rossi, & Marceglia, 2013;
Rosa, et al., 2015). When using LFP data as a control variable, DBS
input is generally turned on when the amplitude of the pathological
beta rhythms exceeds some prescribed threshold, and turned off once
the beta rhythm has been sufficiently suppressed. Note, however, that
more sophisticated implementations are possible. Other studies have
investigated the possibility of timing the application of DBS pulses
relative to a patient’s tremor rhythm. Such strategies have also yielded
promising results in both computational (Azodi-Avval & Gharabaghi,
2015; Duchet, Weerasinghe, Cagnan, Brown, Bick, & Bogacz, 2020) and
experimental studies (Cagnan, et al., 2017; Holt, et al., 2019; Rosin,
et al., 2011). Further investigation of these techniques will likely yield
improvements over standard open-loop DBS methods.

4.2. BayesIan optimization for exploration of large parameter spaces

A fundamental problem in the implementation of DBS and aDBS
strategies is the selection of stimulation parameters (e.g., pulse fre-
quency, pulse amplitude, oscillation phase trigger, etc.). In clinical
settings, parameter selection is a time consuming process that generally
involves making a modification to the parameters, waiting long enough
to assess the resulting effect, and making an informed guess about the
next parameter to change. General procedures have been developed to
perform this task (Kuncel & Grill, 2004; Volkmann, Moro, & Pahwa,
2006), but it still remains somewhat of an art.

Looking towards the development of methods to better implement
this tuning process, the authors of Grado, Johnson, and Netoff (2018)
consider a Bayesian optimization algorithm (Jones, Schonlau, & Welch,
1998; Shahriari, Swersky, Wang, Adams, & Freitas, 2015) in order to
optimize stimulator parameters. The Bayesian optimization algorithm
relies on the definition of an objective function in order to gauge
the efficacy of a given parameter set. When the goal is the design of
an algorithm to alleviate the motor control symptoms of Parkinson’s
disease, mean beta power is a natural choice. In contrast to frequentist
approaches, Bayesian techniques incorporate a prior belief about the
objective function, compute a posterior after each new sample, and
iterate to gain better and better estimation about the objective function.
During the course of the iterations, the Bayesian optimization approach
also considers an acquisition function to guide the sampling process
in the search for an optimal set of parameters. This approach was
implemented successfully in a computational model of Parkinson’s
disease in Grado et al. (2018). A similar strategy was also effective at
controlling seizures in a mouse model of temporal lobe epilepsy (Stieve,
Richner, Krook-Magnuson, Netoff, & Krook-Magnuson, 2021). It would
be interesting to see how this approach performs in human trials.

4.3. Delayed feedback

The delayed feedback control strategy was originally proposed in
the context of chaos control (Pyragas, 1992, 2006). To implement such
a control strategy, consider a general dynamical system
𝑑𝑥
𝑑𝑡

= 𝑓 (𝑥, 𝑝), (14)

(𝑡) = 𝑔(𝑥(𝑡)), (15)
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where 𝑥 ∈ R𝑛 is the state, 𝑝 is a scalar parameter that can be used to
apply a control input, and 𝑦(𝑡) is a scalar observable which is a function
of the state. The delayed feedback approach applies the control signal

𝑝(𝑡) = 𝐾(𝑦(𝑡 − 𝑇 ) − 𝑦(𝑡)), (16)

where 𝐾 is a proportional gain and 𝑇 is a time delay. This general
approach was considered in Popovych, Hauptmann, and Tass (2006),
Rosenblum and Pikovsky (2004a, 2004b) and Schöll, Hiller, Hövel, and
Dahlem (2009) in the context of designing a feedback controller to
eliminate pathological oscillations in a large population of neurons.
In practice, such delayed feedback techniques work best when the
observable gives a good representation of the aggregate population
behavior, for instance, when using a mean field as the observable.
While this control algorithm is relatively easy to implement, it typically
does not come with performance guarantees and effective choices of
the time delay and the proportional gain must generally be obtained
by sweeping through a set of allowable values.

4.4. Control using machine learning

Machine learning has seen tremendous growth over the last several
years. While there have been countless applications to problems such as
computer vision and natural language processing, extensions into other
areas such as neuroscience and control are still emerging. Two types of
machine learning which have shown promise in this area are artificial
neural networks and reinforcement learning.

An artificial neural network consists of a system that maps an input
vector to an output vector via one or more layers; the system is a ‘‘deep’’
network if at least one of these layers is ‘‘hidden’’, meaning it does
not map directly to the output. Each layer is made up of a number of
artificial ‘‘neurons’’, each consisting of a matrix that linearly transforms
the output from the previous layer followed by a nonlinear activation
function. Training a neural network consists of repeated iterations
of a forward propagation step followed by a backward propagation
step. In the forward propagation step, the current parameters of the
neural network are used to make a prediction of the output based on
the input, which is compared to the actual output. This provides an
accuracy metric based on a loss function which is then fed back into
the neural network to compute appropriate derivatives for updating
the weights in each layer of the neural network. An appealing aspect
of artificial neural networks is that any smooth function can be accu-
rately approximated by a neural network consisting of only a single
hidden layer (Cybenko, 1989). In practice, however, it is typically more
efficient to use a larger number of hidden layers. The deep neural
network architecture allows nonlinearities to compound at each layer,
allowing the approximation of highly nonlinear functions with less
computational cost than a simpler, single-hidden layer network.

Matchen and Moehlis (2021) designed a deep artificial neural net-
work for predicting the effects of square wave stimuli on a model of
a neuron in the subthalamic nucleus. The goal was to utilize as little
information as possible when training the neural network and designing
the control, so it was assumed that the only measurement we could
recover from the neuron was the timing of its spikes. The control signal
used, however, was assumed to be known, and was characterized by
three variables: signal amplitude 𝑢0, signal width 𝑡𝑤𝑖𝑑𝑡ℎ, and signal
delay time 𝑡𝑑𝑒𝑙𝑎𝑦. The delay time is the length of time after the previous
spike that the input stimulus is applied. The system’s output was the
expected value of the neuron’s next firing time, 𝑡𝑓𝑖𝑛𝑎𝑙. This can be
viewed as a regression problem, where the input �⃗� and output �̂� of the
neural network are written as:

�⃗� =
[

𝑢0, 𝑡𝑤𝑖𝑑𝑡ℎ, 𝑡𝑑𝑒𝑙𝑎𝑦
]𝑇 , �̂� = 𝐸

[

𝑡𝑓𝑖𝑛𝑎𝑙|�⃗�
]

. (17)

The neural network was trained via random trials of �⃗� selected uni-
formly from appropriate ranges, and was validated by comparing with
trials from outside the training set (Matchen & Moehlis, 2021). This
deep artificial neural network regression model was then used to find
5

the best signal width for a constant-amplitude stimulus to desynchro-
nize a pair of neurons. Moreover, it was incorporated into a dynamic
programming formulation to desychronize a pair neurons with multiple
inputs, and a cost function defined in terms of generalized order pa-
rameters (Daido, 1996) was used with the regression model to achieve
clustered solutions (Matchen & Moehlis, 2021).

Another promising machine learning approach is reinforcement
learning, which enables the learning of a control policy by trial and
error using feedback from its own actions. The classical formulation
of reinforcement learning is in terms of a Markov Decision Process in
which 𝑠 ∈ 𝑆 is the state of the system, 𝑎 is an action drawn from

finite set 𝐴 of possible actions, 𝑅(𝑠, 𝑎) is a reward function which
depends on the state and action being implemented, and 𝜋 ∶ 𝑆 → 𝐴
is a policy which depends on the state of the system and is trained to
give the optimal action. As a generalization, one can optimize based
on the value function 𝑉 (𝑠, 𝑎) which equals the reward function plus
a constant multiplying the expected future reward. Q-learning is a
model-free reinforcement learning algorithm. Recent results (Mitchell
& Petzold, 2018; Nagaraj, Lamperski, & Netoff, 2017; Yu, Narayanan,
Ching, & Li, 2020) have begun leveraging reinforcement learning to
generate control strategies.

Finally, Monga and Moehlis (2020) shows that supervised learning
applied to a reward function defined as the absolute value of spike time
differences between neurons can be used to develop a control algorithm
to desynchronize a population of neural oscillators.

5. Chaotic desynchronization

Wilson and Moehlis (2014c) presents a control strategy called op-
timal chaotic desynchronization for finding an energy-optimal stimulus
which exponentially desynchronizes a population of neurons, based
only on a neuron’s phase response curve (PRC). Here we give a sum-
mary of this approach and discuss related control strategies.

5.1. Optimal chaotic desynchronization

As shown in Section 2.2, phase reduction gives the following re-
duced model for a single neuron:
𝑑𝜃
𝑑𝑡

= 𝜔 + 𝑧(𝜃)𝑢(𝑡), (18)

here 𝜃 is the phase of the neuron and is 2𝜋-periodic on [0, 2𝜋). By
onvention, 𝜃 = 0 corresponds to the spiking of the neuron. Here, 𝜔
ives the neuron’s baseline dynamics which are determined from its
atural period 𝑇 as 𝜔 = 2𝜋∕𝑇 , 𝑧(𝜃) is the PRC, and 𝑢(𝑡) is the control
nput.

The approach is based on Lyapunov exponents, which can be used
o describe the rate at which nearby trajectories diverge. An expression
or the Lyapunov exponent for (18) is obtained by considering two
dentical neurons subject to a common stimulus:
𝑑𝜃𝑖
𝑑𝑡

= 𝜔 + 𝑧(𝜃𝑖)𝑢(𝑡), 𝑖 = 1, 2. (19)

ere it is assumed that the neurons are nearly in-phase, so that 𝜃1 ≈ 𝜃2.
etting 𝜙 ≡ |𝜃2 − 𝜃1|, one obtains
𝑑𝜙
𝑑𝑡

= 𝑧′(𝜃)𝑢(𝑡)𝜙 + (𝜙2). (20)

ropping the (𝜙2) terms and assuming that solutions are of the
orm 𝜙 ∼ 𝑒𝛬𝑡, the finite time Lyapunov exponent (cf., Abouzeid &
rmentrout, 2009) is

(𝜏) =
log(𝜙(𝜏))

𝜏
=

∫ 𝜏0 𝑧
′(𝜃(𝑡))𝑢(𝑡)𝑑𝑡
𝜏

. (21)

Now consider a population of neurons, each described by an equa-
tion of the form (18), and choose some time 𝑡1. Suppose that for all
stimuli 𝑢(𝑡) that advance 𝜃 from 𝜃(0) = 0 to 𝜃(𝑡 ) = 𝜔𝑡 (that is, stimuli
1 1
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Fig. 2. Optimal chaotic synchronization for a population of 𝑁 = 100 noisy, coupled neurons. The first panel shows the network in the absence of control. The second and third
panels show results for the same network with the event-based control applied. In the first and second panels, the black traces are for individual neurons, the red trace shows the
mean voltage for the system, and the horizontal dotted line shows the control activation threshold.
Source: Adapted from Figure 6 from Wilson and Moehlis (2014c).
that do not create any net change of phase), one wants to find the
stimulus that minimizes the cost functional

𝐺[𝑢(𝑡)] = ∫

𝑡1

0
[𝑢(𝑡)2 − 𝛽𝑧′(𝜃(𝑡))𝑢(𝑡)]𝑑𝑡. (22)

Here, ∫ 𝑡10 [𝑢(𝑡)2]𝑑𝑡 corresponds to the power associated with the stimu-
lus, and 𝛽 > 0 determines the relative importance of minimizing this
versus maximizing the Lyapunov exponent 𝛬(𝑡1). Now, apply calculus
of variations to minimize (Forger & Paydarfar, 2004)

[𝑢(𝑡)] = ∫

𝑡1

0

{

𝑢(𝑡)2 − 𝛽𝑧′(𝜃)𝑢(𝑡) + 𝜆
(𝑑𝜃
𝑑𝑡

− 𝜔 − 𝑧(𝜃)𝑢(𝑡)
)}

𝑑𝑡, (23)

where the Lagrange multiplier 𝜆 forces the neural dynamics to obey
Eq. (18). The resulting Euler–Lagrange equations can be solved subject
to the boundary conditions 𝜃(0) = 0, 𝜃(𝑡1) = 𝜔𝑡1 using a shooting
method.

Because pathological neural synchronization in the thalamus is
thought to play an important role in Parkinson’s disease (Hammond,
Bergman, & Brown, 2007), Wilson and Moehlis (2014c) illustrated
optimal chaotic desynchronization by considering a three-dimensional
model to describe thalamic neural activity augmented from Rubin
and Terman (2004) and given in Appendix B. Fig. 2 shows results
from event-based control applied to a network of coupled, initially
synchronized, noisy thalamic neurons. Here the controller is only trig-
gered when the mean voltage 𝑉 crosses a certain threshold, in which
case the pre-computed stimulus which maximizes the Lyapunov ex-
ponent is applied; see Wilson and Moehlis (2014c) for more details.
We note that Wilson and Moehlis (2014c) shows that heterogeneity in
the properties of the neurons and the coupling tends to increase the
effectiveness of optimal chaotic desynchronization.

This control strategy can be generalized to obtain charge-balanced
(CB) stimuli (Wilson & Moehlis, 2014c). The importance of CB stimuli
in DBS has been known for many years: over time, non-charge-balanced
(NCB) stimuli can create an accumulation of charge and cause harmful
Faradaic reactions that may damage surrounding neural tissue or the
DBS electrode (Merrill, Bikson, & Jefferys, 2005). The total charge 𝑞
imparted to a neuron is the integral of the input current from the
control, so �̇�(𝑡) ∼ 𝑢(𝑡). One can derive an optimal CB stimulus by
optimizing the same cost function as in the NCB case, 𝐺[𝑢(𝑡)], subject
to the additional constraints 𝑞(0) = 0 and 𝑞(𝑡1) = 0, which ensures that
the stimulus will be charge neutral at 𝑡 . Calculus of variations can
6

1

be applied to give new Euler–Lagrange equations which can be solved
using a double bisection algorithm; see Wilson and Moehlis (2014c)
for details. Optimal chaotic desynchronization has also been extended
to the more realistic case of extracellular stimulation in Wilson and
Moehlis (2014b).

5.2. Phasic burst stimulation

Considering the optimal chaotic desynchronization control strategy,
the cost functional from Eq. (22) is imposed to balance the optimal
trade-off between the energy consumed by a continuous input and the
resulting finite time Lyapunov exponent. In experimental applications
that are more relevant to clinical DBS, however, one is generally
limited to the application of short duration electrical pulses. Given this
constraint, one could conclude that in order to efficiently generate a
positive finite time Lyapunov exponent, and hence desynchronization,
pulses should be applied where the derivative of the phase response
curve is the largest. These issues were investigated in depth in Holt,
Wilson, Shinn, Moehlis, and Netoff (2016) in the context of providing
a burst of stimulation at a specific phase of oscillation in order to
disrupt pathological beta rhythms. In a detailed computational model
of a population of conductance-based neurons (Hahn & McIntyre, 2010)
that displays a pathological 34 Hz oscillation in a Parkinsonian state,
stimulus pulses applied when the derivative of the effective population
PRC is positive reduces pathological oscillations as gauged by the
power spectrum of the signal obtained from the summation of phases
of the aggregate neural population. Conversely, pulses applied when
the derivative of the population PRC is negative tend to increase
pathological oscillations. Both of these effects grow more pronounced
when more pulses are applied in rapid succession.

The phasic burst stimulation framework fits within the larger con-
text of developing demand-controlled, adaptive DBS strategies that can
be used to improve both the efficiency and efficacy of clinical DBS by
implementing a closed-loop algorithm. The critical challenge relies on
identifying a suitable control variable to use for feedback.

6. Cluster control

An approach to achieve partial desynchronization is to split the
oscillating neurons into clusters, in which only a subpopulation of the
neurons are spike-synchronized. Such a strategy can be especially useful
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Fig. 3. Periodic sequence of identical pulses.

Fig. 4. Results for thalamic neurons driven by periodic pulsatile stimulation, showing
regions of parameter space where (top) 1, 2, 3, 4, or 5 clusters occur, as indicated by
color, and (bottom) positive Lyapunov exponents occur.
Source: Adapted from Figure 5 from Wilson and Moehlis (2015).

in an underactuated system where full desynchronization is not possible
to achieve. In this section, we describe various control algorithms
which lead to clustering.

6.1. Open-loop control through periodic pulses

Consider a population of uncoupled neural oscillators stimulated by
periodic pulses of the type used for DBS, namely a charge-balanced
𝜏-periodic sequence of pulses as shown in Fig. 3. By adjusting the
magnitude and frequency of the stimulation, it is possible to cause the
neural population to synchronize, desynchronize, or form clusters. The
following describes how one can predict the effect of such periodic,
pulsatile stimulation.

Fig. 4 shows numerical results for the effect of periodic pulsatile
stimulation for a population of thalamic neurons, according to stimulus
strength and frequency. The colored regions in the top panel correspond
to clustering, in which neurons within a subpopulation are synchro-
nized, but desynchronized with respect to the other subpopulations;
only regions with 1, 2, 3, 4, or 5 clusters are shown, where a 1-cluster
state corresponds to full synchronization. White regions represent pa-
rameters where clustering is not guaranteed, or where there are 6 or
more clusters.

To understand the clustering behavior of a neural population in
response to periodic, pulsatile stimuli, Wilson and Moehlis (2015)
approximated the dynamics for this system as

�̇� = 𝜔 + 𝑓 (𝜃 )𝛿(mod(𝑡, 𝜏)), 𝑖 = 1,… , 𝑁, (24)
7

𝑖 𝑖
where 𝜃 ∈ [0, 2𝜋) is the phase of the neuron with 𝜃 = 0 defined
to be the phase at which the neuron fires an action potential, 𝜔 is
the natural frequency, 𝜏 is the period of the stimuli, and 𝑓 (𝜃) is a
continuous and periodic function that describes the change in phase
due to a single pulse (including the positive current for time 𝑝, and the
negative current for time 𝜆𝑝). Note that for weak inputs, 𝑓 (𝜃) is directly
related to the infinitesimal phase response curve defined in Eq. (6). If
the pulse was a delta function with unit area, 𝑓 (𝜃) would be equal to
the infinitesimal PRC 𝑧(𝜃); for more general pulses, it can be calculated
using a direct method in which a pulse is applied at a known phase,
and the change in phase is deduced from the change in timing of the
next action potential (Netoff et al., 2012). It is useful to think of the
change in phase due to the pulse as occurring instantaneously, even
though the pulse will typically have a finite duration; this will be a
good approximation for pulses of short duration.

To understand the clustering behavior, consider the map which
takes the phase of a neuron immediately after the start of an input
pulse, 𝜃(0+) = 𝜃0, to the phase exactly 𝑛 forcing cycles later (Wilson
& Moehlis, 2015):

𝜃(𝑛𝜏+) = 𝑔(𝑛)(𝜃0), (25)

where

𝑔(𝑠) = 𝑠 + 𝜔𝜏 + 𝑓 (𝑠 + 𝜔𝜏), (26)

and 𝑔(𝑛) denotes the composition of 𝑔 with itself 𝑛 times. Fixed points of
𝑔(𝑛), that is, solutions to 𝜃∗ = 𝑔(𝑛)(𝜃∗), have the property that the phase
has the same value after 𝑛 pulses as where it started. For clustering, of
particular interest are fixed points of 𝑔(𝑛) which are not fixed points of
𝑔(𝑚) for any positive integer 𝑚 satisfying 𝑚 < 𝑛; then there will be 𝑛
fixed points of 𝑔(𝑛) that correspond to points on a period-𝑛 orbit of 𝑔. If

|

|

|

|

𝑑
𝑑𝜃

|

|

|

|𝜃=𝜃∗
(𝑔(𝑛)(𝜃))

|

|

|

|

< 1, (27)

then the fixed point 𝜃∗ of 𝑔(𝑛) is stable, as is the corresponding period-𝑛
orbit of 𝑔. Neurons which start with initial phases within the basin of
attraction of a given fixed point of 𝑔(𝑛) will asymptotically approach
that fixed point under iterations of 𝑔(𝑛). The 𝑛 different fixed points
will each have a basin of attraction, so, for example, a uniform initial
distribution of neurons will form 𝑛 clusters, one for each of these
fixed points of 𝑔(𝑛), cf. Wilson and Moehlis (2015). Kuelbs, Dunefsky,
Monga, and Moehlis (2020) shows how the number of clusters and
their stability properties, bifurcations, and basins of attraction can be
understood in terms of the iterates of the map 𝑔.

6.2. Clustering in noisy populations of neurons

Consider the behavior of a large population of neurons subject to
both noise and periodic pulsatile inputs:

�̇�𝑖 = 𝜔 + 𝑓 (𝜃𝑖)𝛿(mod(𝑡, 𝜏)) + 𝜖𝜂𝑖(𝑡)𝑧(𝜃𝑖), 𝑖 = 1,… , 𝑁. (28)

This equation is identical to (24) except for the addition of an indepen-
dent and identically distributed Gaussian white noise process 𝜂𝑖(𝑡) to
each neuron, where 0 < 𝜖 ≪ 1. Because of noise, it is more convenient
to think about the phase in terms of a probability distribution. For
a large population of neurons, one can consider the dynamics of a
probability distributions with a series of stochastic maps:

𝜌(𝜃, 𝑡 + 𝑛𝜏) = 𝑃𝑛𝜏𝜌(𝜃, 𝑡), (29)

where 𝑃𝑛𝜏 is the linear Frobenius–Perron operator that maps the prob-
ability distribution 𝜌(𝜃, 𝑡) to 𝜌(𝜃, 𝑡+ 𝑛𝜏). The operator 𝑃𝑛𝜏 was analyzed
in Wilson and Moehlis (2015) in relation to fixed points of the map
𝑔(𝑛). In particular, if 𝑔(𝑛) is monotonic, has 𝑛 stable fixed points, 𝑛
unstable fixed points, and no center fixed points, then under repeated
applications of the mapping from Eq. (29), 𝜌(𝜃, 𝑡) will approach a steady
state with 𝑛 distinct clusters, each containing approximately 1∕𝑛 of
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Fig. 5. A population of 𝑁 = 1000 noisy thalamic neurons of the general form (B.1) is considered without electrotonic coupling. A background sinusoidal input common to each
neuron serves to synchronize the population and is applied at all times. Pulsatile stimuli applied at 83 and 94 Hz eliminate synchronization in favor of 4- and 3-cluster solutions
in steady state. In the figure above, snapshots of the probability distribution are taken immediately before every third and fourth pulse when applying pulsing at 83 and 94 Hz,
respectively, and taken at the frequency of the sinusoidal forcing when no pulsatile input is applied.
Source: This figure is adapted from results originally presented in Wilson and Moehlis (2015).
the overall probability density. This result was derived for systems
in the absence of coupling or other external inputs, nonetheless, in
situations where periodic input is large and any additional inputs are
weak, similar results can be observed. For instance, Fig. 5 shows a set of
simulations of 𝑁 = 1000 noisy neurons subject to a baseline sinusoidal
input and pulsatile inputs applied at various frequencies. In the absence
of pulsatile inputs, the sinusoidal input synchronizes the population.
When pulsatile inputs are applied, synchronous behavior is disrupted
and stable clustering emerges.

6.3. Chaotic desynchronization with pulsatile inputs

Periodic pulsatile inputs can also lead to chaotic desynchronization.
The bottom panel of Fig. 4 shows the average Lyapunov exponent of
the resulting steady state distributions 𝜌∗(𝜃) from periodic, pulsatile
stimulation, calculated as (Wilson, Beverlin, & Netoff, 2011)

LE = ∫

2𝜋

0
(𝜌∗(𝜃) log[1 + 𝑓 ′(𝜃)])𝑑𝜃. (30)

For parameter regions with a positive Lyapunov exponent, the pulsatile
stimulation will, on average, desynchronize neurons which are close
in phase. It was proposed in Wilson et al. (2011) that the parameters
which give therapeutic benefit to Parkinson’s patients are those with
a positive Lyapunov exponent, leading to chaotic desynchronization
of the neural population. The bottom panel of Fig. 4 illustrates the
Lyapunov exponent associated with a population of thalamic neurons
for various stimulus strengths and frequencies. The colormap is scaled
to highlight regions where the Lyapunov exponent is positive. Re-
gions of parameter space that yield positive Lyapunov exponents are
substantially narrower than the regions that yield clustering.

6.4. Coordinated reset

Coordinated reset uses multiple electrode implants delivering a se-
ries of identical impulses separated by a time delay between implants to
achieve clustering. This has been studied extensively (Lücken, Yanchuk,
Popovych, & Tass, 2013; Lysyansky, Popovych, & Tass, 2011, 2013;
Tass, 2003) with preliminary clinical success (Adamchic, et al., 2014).
Modeling and clinical results for coordinated reset suggest that rela-
tively strongly clustered groups of neurons do not lead to pathological
outcomes in the user and can be effective in treatment for Parkinson’s
disease.

Coordinated reset relies on a number of electrodes equal to the
number of clusters desired, which may not always be physically feasible
in practice. It also requires the powering of multiple electrodes si-
multaneously, which limits its energy efficiency. However, coordinated
reset is clearly a promising approach to achieving clustering of neural
populations.
8

6.5. Closed-loop cluster control

Matchen and Moehlis (2018) considers a population of 𝑁 identi-
cal neurons, all receiving the identical input 𝑢(𝑡). If the neurons are
uncoupled, then from (18) the dynamics of neuron 𝑗 is given by
𝑑𝜃𝑗
𝑑𝑡

= 𝜔 + 𝑧(𝜃𝑗 )𝑢(𝑡), 𝑗 = 1, 2,… , 𝑁. (31)

Now, label the neurons such that, at time 𝑡 = 0, the neuron phases
are ordered as 𝜃1(0) < 𝜃2(0) < 𝜃3(0) < ⋯ < 𝜃𝑁 (0). Since the neurons
are identical, the response of a neuron is bounded by the neurons of
phase initially less than the neuron and those greater than the neuron,
so for 𝑡 > 0, 𝜃1(𝑡) < 𝜃2(𝑡) < 𝜃3(𝑡) < ⋯ < 𝜃𝑁 (𝑡), that is, the ordering of
the neurons is maintained; here 𝜃𝑗 is allowed to increase beyond 2𝜋,
rather than using the modulo 2𝜋 value (Li, Dasanayake, & Ruths, 2013;
Matchen & Moehlis, 2018).

Suppose that the goal is to split the 𝑁 neurons into 𝐾 clusters.
The approach from Matchen and Moehlis (2018) is illustrated for 𝐾 =
2 in Fig. 6, where each neuron is represented as a dot with angle
corresponding to its phase. In the absence of control input, the dots
will move with constant angular velocity 𝜔 around the circle. Choose
two pairs of neurons – here, one pair is the red and blue neuron, and the
other pair is the green and yellow neuron – with initial phases as shown
in Fig. 6(a). The control described below is applied so that the neurons
in each of these pairs go a state in which they are 2𝜋∕𝐾 = 𝜋 out of phase
with each other; because the ordering of the neurons is maintained, this
will lead to a configuration such as that shown in Fig. 6(b), and in the
absence of additional control input they will maintain such separation.
Now, suppose that there are additional neurons as shown as black dots
in Fig. 6(c). Because the ordering of the neurons is maintained even
in the presence of a control input, when the control which makes the
pairs of neurons 2𝜋∕𝐾 = 𝜋 out phase with each other is applied, the
additional neurons’ phases get ‘‘squeezed’’ as shown in Fig. 6(d). This
results in a two-cluster state. A similar argument applies for obtaining
a 𝐾-cluster state for 𝐾 > 2.

To find the desired control input, Matchen and Moehlis (2018)
defines a state function 𝑟(𝑡) which is zero when the appropriate pairs
of neurons are 2𝜋∕𝐾 out of phase with each other, and tends towards
infinity when their phase difference approaches 0 or 2𝜋. It also defines
a cost function

𝐶 (𝑡) = ∫

𝑡

0

[

𝑢 (𝜏)2 + 𝛼𝑟 (𝜏)
]

d𝜏, (32)

where the first term is proportional to the power associated with the
control input, and the second term is a penalty associated with the
state function, both of which we want to minimize. The value of 𝛼
determines the relative importance of these two terms. Matchen and
Moehlis (2018) rewrites 𝐶 as a function of 𝑟, and chooses the input
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t
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Fig. 6. Illustration of cluster control as proposed in Matchen and Moehlis (2018), here for 𝐾 = 2 clusters. Each neuron is represented as a dot, with angle corresponding to its
phase. The (red,blue) and (green,yellow) pairs of neurons are controlled from configuration (a) to configuration (b). When additional neurons are present, shown as black dots,
the same control takes the system from configuration (c) to configuration (d), giving two clusters. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
w

𝑢(𝑡) such that the instantaneous magnitude of 𝑑𝐶
𝑑𝑟 is instantaneously

minimized, which can be interpreted as the input that is most efficient
in terms of cost relative to change in 𝑟. Such control is called an input of
maximal instantaneous efficiency (IMIE), and the effectiveness of this
algorithm has been shown numerically (Matchen & Moehlis, 2018) and
experimentally (Faramarzi & Netoff, 2021).

7. Direct control of phase distributions

Rather than attempting to identify a set of reduced ordinary dif-
ferential equations, in many control applications that consider a large
population of identical neurons it can be useful to consider the dynami-
cal evolution of the probability distribution itself. To this end, consider
a population of noise-free, identical, uncoupled neural oscillators all
receiving the same control input, with the dynamics of a single neuron
given by (18). It is convenient to represent the population dynamics in
terms of its probability distribution 𝜌(𝜃, 𝑡) which evolves according to
the advection equation (Brown et al., 2004; Tass, 2007)
𝜕𝜌(𝜃, 𝑡)
𝜕𝑡

= − 𝜕
𝜕𝜃

[(𝜔 + 𝑧(𝜃)𝑢(𝑡)) 𝜌(𝜃, 𝑡)] . (33)

Wilson and Moehlis (2014c) considers the problem of minimizing
the value of the peak of such a phase distribution, which has a desyn-
chronizing effect because fewer neurons have nearby phases. It accom-
plishes this by finding ordinary differential equations for the location
of the distribution peak (𝜌𝑀 , 𝜃𝑀 ), which are then used to formulate an
optimal control problem for the energy-optimal minimization of 𝜌𝑀 .

As an alternative approach, (Kuritz, Zeng, & Allgöwer, 2019; Monga,
Froyland, & Moehlis, 2018; Monga & Moehlis, 2019b) formulated an
algorithm to control the full distribution. Here we follow the treatment
in Monga et al. (2018). The desired final probability distribution 𝜌𝑓 (𝜃, 𝑡)
was taken to be a traveling wave which evolves according to
𝜕𝜌𝑓 (𝜃, 𝑡)

𝜕𝑡
= −𝜔

𝜕𝜌𝑓 (𝜃, 𝑡)
𝜕𝜃

. (34)

ote that (34) is of the same form as (33) with 𝑢 = 0. The approach is
o select the control 𝑢(𝑡) at each time instant so that the 𝐿2 difference
etween the current density 𝜌(𝜃, 𝑡) and the final target density 𝜌𝑓 (𝜃, 𝑡)

is instantaneously decreased as much as possible subject to the control
limits. In particular, Monga et al. (2018) defines the 𝐿2 norm of the
probability distribution difference as

𝑉 (𝑡) = ∫

2𝜋

0

(

𝜌(𝜃, 𝑡) − 𝜌𝑓 (𝜃, 𝑡)
)2 𝑑𝜃. (35)

This is positive over the range of all probability distributions, except
being zero when 𝜌(𝜃, 𝑡) = 𝜌𝑓 (𝜃, 𝑡). Its time derivative is given as

�̇� (𝑡) = 𝐼(𝑡)𝑢(𝑡), (36)

where

𝐼(𝑡) = 2∫

2𝜋

0

(

𝜕𝜌(𝜃, 𝑡)
𝜕𝜃

−
𝜕𝜌𝑓 (𝜃, 𝑡)
𝜕𝜃

)

𝑧(𝜃)𝜌(𝜃, 𝑡)𝑑𝜃. (37)

Taking the control input 𝑢(𝑡) = −𝐾𝐼(𝑡) with 𝐾 > 0 gives the time
derivative of the 𝐿2 norm, �̇� (𝜌, 𝜌 , 𝑡) = −𝐾[𝐼(𝑡)]2, as negative definite.
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𝑓

Thus, the control law 𝑢(𝑡) = −𝐾𝐼(𝑡) will decrease the 𝐿2 norm until the
current probability distribution becomes equal to the desired distribu-
tion. For both experimental and numerical reasons, it is more practical
to have a bounded control input, so Monga et al. (2018) also considered
a ‘‘clipped’’ proportional control law and a ‘‘bang–bang’’ control law.
These ideas were generalized in Monga and Moehlis (2019b) to formu-
late a control law when the neural population experiences white noise,
and to formulate an optimal control algorithm for phase distributions.

We note that, apart from degenerate cases as explained in Monga
and Moehlis (2019b), this algorithm is able to take any initial distribu-
tion to a broad range of possible target distributions, including a flat
distribution corresponding to desynchronization, a single-peaked distri-
bution corresponding to synchronization, or a multi-peaked distribution
corresponding to a cluster state. Fig. 7 shows an example where the
initial distribution is flat, and the final distribution corresponds to a
2-cluster state.

8. Phase randomization

The most reliable state measurements for individual neurons are
typically the timing of voltage spikes. For a population of neurons,
often all that is available is the local field potential, which represents a
filtered sum of current traveling across the cell membranes of a popula-
tion of cells close to a measurement electrode. The availability of such
limited measurements suggests the use of event-based control, which was
developed as an improvement to fixed sample-rate feedback control for
digital systems (Åström & Bernhardsson, 2003). In particular, whenever
an event is detected, such as a voltage spike or the local field potential
crossing some threshold, a pre-computed control stimulus is applied.

Danzl, Hespanha, and Moehlis (2009) and Nabi, Mirzadeh, Gibou,
and Moehlis (2013) design controllers that wait for a voltage spike
event, then stimulate the neuron with a pre-computed waveform de-
signed to drive the neuron’s state close to the phaseless set; for example,
in Fig. 1 the phaseless set would be the unstable fixed point ‘‘inside"
the periodic orbit which is surrounded with closely packed isochrons.
When the state is near the phaseless set, background noise will perturb
the system onto a random isochron and thus randomize its asymptotic
phase and its next spike time as described in Winfree (2001). Here we
focus on control algorithms which are either optimal in the sense of
minimizing the time or minimizing the amount of energy needed to
reach the phaseless set. When such control is applied to a population
of neurons, each neuron is randomized differently, and the whole
population is desynchronized.

First consider the system corresponding to a single neuron with state
𝑥 ∈ R𝑛 and control 𝑢(𝑡), but no noise:
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥) + 𝐵𝑢(𝑡), (38)

here 𝐵 = [1, 0,… , 0]𝑇 , and the first component of 𝑥 corresponds to
the membrane voltage of the neuron. From a theoretical standpoint,
the objective of the control strategy will be to drive the system’s state
to a pre-defined target location  corresponding to the phaseless set.
For simplicity, here we assume that  is an isolated fixed point, and
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Fig. 7. Phase distribution control, where the initial uniform distribution in shown in blue, and the true distribution and target distribution at time 𝑡 = 3𝑇 are shown in black and
red, respectively, where 𝑇 is the period of the neural oscillators. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Source: Adapted from Figure 3 from Monga and Moehlis (2019b).
we assume that the system has been translated so  is at the origin.
(In practice,  is typically taken to be a small neighborhood of the
phaseless set.) The constraint on the input due to tissue sensitivity or
the available hardware for experimental implementation is taken to be
𝑢(𝑡) ∈  ≡ {𝑢(𝑡)|𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥}.

8.1. Time-optimal phase randomization

First consider the minimum-time-to-reach control objective, which
is to drive the system from its initial state 𝑥0 to the target set  in
minimum time. The optimal control signal is found by first computing
an approximation of the minimum-time-to-reach value function (some-
times called the cost-to-go function), which is a viscosity solution of a
Hamilton–Jacobi–Bellman (HJB) PDE. The numerical approximation of
the value function is then used to generate the optimal state trajectory
and the optimal control signal by forward simulation.

This approach begins by defining the terminal time, 𝑡𝑒𝑛𝑑 ∈ [0,∞],
which is the minimum time at which the state reaches the target set
when starting from 𝑥(0) = 𝑥 under the control signal 𝑢(𝑡):

𝑡𝑒𝑛𝑑 (𝑥, 𝑢(𝑡)) = min{𝑡 ∶ 𝑥(𝑡) ∈  |𝑥(0) = 𝑥}. (39)

The terminal time is taken to be infinite when the trajectory 𝑥(𝑡) never
reaches the target set, which can occur if the constraint on 𝑢(𝑡) does
not allow enough control authority to over-ride the system’s natural
autonomous dynamics. The terminal time is not known at the outset,
and is only found through calculating the optimal stimulus and optimal
state trajectories.

Next, define the cost functional 𝐽 of an (𝑥(𝑡), 𝑢(𝑡)) trajectory starting
at 𝑥(0) = 𝑥 (over the time interval 𝑡 ∈ [0, 𝑡𝑒𝑛𝑑 ]) as

𝐽 (𝑥, 𝑢(𝑡)) = ∫

𝑡𝑒𝑛𝑑

0
1 𝑑𝑡 = 𝑡𝑒𝑛𝑑 (𝑥, 𝑢(𝑡)). (40)

Minimizing 𝐽 is equivalent to our objective of reaching the target set in
minimum time. The minimum-time-to-reach value function, (𝑥), from
state 𝑥 at time 𝑡 = 0 to the target set is computed as

(𝑥) = inf
𝑢∈

𝐽 (𝑥, 𝑢) = inf
𝑢∈

𝑡𝑒𝑛𝑑 (𝑥, 𝑢(𝑡)). (41)

The value function is infinite at points in state space from which
the controller cannot drive the state to the target set. From classical
optimal control theory (Bardi & Capuzzo-Dolcetta, 1997; Kirk, 1970),
in the minimum-time-to-reach framework the value function (𝑥) is a
viscosity solution of the following Hamilton–Jacobi–Bellman equation:

0 = min
𝑢∈

{1 + ∇(𝑥) ⋅ (𝐹 (𝑥) + 𝐵𝑢(𝑡))} (42)

with the boundary condition

(𝑥) = 0 ∀𝑥 ∈  . (43)

The solution (𝑥), in the viscosity sense, enables the computation
of the optimal state-feedback (and ultimately event-based open-loop)
10
policies 𝑢∗ and the corresponding state trajectories 𝑥∗ for any given
starting state 𝑥. Given (𝑥), the state-feedback form of the optimal
control policy 𝑢∗(𝑥) is called the H-minimal control (Athans & Falb,
1966) evaluated at 𝑥:

𝑢∗(𝑥) = argmin{1 + ∇(𝑥) ⋅ (𝐹 (𝑥) + 𝐵𝑢)}
= −sgn

(

𝜕
𝜕𝑥1

|

|

|𝑥

)

.
(44)

The optimal state trajectory 𝑥∗(𝑡) satisfies the system dynamics driven
by the optimal state-feedback control law:

�̇�∗(𝑡) = 𝐹 (𝑥∗(𝑡)) + 𝐵𝑢∗(𝑥∗(𝑡))
= 𝐹 (𝑥∗(𝑡)) − 𝐵 sgn

(

𝜕
𝜕𝑥1

|

|

|𝑥∗(𝑡)

)

. (45)

One computes the open-loop optimal control signal 𝑢∗(𝑥0, 𝑡) for all
𝑡 ∈ [0, 𝑡𝑒𝑛𝑑 (𝑥0)] by simulating Eq. (45) starting from initial position
𝑥(0) = 𝑥0 until 𝑥 reaches the target set  at time 𝑡 = 𝑡𝑒𝑛𝑑 (𝑥0) = (𝑥0).
The simulation provides the optimal 𝑥 trajectory, which is used to
calculate the optimal control through Eq. (44). Thus, given any initial
condition 𝑥0 one has all the necessary tools to calculate a variable-time-
length open-loop control signal 𝑢∗(𝑥0, 𝑡). Danzl et al. (2009) describes
how the HJB equation can be solved numerically for such problems
using ToolboxLS (Mitchell, 2007, 2008). Note that the optimal control
for minimum-time-to-reach control is ‘‘bang–bang’’, this is, it switches
between 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥, which follows from Pontryagin’s Minimum
Principle (Pontryagin, Trirogoff, & Neustadt, 1962).

As an approximation to the local field potential, Danzl et al. (2009)
considered the average voltage of the neural population:

𝑉 (𝑡) = 1
𝑁

𝑁
∑

𝑖=1
𝑉𝑖(𝑡), (46)

where 𝑉𝑖 is the voltage associated with the 𝑖th neuron. The event for
the population is taken to be when 𝑉 crosses some threshold value; this
only occurs when the neurons are all firing at approximately the same
time, representing synchronization. When such an event is detected,
the control (44) is applied, driving all neurons to a neighborhood of
the phaseless set, thereby randomizing their phases, each differently
because each feels a different realization of the noise. Fig. 8 shows
results from applying such control to desynchronize a population of
100 coupled (2D reduced) Hodgkin–Huxley neurons. Here two cycles
of control were needed to sufficiently desynchronize the population.

8.2. Energy-optimal phase randomization

Now, consider the system (38) where the objective is instead to find
the optimal control law that would take the system to its phaseless set
 in some prespecified length of time [0, 𝑡𝑒𝑛𝑑 ], while minimizing the
cost function

𝐽 (𝑥, 𝑢(𝑡)) =
𝑡𝑒𝑛𝑑

𝑢2𝑑𝑡 + 𝛾𝑞(𝑥(𝑡𝑒𝑛𝑑 )). (47)
∫0
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Fig. 8. (a) Time-optimal phase randomization for a population of 𝑁 = 100 reduced
Hodgkin–Huxley neurons. The top panel shows voltage traces for the individual
neurons, the middle panel shows the optimal input 𝑢(𝑡), and the bottom panel shows
the population average voltage 𝑉 . Control is activated at 𝑡 = 20 ms, as indicated by the
vertical dotted lines, and the optimal precomputed stimulus is applied when 𝑉 crosses
the threshold 𝑉𝑡ℎ𝑟𝑒𝑠ℎ = 0, shown as a dashed red line. Here 𝑢𝑚𝑖𝑛 = −10 and 𝑢𝑚𝑎𝑥 = 10. (b)
Phase space illustration, showing the periodic orbit (red line), optimal state trajectory
(blue line), and the target set (cyan circle). Gray regions signify using control 𝑢𝑚𝑖𝑛, and
white regions signify using control 𝑢𝑚𝑎𝑥. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Figures 3 and 10 of Danzl et al. (2009).

This cost function has a time-additive portion, ∫ 𝑡𝑒𝑛𝑑0 𝑢2𝑑𝑡, that character-
izes the total input power being used, and an end-point cost, 𝑞(𝑥(𝑡𝑒𝑛𝑑 )),
that depends on the end state. Here, 𝛾 is a penalizing scalar, and again
consider bounded inputs 𝑢(𝑡) ∈  .

Nabi et al. (2013) solves this by employing an HJB approach. One
first defines the value function (𝑥, 𝜏) from state 𝑥 and time 𝜏 ∈ [0, 𝑡𝑒𝑛𝑑 ]
which gives the minimum cost to go from (𝑥, 𝜏) to a neighborhood of
 subject to the constraints on the optimal control:

(𝑥, 𝜏) = min
𝑢(𝑡)∈

∀𝑡∈[𝜏,𝑡𝑒𝑛𝑑 ]

𝐽 = min
𝑢∈

∀ 𝑡∈[𝜏,𝑡𝑒𝑛𝑑 ]

[

∫

𝑡𝑒𝑛𝑑

𝜏
𝑢2𝑑𝑡 + 𝛾𝑞(𝑥(𝑡𝑒𝑛𝑑 ))

]

. (48)

Notice that the minimum-energy value function (47) is a function of
both time and state, whereas the minimum-time-to-reach value func-
tion (41) is only a function of the state. From classical optimal control
theory (Bardi & Capuzzo-Dolcetta, 1997; Kirk, 1970), in the energy-
optimal framework the value function (𝑥) is a viscosity solution of
the following HJB equation:

0 = 𝜕 (𝑥(𝜏), 𝜏) + min
[

𝑢(𝜏)2 + 𝜕 (𝑥(𝜏), 𝜏)
(

𝐹 (𝑥(𝜏)) + 𝐵𝑢(𝜏)
)]

, (49)
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𝜕𝑡 𝑢∈ 𝜕𝑥
Fig. 9. Energy-optimal phase randomization for a population of 𝑁 = 100 noisy, coupled
reduced Hodgkin–Huxley neurons. The top panel shows voltage traces for the individual
neurons in black and the average voltage 𝑉 in red. The bottom panel shows the input
𝑢(𝑡); here the optimal precomputed stimulus is applied when 𝑉 crosses the threshold
shown as purple line, and 𝑢𝑚𝑖𝑛 = −10 and 𝑢𝑚𝑎𝑥 = 10. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Figure 5 from Nabi et al. (2013).

with the boundary condition

(𝑥(𝑡𝑒𝑛𝑑 ), 𝑡𝑒𝑛𝑑 ) = 𝛾𝑞(𝑥(𝑡𝑒𝑛𝑑 )). (50)

By defining

(𝑧,∇ , 𝑢) = 𝑢2 + ∇(𝑧(𝑡), 𝑡)(𝐹 (𝑧(𝑡)) + 𝐵𝑢(𝑡)) (51)

as the Hamiltonian for the system, one can rewrite (49) more succinctly
as
𝜕
𝜕𝑡

+ min
𝑢∈

(𝑥,∇ , 𝑢) = 0, (52)

where ∇ is the gradient of the value function with respect to 𝑥. The
optimal control that globally minimizes  is obtained as

𝑢∗(𝑡) = arg min
𝑢∈

[𝑢2 + ∇(𝑥∗(𝑡), 𝑡)(𝐹 (𝑥∗(𝑡)) + 𝐵𝑢(𝑡))],

where 𝑥∗(𝑡) is the optimal trajectory. In order to find the optimal
control, one sets the derivative of the Hamiltonian (51) with respect
to 𝑢 equal to zero and solves for the extremal 𝑢. This is true as long as
the magnitude of the control remains smaller than the predetermined
bound 𝑢𝑚𝑎𝑥. When the magnitude of the optimal control reaches the
bound 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥, it saturates in accordance to Pontryagin’s minimum
principle (Kirk, 1970; Pontryagin et al., 1962). See Nabi et al. (2013)
for more detail on this and for a discussion of solving the HJB equation
numerically. Fig. 9 shows results from applying event-based energy-
optimal control to desynchronize a population of 100 coupled (2D
reduced) Hodgkin–Huxley neurons. Notice that two cycles of control
are needed to initially sufficiently desynchronize the population, and
another cycle is needed when the coupling has caused the neurons to
synchronize enough to trigger another event.

9. Open loop control strategies

Deep brain stimulation is generally applied in an open loop manner
without feedback. Nonetheless, it is often able to yield robust changes
in the population behaviors that result in desirable modifications in the
dynamics of a larger brain circuit. In Wilson (2020b) it was suggested
that open loop stimulation could be used to strategically destabilize
pathologically synchronized solutions and replace them with clustered

states, specifically stable rotating block or splay state solutions.
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It has long been known that periodic inputs can be used to stabi-
lize unstable periodic orbits (Braiman & Goldhirsch, 1991; Chacon &
Bejarano, 1993; Lima & Pettini, 1990; Ramesh & Narayanan, 1999).
However, theoretical understanding has generally been limited to low
dimensional systems, often precluding the use of nonlinear control
algorithms to achieve this objective in practical applications. More re-
cently, Wilson (2019) developed a control framework for modifying the
stability of a given periodic orbit using the phase-isostable coordinate
paradigm. This strategy is briefly summarized below in Section 9.1, and
subsequently considered in the context of neural control in Sections 9.2
and 9.3.

9.1. Modifying the stability of weakly stable and unstable periodic orbits
with open-loop control

Consider a general dynamical model of the form (4). As discussed
in Appendix A, such a model can be analyzed using a second order
accurate phase-isostable reduction of the general form (A.6)

𝑑𝜃
𝑑𝑡

= 𝜔 + 𝑧(𝜃)𝑢(𝑡) +
𝛽
∑

𝑘=1
𝜓𝑘𝑧

𝑘(𝜃)𝑢(𝑡),

𝑑𝜓𝑗
𝑑𝑡

= 𝜅𝑗𝜓𝑗 + 𝑖𝑗 (𝜃)𝑢(𝑡) +
𝛽
∑

𝑘=1
𝜓𝑘𝑖

𝑘
𝑗 (𝜃)𝑢(𝑡), 𝑗 = 1,… , 𝛽. (53)

Above, 𝜃 is the phase with 𝑧 and 𝜔 representing the PRC and natural
frequency as defined in Eq. (8). Each 𝜓1,… , 𝜓𝛽 is an isostable coordi-
nate which, as discussed in Appendix A, give a sense of distance from
the periodic orbit. The term 𝑖𝑗 is the infinitesimal isostable response
curve (IRC) of the 𝜓𝑗 isostable coordinate, which quantifies the effect
of a small amplitude input on the isostable coordinate. Additional terms
𝑧𝑘(𝜃) and 𝑖𝑘𝑗 (𝜃) result when considering the gradient of the phase and
isostable coordinates, respectively, using a Taylor expansion in a basis
of isostable coordinates centered at the periodic orbit. Compared to
the standard phase reduction (8), these extra terms yield a reduced
order model that is more accurate when larger magnitude inputs are
considered. Here, for simplicity of presentation the input 𝑈 (𝑥, 𝑡) is
assumed to be a rank-1 perturbation, i.e., 𝑈 (𝑥, 𝑡) = 𝛿𝑢(𝑡), where 𝛿 ∈ R𝑛
is a constant. With this in mind, Eq. (53) can be derived from Eq. (A.6)
by taking the expansions from Eq. (A.8) to first order accuracy in
each isostable coordinate and simplifying appropriately (e.g., 𝑧𝑘(𝜃) =
𝑍𝑘(𝜃)⋅𝛿). As discussed in Wilson (2019), the reduction (53) is valid both
for unstable and stable periodic orbits; for an unstable orbit, the phase
can no longer be determined according to isochrons and instead must
be defined using either an analogous finite-time definition or implicitly
using level sets of Koopman eigenfunctions. Taking 𝑢(𝑡) to be a 𝑇1-
periodic input, one can consider a rotating reference frame by letting
𝜙 = 𝜃−𝜔1𝑡, where 𝜔1 = 2𝜋∕𝑇1. The dynamics in this rotating reference
frame become

�̇� = 𝛥𝜔 +

[

𝑧(𝜙 + 𝜔1𝑡) +
𝛽
∑

𝑘=1

(

𝜓𝑘𝑧
𝑘(𝜙 + 𝜔1𝑡)

)

]

𝑢(𝑡),

̇ 𝑗 = 𝜅𝑗𝜓𝑗 +

[

𝑖𝑗 (𝜙 + 𝜔1𝑡) +
𝛽
∑

𝑘=1

(

𝜓𝑘𝑖
𝑘
𝑗 (𝜙 + 𝜔1𝑡)

)

]

𝑢(𝑡), 𝑗 = 1,… , 𝛽,

(54)
where 𝛥𝜔 = 𝜔−𝜔1. Provided 𝛥𝜔 and each 𝜓𝑗 are 𝑂(𝜖) terms, formal av-
eraging techniques (Guckenheimer & Holmes, 1983; Sanders, Verhulst,
& Murdock, 2007) can be used to approximate (54) as

�̇� = 𝛥𝜔 + 𝜎(𝛷) +
𝛽
∑

𝑘=1

(

𝛹𝑘𝛶𝑘(𝛷)
)

,

�̇� = (𝐴 + 𝐸(𝛷))𝑦 + 𝑝(𝛷), (55)

where

𝑦 =

⎡

⎢

⎢

⎢

⎢

𝛹1
𝛹2
⋮

⎤

⎥

⎥

⎥

⎥

, 𝐴 =

⎡

⎢

⎢

⎢

⎢

𝜅1 0 … 0
0 𝜅2 0
⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

,
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⎣

𝛹𝛽⎦ ⎣

0 0 … 𝜅𝛽⎦ b
𝐸(𝛷) =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼1,1(𝛷) 𝛼1,2(𝛷) … 𝛼1,𝛽 (𝛷)
𝛼2,1(𝛷) 𝛼2,2(𝛷) … 𝛼2,𝛽 (𝛷)

⋮ ⋮ ⋱ ⋮
𝛼𝛽,1(𝛷) 𝛼𝛽,1(𝛷) … 𝛼𝛽,𝛽 (𝛷)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑝(𝛷) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜇1(𝛷)
𝜇2(𝛷)
⋮

𝜇𝛽 (𝛷)

⎤

⎥

⎥

⎥

⎥

⎦

,

with 𝜎(𝛷) = 1
𝑇1

∫ 𝑇10 𝑧(𝛷 + 𝜔1𝑡)𝑢(𝑡)𝑑𝑡, 𝛶𝑘(𝛷) = 1
𝑇1

∫ 𝑇10 𝑧𝑘(𝛷 + 𝜔1𝑡)𝑢(𝑡)𝑑𝑡,

𝑘(𝛷) = 1
𝑇1

∫ 𝑇10 𝑖𝑘(𝛷 + 𝜔1𝑡)𝑢(𝑡)𝑑𝑡, 𝛼𝑗,𝑘(𝛷) = 1
𝑇1

∫ 𝑇10 𝑖𝑘𝑗 (𝛷 + 𝜔1𝑡)𝑢(𝑡)𝑑𝑡.
Here, 𝛷 and 𝛹𝑖 provide close approximations of 𝜙 and 𝜓𝑖, respectively,

hen considering the averaged equations. As detailed in Sanders et al.
2007), fixed points of (55) correspond to periodic orbits of (54) with
he same stability.

The reduced order, averaged Eqs. (55) ultimately provide a strategy
or modifying Floquet exponents associated with a given periodic orbit,
nd hence, its stability. Ultimately, the Floquet exponents are deter-
ined by the eigenvalues of 𝐴 +𝐸(𝛷). Noting that 𝐸(𝛷) contains 𝑂(𝜖)

erms, shifts to a simple (i.e., unique) eigenvalue can be determined
sing perturbation methods (Demmel, 1997):

ig(𝐴 + 𝐸) = 𝜅𝑖 +𝑤𝑇𝑖 𝐸𝑣𝑖∕(𝑤
𝑇
𝑖 𝑣𝑖) + (𝜖2),

= 𝜅𝑖 + 𝑒𝑇𝑖 𝐸𝑒𝑖 + (𝜖2),

= 𝜅𝑖 + 𝛼𝑖,𝑖(𝛷) + (𝜖2), for 𝑖 = 1,… , 𝛽, (56)

here 𝑤𝑇𝑖 = 𝑒𝑇𝑖 and 𝑣𝑖 = 𝑒𝑖 (elements of the standard basis) are left and
ight eigenvectors of 𝐴 corresponding to eigenvalue 𝜅𝑖. As such, the
erms 𝛼𝑖,𝑖 from the matrix 𝐸(𝛷) determine the shift in a unique Floquet
xponent of the underlying periodic orbit in response to periodic input.
f the control objective is to stabilize a nominally unstable periodic
rbit with a single, real Floquet exponent 𝜅𝑖 > 0, this can be posed
s an optimal control problem where the goal is to minimize the cost
unctional

[𝑢(𝑡)] = ∫

𝑇1

0
𝑢(𝑡)2𝑑𝑡 (57)

ubject to constraints

𝜎(𝛷0) = −𝛥𝜔,

𝜇𝑖(𝛷0) = 0 for 𝑖 = 1,… , 𝛽,

𝑑𝜎∕𝑑𝛷|𝛷0
= 𝜌 < 0,

𝑖 + 𝛼𝑖,𝑖(𝛷0) = 𝜂𝑖 < 0, for 𝑖 = 1,… , 𝛽. (58)

ere the first two conditions guarantee that Eq. (55) has a fixed
oint, and the second two guarantee stability of the associated periodic
rbit under the application of the periodic input. This problem can be
olved using a calculus of variations formulation as discussed in Wilson
2019).

.2. Stabilization of unstable rotating block solutions in neural populations
sing open-loop control

Here, we consider a phase model with 𝑁 identical coupled neurons

̇ 𝑖 = 𝜔 + 1
𝑁
𝑧(𝜃𝑖)

𝑁
∑

𝑗=1
𝑓 (𝜃𝑖, 𝜃𝑗 ) + 𝑧(𝜃𝑖)𝑢(𝑡), (59)

or 𝑖 = 1,… , 𝑁 , where 𝜃𝑖 represents the phase of the 𝑖th neuron, 𝑓 (𝜃𝑖, 𝜃𝑗 )
epresents the influence of coupling from neuron 𝑗 on neuron 𝑖, 𝑢(𝑡) is an
xternal input applied identically to all neurons, and 𝑧(𝜃) is the phase
esponse curve. For a population of identical, weakly coupled neurons,
any configurations of the individual neural oscillators are guaranteed

o exist (Ashwin & Swift, 1992; Brown et al., 2003). For example,
ynchronous solutions for which 𝜃𝑖 = 𝜃𝑗 for all 𝑖 and 𝑗 are one common
onfiguration. Additionally, splay states, with all phases of neurons
pread equally, and rotating block states having 𝑁∕𝐺 blocks, each with

oscillators, are also possible configurations (see Fig. 10). While these
olutions usually exist as solutions of (59), not all of these solutions will
e stable. With this in mind, in Wilson (2020b) the open-loop stability
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𝜓

Fig. 10. Top-left panels illustrate the important features of synchronized and rotating block solutions for population of 𝑁 identical oscillators. When considering the aggregate
oscillation of two limit cycle oscillators, an energy optimal input can be designed in order to simultaneously destabilize a synchronous solution in favor of a splay solution. Here
𝜙1 and 𝜙2 are the phases of each oscillator in a rotating reference frame. The synchronous and splay states are indeed destabilized and stabilized, respectively. As shown in Panel
A, the solution ends up at a new stable fixed point depending on the basin of attraction associated with the initial condition. Blue (resp., red) lines highlight trajectories that end
at a stable splay (resp., synchronous) state. A similar control objective of destabilizing synchronous solutions in favor of a two block rotating solution is illustrated in panels B
and C for a population of conductance-based neurons. In panel B, colored lines represent voltage traces for individual neurons and the black line gives the average value. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: This figure is adapted from results originally presented in Wilson (2020b).
modification framework described in Section 9.1 was investigated in
the context of destabilizing stable, synchronous solutions in favor of
less synchronized rotating block solutions or splay state solutions.

For an appropriate choice of coupling, Eq. (59) has a stable syn-
chronized solution. Considering the dynamics of the entire collection
of periodic orbits, these aggregate oscillations can be analyzed with the
phase-isostable reduction strategy yielding equations of the form

�̇� = 𝛺 +𝑍(𝛩) ⋅ 𝑃 (𝑡) +
𝛽
∑

𝑘=1

[

𝑍𝑘(𝛩)𝜓𝑘
]

⋅ 𝑃 (𝑡),

̇ 𝑗 = 𝜅𝑗𝜓𝑗 + 𝐼𝑗 (𝛩) ⋅ 𝑃 (𝑡) +
𝛽
∑

𝑘=1

[

𝐼𝑘𝑗 (𝛩)𝜓𝑘
]

⋅ 𝑃 (𝑡), 𝑗 = 1,… , 𝛽, (60)

where 𝛩 is the population phase, 𝛺 is the population frequency, each
𝜅𝑗 is a Floquet exponent of the population orbit, 𝑍,𝑍𝑘, 𝐼𝑗 , and 𝐼𝑘𝑗
each in R𝑁 are terms of the associated second order accurate phase-
isostable reduction, and 𝑃 (𝑡) = 𝑢(𝑡)

[

𝑧(𝜃1) … 𝑧(𝜃𝑁 )
]𝑇 is the effective

perturbation. This general framework can also be used to characterize
oscillatory solutions of rotating block and splay state solutions, keeping
in mind that the specific terms of the reduced order equations will be
different when considering different periodic orbits.

Investigating aggregate oscillations in this manner yields general
heuristics for designing effective stimuli to stabilize or destabilize a
given periodic orbit. Recalling Eq. (56) and defining phase appropri-
ately so that 𝛷 = 0, to leading order the term 𝛼𝑗,𝑗 = ∫ 𝑇10 𝑖𝑗𝑗 (𝜔1𝑡)𝑢(𝑡)𝑑𝑡 is
solely responsible for changing the Floquet exponents. In Eq. (60), this
term of interest takes the form ∫ 𝑇10 𝐼 𝑗𝑗 (𝛺𝑡)𝑃 (𝑡)𝑑𝑡. As shown in Wilson
(2020b), for synchronous solutions, each 𝐼 𝑗𝑗 (𝛺𝑡)𝑃 (𝑡) = 𝑧′(𝛺𝑡)𝑢(𝑡) where
′ denotes the derivative with respect to 𝜃. Note the similarity between
this result and the definition of the finite time Lyapunov exponent
from Eq. (21); even when coupling is explicitly considered, applying
inputs in proportion to the derivative of the phase response curve of the
individual neurons is an effective strategy for destabilizing synchronous
solutions. In addition to investigating relationships between the single
neuron phase response curves and the terms of the phase-isostable
reduction for population oscillations, Wilson (2020b) also considers the
13
design of stimuli to simultaneously destabilize a synchronous solution
in favor of stabilizing a rotating block solution. These results are
summarized in Fig. 10.

9.3. Stabilization of unstable fixed points

Section 9.2 highlights design strategies for open-loop stimuli that
can modify the stability of a given periodic orbit. Similar strategies
can also be employed in order to modify the stability of fixed point
solutions, as considered in Wilson (2020d). In this example, consider a
large population of 𝑁 identical periodically firing neurons that obeys

�̇�𝑗 = 𝜔 + 𝑧(𝜃)
(

𝑢(𝑡) +
√

2𝐷𝜂𝑗 +
1
𝑁

𝑁
∑

𝑖=1
𝜎𝑐 (𝑉 (𝜃𝑖) − 𝑉 (𝜃𝑗 ))

)

, (61)

for 𝑗 = 1,… , 𝑁 . Here
√

2𝐷𝜂𝑗 is an independent and identically dis-
tributed zero-mean white noise process with intensity 𝐷, and the
neurons each receive an identical input 𝑢(𝑡). The neurons are cou-
pled through electrotonic (voltage difference) coupling with relative
strength 𝜎𝑐 . Here, 𝑉 (𝜃) denotes the transmembrane voltage at phase
𝜃.

In the context of controlling the phase distribution of the coupled
neural oscillators, also considered in Section 7 of this review article,
the population dynamics can be understood in terms of a probability
distribution 𝜌(𝜃, 𝑡) that evolves according to a nonlinear Fokker–Planck
equation (Gardiner, 2004). Using an Ito interpretation for the noise
yields the partial differential equation
𝜕𝜌(𝜃, 𝑡)
𝜕𝑡

= − 𝜕
𝜕𝜃

[(𝜔 + 𝑧(𝜃)(𝑢(𝑡) + 𝜎𝑐 (𝑉 − 𝑉 (𝜃))))𝜌(𝜃, 𝑡)]

+ 𝜕2

𝜕𝜃2
[𝐷𝑧2(𝜃)𝜌(𝜃, 𝑡)],

= −𝜔𝜌𝜃 +
𝜕2

𝜕𝜃2
[𝐷𝑧2(𝜃)𝜌] − 𝜕

𝜕𝜃
[𝑧(𝜃)𝜎𝑐 (𝑉 − 𝑉 (𝜃))𝜌]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unperturbed dynamics

× −[𝑧(𝜃)𝜌𝜃 + 𝑧′(𝜃)𝜌]𝑢(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

, (62)
external forcing
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Fig. 11. For a large population of electrotonically coupled thalamic neurons, the top-left panel highlights snapshots of a stable periodic orbit (𝑇 = 8.2 ms) of Eq. (62) that governs
the dynamics of the probability distribution. The top-right panels shows a less synchronized, unstable stationary solution of the same equation. In response to open-loop sinusoidal
forcing 𝑢(𝑡) = 𝐴 sin(2𝜋𝑡∕𝑇1) where 𝑇1 is the input period, the bottom-left panel shows the Kuramoto order parameter Kuramoto (1984) in steady state which gives a sense of the
phase cohesiveness within the population. An order parameter of 1 indicates a completely synchronized solution; an order parameter closer to zero generally correlates with a
less synchronized state. Panels A, B, and C, show traces of representative neurons in steady state when using the input parameters indicated in the bottom-left panel. The red line
denotes a theoretical prediction of the boundary over which the unstable stationary solution is stabilized (obtained through analysis (62)) and agrees well with simulations. Note
that this prediction is valid in the limit of weak forcing. Additional bifurcations can occur for larger magnitude forcing, for instance, resulting in highly synchronized solutions
when using an input period of approximately 4.2 ms.
Source: This figure is adapted from results originally presented in Wilson (2020d).
where 𝑉 = ∫ 2𝜋
0 𝑉 (𝜃)𝜌(𝜃)𝑑𝜃 is the population averaged voltage, 𝜌𝜃

denotes the first partial derivative with respect to 𝜃, and ′ denotes
the derivative with respect to 𝜃. Comparing to Eq. (33), the added
diffusive term accounts for the influence of noise. Eq. (62) highlights
the difference between the terms that contribute to the nominal dy-
namics and terms that result due to external input. Considering a
population of conductance-based thalamic neurons from Rubin and
Terman (2004) to characterize the neurons from (62) (with equations
given in Appendix B), in the absence of input, Eq. (62) has a stable
periodic orbit highlighted in Fig. 11 for which the phases are strongly
correlated. Eq. (62) also has an unstable stationary solution where the
phases are spread more diffusely.

Wilson (2020d) considers strategies for stabilization of this unsta-
ble stationary solution to engender desynchronization in the network
using open-loop feedback. In contrast to the work described in Sec-
tion 9.2, the goal is to stabilize a stationary solution rather than a
periodic solution. A recent study (Duchet, Weerasinghe, Bick, & Bogacz,
2021) found that phenomenological models fitted to patient tremor
data often yielded systems with weakly stable fixed points contain-
ing complex-conjugate eigenvalues. Theoretical analysis from Wilson
(2020d) reveals that to leading order, purely sinusoidal input applied
at an appropriate frequency is energy-optimal for achieving this task
when fixed points are weakly unstable, that is, when the unstable
solutions have a single unstable eigenvalue or a single pair of complex-
conjugate unstable eigenvalues with real components of order 𝜖, where
0 < 𝜖 ≪ 1. Theoretical analysis performed on the Fokker–Planck distri-
bution from (62) is numerically validated using a model of 𝑁 = 1000
conductance-based neurons. These results are summarized in Fig. 11.
When applying a purely sinusoidal input, the threshold over which the
nominally unstable, less synchronized fixed point is stabilized agrees
well with theoretical predictions. In this application, the steady state
distributions did not depend on initial conditions, e.g., the initial level
of synchronization among neurons. Note that these predictions are valid
in the weak forcing regime, and other solutions can result when the
amplitude of the forcing becomes larger.

We note that Wilson and Moehlis (2016b) also considers (61) and
a partial differential equation very similar to (62). Here the isostable
14
reduction of this partial differential equation about the uniform distri-
bution leads to a bang–bang control strategy to desynchronize a neural
population.

10. Control of entrained oscillations

While the majority of the applications considered in this review
article are on control of synchronization in populations of tonically
firing neurons, there are a number of other control objectives that can
be formulated in the context of neural control. In this section, we high-
light problems associated with control of entrained oscillations, that
is, limit cycle oscillators that are nominally entrained by an external
periodic input. In terms of practical applications, we focus here on the
control of circadian rhythms that are governed by the suprachaismatic
nucleus (SCN) (Reppert & Weaver, 2002), the master pacemaker in the
mammalian brain comprised of around 20,000 coupled neurons. The
coupled oscillations of these neurons are responsible for maintaining
a near 24-hour circadian cycle which can be entrained, for instance,
by a 24-hour light-dark cycle (Golombek & Rosenstein, 2010; Wright,
Hughes, Kronauer, Dijk, & Czeisler, 2001). When considering control
of entrained oscillations, elimination of jet-lag is a natural choice.
Mathematical models are often used in conjunction with optimal con-
trol techniques to identify optimal schedules of light exposure and
avoidance to rapidly acclimate to a new time zone and recover from
jet-lag (Bagheri, Stelling, & III, 2008; Dean, Forger, & Klerman, 2009;
Serkh & Forger, 2014; University of Michigan, 2018). Alternatively,
phase-based reduction strategies have also been developed, which first
characterize the phase response to bright pulses of light and subse-
quently identify strategies that can be used to reentrain rapidly to a
new time zone (Chesson, et al., 1999; Waterhouse, Reilly, Atkinson, &
Edwards, 2007).

Two fundamental difficulties arise in the use of optimal control
techniques in the context of jet-lag amelioration: First, full scale mod-
eling of the coupled oscillations of SCN neurons result in high-order
nonlinear systems for which it is computationally difficult to implement
nonlinear control techniques. Second, collective rhythms are notori-
ously difficult to analyze in a reduced order setting, and standard phase
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reduction methods often break down when considering control inputs
with physiologically relevant magnitudes. In the following sections, we
highlight recent efforts to obtain reduced order models that capture
the coupled oscillations of SCN neurons for which nonlinear optimal
control problems can be formulated and solved.

10.1. Phase-isostable reduction and control of entrained oscillations

Wilson (2020a) considers entrained oscillations in general models
of the form
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥) + 𝛿(𝑢nom(𝑡𝑠) + 𝑢(𝑡)),

𝑑𝑡𝑠
𝑑𝑡

= 1, (63)

here 𝑥 ∈ R𝑛, 𝐹 (𝑥) gives the nominal dynamics that yield a stable 𝑇 -
eriodic limit cycle 𝑥𝛾 (𝑡) in the absence of additional input, 𝛿 ∈ R𝑛,
𝑠 ∈ S = [0, 𝑇1) is a 𝑇1-periodic time-like variable that governs the
iming of the entraining stimulus 𝑢nom(𝑡𝑠), and 𝑢(𝑡) is a control input.
tandard phase reduction techniques (as described in Section 2.2) yield
phase model of the form

𝑑𝜃
𝑑𝑡

= 𝜔 + 𝑧(𝜃)(𝑢nom(𝑡𝑠) + 𝑢(𝑡)), (64)

here 𝜔 = 2𝜋∕𝑇 and 𝑧(𝜃) is defined appropriately. A common is-
ue when studying entrained oscillations is that the nominal input is
arge enough to drive the state of the full system far from the unper-
urbed periodic orbit, thereby degrading the accuracy of the reduction
rom Eq. (64) and rendering it useless (cf., Diekman & Bose, 2016). To
ircumvent this issue, one can instead consider the entrained solution
𝛾
ent (𝑡) that results under the application of the entraining stimulus,
ielding reduced order phase and isostable equations of the form
𝑑𝜃
𝑑𝑡

= 𝜔1,

𝑑𝜓𝑗
𝑑𝑡

= 𝜅𝑗𝜓𝑗 + 𝑖𝑗 (𝜃)𝑢(𝑡), (65)

for 𝑗 = 1,… , 𝛽, where 𝜔1 = 2𝜋∕𝑇1 and 𝑖𝑗 (𝜃) is an effective isostable
response curve. Note that when the reduction is taken relative to the
entrained periodic orbit, the state 𝑥 has no influence on the infinite
time behavior. As such, per the definition of isochrons discussed in
Section 2.1, the asymptotic phase can be written as 𝜃 = 2𝜋𝑡𝑠∕𝑇1 and
no longer depends on 𝑢(𝑡). Hence, the effective phase response curve is
equal to zero. From this perspective, in the context of the identification
of jet-lag amelioration strategies, the relative degree of circadian mis-
alignment following a sudden shift in environmental time is directly
related to the magnitude of the isostable coordinates, with 𝜓1 =
⋯ = 𝜓𝛽 = 0 corresponding to the fully entrained solution. Therefore,
following a sudden shift in the environmental time (for instance, caused
by rapid travel across multiple time zones) an optimal jet-lag mitiga-
tion control strategy can be formulated as a minimum-time-to-reach
problem and subsequently solved using a Hamilton–Jacobi–Bellman
approach (Kirk, 1998). Specifically, the goal is to find an allowable con-
trol 𝑢∗(𝑡) that drives the system (65) with initial isostable coordinates
𝜓1(0),… , 𝜓𝛽 (0) to some target set  for which the isostable coordinates
re small in the minimum possible time. This can be accomplished by
efining the cost functional

(𝛹, 𝑢(𝑡)) = ∫

𝑡targ

0
1𝑑𝑡 = 𝑡targ(𝛹, 𝑢(𝑡)), (66)

where 𝛹 =
[

𝜓1 … 𝜓𝛽
]𝑇 and 𝑡targ is the time required to reach 

tarting from 𝛹 under the application of 𝑢(𝑡). The input 𝑢∗(𝑡) can be
found using the strategy described in Section 8.1, whereby a value
function (𝛹 ) which represents the minimum possible value of 𝑡targ for
a given 𝑥 is obtained and 𝑢∗(𝑡) is determined with knowledge of the
value function. In Wilson (2020a), this control strategy is applied to a
model of 𝑁 = 3000 coupled SCN oscillators with model equations given
by (B.3) and (B.4) from Appendix B. Here, the input 𝑢(𝑡) corresponds to
the intensity of external light and is used to aid recovery from a shift in
environmental time, for instance, caused by rapid travel across multiple
15

time zones. Representative results are shown in Fig. 12. w
10.2. Adaptive-phase-isostable reduction and control of entrained oscilla-
tions

In order to accommodate large magnitude inputs associated with
the nominal 24-hour light-dark cycle, the control strategy from Sec-
tion 10.1 applied the phase-isostable reduction approach to consider
the entrained orbit itself. Wilson (2021) employs an alternative strat-
egy, using the adaptive phase-isostable reduction strategy to first obtain
an accurate reduced order model and subsequently treating the light-
dark cycle as an input. Once again letting 𝑢nom(𝑡𝑠) be a nominal light-
dark cycle and 𝑢(𝑡) be a control input, the objective is to identify
a control input 𝑢tot (𝑡) = 𝑢nom(𝑡𝑠 + 𝛥𝑡𝑠) + 𝑢(𝑡) that minimizes  =
𝑡0+𝑇𝑓
𝑡0

𝑢2(𝑡)𝑑𝑡 subject to the end point constraint 𝑥(𝑡0+𝑇𝑓 ) = 𝑥𝛾ent (𝑡0+𝛥𝑡𝑠)
nd the input constraint 𝑢min ≤ 𝑢nom(𝑡𝑠+𝛥𝑡𝑠)+𝑢(𝑡) ≤ 𝑢max. In other words,
ollowing a shift in the external time 𝛥𝑡𝑠, the goal is to find a minimal
nergy input to drive the state to the new fully entrained solution after
𝑓 time units.

Using a model of 3000 coupled SCN oscillators described by Eqs. (B.3
nd (B.4), this optimal control problem is considered by first trans-
orming to an adaptive phase-isostable model of the form (A.12).
ltimately, this strategy results in a two-dimensional representation of

he 3000 oscillator model for which the optimal control problem can
e formulated and solved using a calculus of variations approach to
inimize the cost functional. Using this approach, recovery times of

ess than 24 h can be achieved in many cases.
As illustrated in Wilson (2021), the adaptive phase-isostable reduc-

ion yields solutions that work well when applied to the full order
odel. Note that this optimal control problem can also be formulated

nd solved using a first order accurate phase-isostable reduced model of
he form (A.4). However, when using the first order accurate reduction,
he resulting optimal inputs do not work when applied to the full
rder model. Additionally, an interesting result was observed when
onsidering large magnitude time advances and delays; the optimal
nputs initially desynchronize the oscillators and then resynchronize
hem with the target phase of oscillation. These results are highlighted
n Fig. 13 for a representative time shift of 𝛥𝑡𝑠 = +10 hours. Note
hat the control objective did not explicitly consider relative degree
ynchronization of the oscillators within the population. Nevertheless,
his phenomenon was observed for both large magnitude time advances
nd time delays. It would be of interest to investigate if this is a
ommon feature when considering aggregate oscillations of a large
opulation of oscillators, i.e, if an initial desynchronizing impulse can
llow for more rapid phase shifts in general models.

0.3. Using the Ott–Antenson ansatz to investigate recovery from circadian
isalignment

The Ott–Antenson ansatz, as discussed in Section 3.2 can also ac-
ommodate sinusoidal external forcing in the reduction from an infinite
opulation of oscillators to a single complex-valued ordinary differ-
ntial equation. In contrast to phase–amplitude-based methods, which
equire relatively fast decay of the truncated amplitude coordinates, the
tt–Antenson approach yields an exact reduction for the behavior on
n invariant manifold. As such, it can provide highly accurate results
ven when very high amplitude inputs are used making it particularly
ell suited to study bifurcations that emerge using the low-order

ystem. This approach is applied in Lu, Klein-Cardeña, Lee, Antonsen,
irvan, and Ott (2016) to investigate the sinusoidally forced Kuramoto
odel using model parameters chosen to represent the behavior of a

arge population of oscillators from the suprachiasmatic nucleus. In
he context of jet-lag recovery, the authors attribute the commonly
bserved east–west asymmetry in jet-lag recovery times to the presence
f a saddle-type fixed point that has a larger influence on the dynamics

hen the time shifts are larger.
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Fig. 12. A population of 3000 coupled SCN oscillators is reduced to a phase-isostable representation of the form (65) with two complex-conjugate isostable coordinates; the goal
is to drive these isostable coordinates near zero as quickly as possible following a shift in the external time by 𝛥𝑡𝑠 hours, thereby reducing the time required to reentrain to the
new time zone. A Hamilton–Jacobi–Bellman approach is used to solve the minimal-time-to-reach problem by minimizing the cost functional given by Eq. (66). The control input
𝑢(𝑡) represents the intensity of an external light source. Panel A shows the value function for initial conditions with 𝑡𝑠 = 0. Panel B shows the resulting optimal control input in
blue for recovery from a 𝛥𝑡𝑠 = 12 hour time shift. This control formulation results in a bang–bang type controller. The red trace shows the nominal uncontrolled light-dark cycle.
Panel C shows the associated recovery of the mean field coupling parameter. The dashed line associated with the fully entrained solution is shown for reference. Note that in the
uncontrolled case, the state eventually reaches the fully entrained orbit because of the nominal 24-hour light-dark cycle. Panel D shows the recovery time for various shifts in
external time using the optimal control (blue lines) and for the uncontrolled recovery (red lines). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Source: This figure is adapted from results originally presented in Wilson (2020a).
Fig. 13. An optimal control problem is formulated using the adaptive phase-isostable-reduced model of the form (A.12) and solved for a 𝛥𝑡𝑠 = +10 hour shift in the external time.
Colored lines in panel A show individual traces of 𝑑(𝑡), the variable that contributes to the mean field coupling. The solid black line shows the average value in the population,
with the dashed line corresponding to a solution that is fully entrained to the new time zone. Under the application of the optimal input shown in panel C, the preliminary
large magnitude pulse initially desynchronizes the individual oscillators, as can be seen in the raster plot from panel B and from the individual traces in panel A. A second large
magnitude pulse resynchronizes the oscillators with the appropriate phase. This desynchronize-then-resynchronize strategy is not mandated by the optimal control strategy, but it
occurs for many choices of 𝛥𝑡𝑠. It would be of further interest to see if this represents a common mechanism for rapid phase shifting in coupled populations of oscillators.
Source: This figure is adapted from results originally presented in Wilson (2021).
10.4. Optimal waveforms for entrainment and reentrainment

Phase-based methods have been widely used to approach problems
that consider entrainment to an exogenous input. For instance, Pyra-
gas et al. (2018), Tanaka (2014) and Zlotnik and Li (2012) consider
the problem of designing inputs that are optimal relative to various
performance metrics in order to entrain an oscillator to a desired fre-
quency. From an implementation perspective, these strategies generally
leverage phase difference coupling strategies discussed in Section 3.1 in
order design an appropriate coupling function to achieve entrainment.
Provided that inter-oscillator coupling is negligible relative to the
entraining stimulus, such strategies can readily accommodate larger
populations. Similar strategies were considered in Wilson et al. (2015)
to design optimal inputs for entrainment of heterogeneous oscillator
populations in the presence of noise.
16
A variety of problems that consider reentrainment, for instance,
following a sudden shift in the timing of the applied stimulus, can also
be formulated using phase-based methods. Such an approach was taken
in Zlotnik, Chen, Kiss, Tanaka, and Li (2013) where the optimization
strategy explicitly considers the rate at which entrainment is achieved.
Related strategies were applied in Takata, Kato, and Nakao (2021)
which proposes the use of an amplitude feedback term in conjunction
with the design of optimal inputs for entrainment in order to yield
faster decay rates of the transient solutions and hasten reentrainment.

11. Practical considerations for experimental implementation of
control algorithms

The majority of the control techniques discussed in this review have
only been developed and tested in silico. While such simulations are a
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necessary first step to demonstrate proof of concept, it is necessary to
keep in mind practical issues pertaining to implementation in living
systems. Here we discuss critical assumptions required for implemen-
tations of each of the control algorithms discussed in previous sections,
focusing on potential issues that would need to be addressed in the
transition from computer simulations to experimental illustrations.

11.1. General phase reduction techniques

Phase-based reduction techniques provide a foundation on which
the many of the control algorithms discussed in this work are based,
including those highlighted in Sections 5, 6, 7, 9, and 10. Such methods
consider dynamical behavior in reference to a limit cycle which may
be difficult to detect in experimental applications, especially in highly
noisy systems. Provided a reference limit cycle can be identified, the
direct method (Glass & Mackey, 1988; Netoff et al., 2012; Winfree,
2001) has been successfully used in many applications to measure the
phase response curves necessary to represent dynamical behavior in
terms of a reduced order model of the form (8).

11.2. General phase-isostable-based reduction techniques

Standard phase reduction strategies can be augmented with isostable
coordinates that capture amplitude-based effects. This coordinate sys-
tem was used for the applications discussed in Sections 9.1, 9.2, 9.3,
10.1, and 10.2. Implementation of these methods requires the inference
of isostable response curves that comprise Eq. (A.4). The key challenge
here is that isostable coordinates encode for the transient behavior.
As such, it is necessary to be able to infer this information during
the relaxation to the limit cycle. Strategies akin to the direct method
have been proposed in Wilson and Ermentrout (2018b) and Wilson
and Ermentrout (2019a) which apply a pulse perturbation at a known
phase, consider either the oscillation amplitude of an observable or
the change in the interspike interval during the relaxation back to
the limit cycle, use this information to provide a pointwise estimate
of the isostable response curve for that single phase, and repeat for
different initial phases. A related approach proposed in Wilson (2020a)
combines a delayed embedding strategy with a least-squares fitting
approach to infer phase-isostable-based reduced order models for sys-
tems with multiple isostable coordinates. Because isostable coordinates
represent level sets of the slowest decaying eigenmodes of the Koopman
operator (Budišić, Mohr, & Mezić, 2012; Mezić, 2019), it is likely that
dynamic mode decomposition algorithms (Kutz, Brunton, Brunton, &
Proctor, 2016; Schmid, 2010; Tu, Rowley, Luchtenberg, Brunton, &
Kutz, 2014) could be adapted for phase-isostable-based reduced order
models in a data-driven setting.

11.3. The role of heterogeneity

In experimental settings, model-based control frameworks must
often consider heterogeneity. As such, experimental implementation
of a given control strategy generally requires an initial model iden-
tification step (for example, to measure phase response curves and
isostable response curves). Note that phase response curves taken from
individual neurons within the same brain region can exhibit a large
amount of heterogeneity (Ota, Omori, Watanabe, Miyakawa, Okada, &
Aonishi, 2011; Wang, Musharoff, Canavier, & Gasparini, 2013). When
considering control of populations of neurons, it can be necessary to ex-
plicitly consider the heterogeneity within the population. Wilson et al.
(2015) and Wilson and Moehlis (2014a) account for heterogeneity by
considering an envelope within which phase response curves might fall
rather than any single phase response curve. Alternatively, larger pop-
ulations can be analyzed in terms of their collective behaviors (Kawa-
mura, Nakao, Arai, Kori, & Kuramoto, 2008; Ko & Ermentrout, 2009;
Levnajić & Pikovsky, 2010), eliminating the need to consider hetero-
geneity between individual neurons. Of course, heterogeneity between
17

populations would still need to be considered.
11.4. Model independent control strategies

Model independent control strategies, such as those discussed in
Section 4 are generally the easiest to implement in experimental set-
tings. Indeed, the adaptive deep brain stimulation strategy from Sec-
tion 4.1 has already yielded promising results in multiple human
trials (Little, et al., 2013; Meidahl, et al., 2017; Priori et al., 2013;
Rosa, et al., 2015). The power of model independent control strategies
comes from the fact that no model identification is needed. Provided
a useful observable (e.g., LFP power, accelerometer data from patient
tremor rhythm, etc.) can be identified, the desired control algorithm
can be readily implemented. The lack of an underlying model does
come with drawbacks, however. Many of these control algorithms come
with parameters that must be tuned in an ad hoc manner, and it can be
difficult to truly understand the mechanisms underlying the changes
produced by the controllers.

11.5. Chaotic desynchronization and cluster control

Considering the chaotic desynchronization strategies discussed in
Section 5, experimental implementation would require the measure-
ment of a representative set of phase response curves associated with
a population of pathologically synchronized oscillators. While this ap-
proach does not explicitly account for heterogeneity among neurons,
simulations from Wilson and Moehlis (2014c) and Wilson and Moehlis
(2014b) illustrated that such heterogeneity generally increases the rate
of desynchronization. Accurate characterization of clustering using the
methods discussed in Sections 6.1–6.3 and 6.5 is contingent on the
ability to identify phase response curves for a population of oscilla-
tors. Alternatively, the coordinate reset strategy from Section 6.4 uses
multiple electrodes each applying different inputs to achieve clustering.
This control strategy does not necessarily require an underlying model,
but rather, requires the identification of an input that can effectively
modulate the behavior of each subpopulation.

11.6. Control of phase distributions

Large populations of neurons can often be represented by a proba-
bility distribution with dynamics that follow a nonlinear Fokker–Planck
equation. Rather than focusing on the behavior of individual neurons,
it may be simpler to focus on controlling the temporal evolution of the
probability distribution itself. In an experimental setting, it would be
necessary to find a meaningful mapping between a given probability
distribution and the observable measurements. For example, the control
algorithm discussed in Section 7 may be difficult to implement because
it requires knowledge of the probability distribution at all times and
such a measurement would be difficult to infer from data. Phase-
triggered approaches (such the one proposed in Wilson & Moehlis,
2016b) that attempt to relate the phase of a probability distribution to
a single observable and accordingly modulate the control input may be
more feasible. The open loop control strategies such as those considered
in Sections 9.2 and 9.3 would obviate the need for real-time measure-
ment of outputs, but these come with their own drawbacks (i.e., the
requirement that undesired (resp., desired) behavior to be suppressed
(resp., enhanced) is associated with weakly stable or unstable fixed
points).

11.7. Phase randomization

The control algorithms discussed in Section 8 suggest driving a
population of synchronized oscillators to a phaseless set using a pre-
computed stimulus where they can subsequently be desynchronized by
inherent noise. The specific implementation requires full knowledge of
the underlying model equations and would be computationally difficult
to implement in a model neuron with dimension larger than 3. These

issues alone would likely preclude the computation of energy optimal
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phase randomizing inputs in experimental settings. Nonetheless these
results provide proof of concept that targeting either a phaseless set,
or a location in phase space where the gradient of the isochrons is
large could be a useful objective when considering problems where
eliminating synchronization is important. In an experimental setting,
rather than computing optimal phase randomizing inputs it may be
more feasible to find the required inputs using either trial-and-error
or machine learning approaches.

11.8. Open loop versus closed loop methods

Open loop control techniques can be attractive in neurological ap-
plications when real-time sensing is difficult. While open loop methods
will generally be less efficient than their closed loop counterparts, they
are usually much easier to implement, especially in situations where
it is difficult to obtain an accurate dynamical model that relates the
inputs to the outputs. The techniques from Section 9 consider open
loop control problems for modifying the stability of either a weakly
stable periodic orbit weakly stable fixed point. Both of these strategies
use phase-based reduction methods that come with the usual caveats
discussed in Sections 11.1 and 11.2.

12. Conclusions and future outlook

The dynamical equations describing large populations of oscillatory,
conductance-based neurons are usually very high dimensional, non-
negligibly nonlinear, and capable of displaying a wide variety complex
behaviors. As such, a diverse array of control and analysis techniques
have been developed to solve control problems involving populations of
neural oscillators. This review article discusses a collection of control
problems and techniques for applications involving oscillatory neural
populations. This review is far from comprehensive, however. Other
notable approaches to controlling populations of neurons include Ching
and Ritt (2013), Ehrens, Sritharan, and Sarma (2015), Feng, Greenwald,
Rabitz, Shea-Brown, and Kosut (2007), Feng, Shea-Brown, Greenwald,
Kosut, and Rabitz (2007), Kiss, Rusin, Kori, and Hudson (2007), Schiff
(2010) and Weerasinghe, Duchet, Bick, and Bogacz (2021); see also Ritt
and Ching (2015), Schiff (2012) and Tass (2007).

Due to the high dimensionality of the underlying dynamical equa-
tions, model order reduction is often an imperative first step for math-
ematical analysis and control design. Many of the applications con-
sidered in this review article use phase-based reduction strategies to
represent the model equations in a more analytically tractable form.
In many experimental neural control applications, however, robust
oscillations may not be present or may be difficult to detect. Moreover,
the evolution equations and/or the required response curves for the
algorithms to work may be challenging to obtain experimentally. And,
as is always the case in control theory, the robustness of control
algorithms to noise and heterogeneity is often not assured.

Nonetheless, computational studies show that the algorithms pre-
sented in this review hold great promise for controlling neural oscillator
populations with a variety of control objectives. Our hope is that these
successes will motivate more research on how to implement them in ex-
perimental and clinical studies, opening the door to more effective and
more efficient treatments for Parkinson’s disease and other neurological
disorders.
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Appendix A. Model order reduction techniques using phase and
isostable coordinates

When considering oscillatory dynamics, phase reduction is one
strategy that is often used to understand complex emergent patterns
in weakly perturbed oscillators. More recently, a collection of phase–
amplitude-based coordinate systems have also been proposed (Castejón
et al., 2013; Diekman & Bose, 2016; Letson & Rubin, 2020; Shirasaka
et al., 2017; Wedgwood et al., 2013; Wilson & Ermentrout, 2018b) that
incorporate information about the transient dynamics during the decay
toward the limit cycle.

Here, we provide a review of recent phase–amplitude-coordinate-
based reduction strategies that are also considered in the examples in
this review article. This review emphasizes the isostable coordinate
framework (Mauroy, Mezić, & Moehlis, 2013; Wilson & Moehlis, 2016a)
which encodes for the level sets of the slowest decaying eigenmodes
of the Koopman operator (Budišić et al., 2012; Mezić, 2019). Below,
we explicitly highlight which methods are used in the applications
discussed in detail in Sections 9–10.

A.1. Isostable coordinates to encode for amplitude based effects

Isostable coordinates are used to characterize amplitude effects in the
model order reduction strategies described in Sections 9.1, 9.2, 9.3, 10.1,
nd 10.2. Standard phase reduction techniques (8) implicitly assume
hat the input is sufficiently weak and that the unperturbed relaxation
o the limit cycle is fast enough so that the state remains close to the
nderlying limit cycle at all times. This restriction is often prohibitive
n applications where large magnitude inputs are required to achieve

desired control objective. In these situations, it becomes necessary
o consider a set of amplitude coordinates that represent the dynamics
ransverse to the nominal limit cycle.

Different amplitude coordinate frameworks have been proposed in
ecent years (Castejón et al., 2013; Diekman & Bose, 2016; Letson &
ubin, 2020; Shirasaka et al., 2017; Wedgwood et al., 2013; Wilson
Ermentrout, 2018b), each having established practical utility in a

ariety of applications. Here, we focus on the isostable coordinate
ramework (Mauroy et al., 2013; Wilson & Ermentrout, 2018a; Wilson

Moehlis, 2016a). Isostable coordinates are closely related to the
oopman operator (Budišić et al., 2012; Mezić, 2019), which can be
sed to represent a general nonlinear dynamical system as a linear but
otentially infinite dimensional operator. It is often challenging to iden-
ify a finite dimensional representation of the full Koopman operator
nd as such, Koopman eigenfunctions are often used to characterize
he underlying dynamics. The isostable coordinate framework considers
evel sets of the slowest decaying Koopman eigenfunctions.

A constructive definition for slowest decaying isostable coordinate
an be obtained by first considering the dynamics near the linearized
eriodic orbit. To this end, consider a general dynamical system of the
orm (1) and let 𝛥𝑥 = 𝑥 − 𝑥𝛾 (𝜃) where 𝑥𝛾 (𝜃) is the intersection of the
eriodic orbit and the 𝛤𝜃 isochron. Linearization with respect to the
eriodic orbit yields to leading order
𝑑𝛥𝑥
𝑑𝑡

= 𝐷𝐹 (𝜃)𝛥𝑥, (A.1)

here 𝐷𝐹 (𝜃) is the Jacobian evaluated at 𝑥𝛾 (𝜃) with 𝜃(𝑡) = 𝜔𝑡. Noting
hat Eq. (A.1) is periodic and linear time-varying, solutions can be
haracterized according to Floquet theory as 𝛥𝑥(𝑇 ) = 𝛶𝛥𝑥(0) where 𝛶
s the fundamental matrix for initial conditions for which 𝜃(𝑥(0)) ≈ 0.
et 𝑤𝑗 , 𝑣𝑗 , and 𝜆𝑗 correspond to left eigenvectors, right eigenvectors,
nd associated eigenvalues, respectively, of 𝛶 . Additionally, let 𝜅𝑗 =
og(𝜆𝑗 )∕𝑇 denote the Floquet exponent associated with the Floquet
ultiplier 𝜆𝑗 . Finally, take 𝜅𝑛 = 0, corresponding to perturbations in

he direction of the periodic orbit and sort the other Floquet exponents
o that |Re(𝜅𝑘)| ≤ |Re(𝜅𝑘+1)|; assuming that 𝜅1 is unique, an associated
sostable coordinate can be defined according to

(𝑥) = lim
[

𝑤𝑇 (𝜂(𝑡𝑘 , 𝑥) − 𝑥𝛤 ) exp(−𝜅 𝑡𝑘 )
]

, (A.2)
1 𝑘→∞ 1 𝛤 0 1 𝛤
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where 𝑡𝑘𝛤 is the time of the 𝑘th transversal of the 𝛤0 isochron, 𝜂(𝑡, 𝑥)
is the flow that maps an initial condition 𝑥(0) to 𝑥(𝑡), and 𝑥𝛤0 is the
intersection of the periodic orbit and the 𝛤0 level set. While phase
coordinates as defined by isochrons encode for the infinite time be-
havior, the isostable coordinate as defined by (A.2) gives a sense
of distance from the periodic orbit. Isostable coordinates associated
with more rapidly decaying components of the solution can also be
defined, however, there is not always a constructive definition avail-
able (Kvalheim & Revzen, 2021). Instead they can be defined implicitly
as level sets of their associated Koopman eigenfunctions. Computation
of approximations of these higher order eigenfunctions is discussed
in Wilson (2020c). Among the advantages of using this coordinate basis
is that isostable coordinates decay according to 𝑑𝜓𝑗∕𝑑𝑡 = 𝜅𝑗𝜓𝑗 in the
entire basin of attraction of the limit cycle; the utility of unperturbed
decay becomes clearer when considering phase-isostable-based reduced
order equations as discussed in the next section.

A.2. Phase-isostable-based reduced order models

Phase-isostable reduction, as described here, is used in the development
of the control strategy discussed in Section 10.1. From the perspective
of control theory, the central utility of isostable coordinates is in
the augmentation of standard phase-based methodologies in order to
obtain a better approximation of the dynamics when the applied input
drives the state far from the nominal limit cycle. Indeed, starting from
the perturbed system of the form (4), one can transform to isostable
coordinates:
𝑑𝜓𝑗
𝑑𝑡

=
𝜕𝜓𝑗
𝜕𝑥

⋅
𝑑𝑥
𝑑𝑡

=
𝜕𝜓𝑗
𝜕𝑥

⋅ (𝐹 (𝑥) + 𝑈 (𝑥, 𝑡))

= 𝜅𝑗𝜓𝑗 +
𝜕𝜓𝑗
𝜕𝑥

⋅ 𝑈 (𝑥, 𝑡). (A.3)

Above, the third line is obtained by noting that 𝑑𝜓𝑗∕𝑑𝑡 = 𝜅𝑗𝜓𝑗 in the
absence of input. Computing 𝜕𝜓𝑗∕𝜕𝑥 directly on the periodic orbit and
combining with the standard phase reduction yields
𝑑𝜃
𝑑𝑡

= 𝜔 +𝑍(𝜃) ⋅ 𝑈 (𝑥𝛾 , 𝑡),

𝑑𝜓𝑗
𝑑𝑡

= 𝜅𝑗𝜓𝑗 + 𝐼𝑗 (𝜃) ⋅ 𝑈 (𝑥𝛾 , 𝑡), 𝑗 = 1,… , 𝛽, (A.4)

where 𝐼𝑗 (𝜃) =
𝜕𝜓𝑗
𝜕𝑥

|

|

|𝑥𝛾 (𝜃)
. Here a subset of the 𝛽 ≤ 𝑛 − 1 most slowly de-

caying isostable coordinates are considered, and the rest are truncated.
Note that because 𝑍(𝜃) and 𝐼(𝜃) are computed as the gradient of the
phase and isostable coordinates, respectively, evaluated on the periodic
orbit, the phase-isostable formulation from (A.4) is identical to Floquet
coordinate formulations that are often used to analyze periodic linear
time-varying equations (Jordan & Smith, 2007). Once again, when the
input can be written as a rank-1 perturbation so that as 𝑈 (𝑥𝛾 , 𝑡) = 𝛿𝑢(𝑡)
where 𝛿 ∈ R𝑛, it is often convenient to rewrite Eq. (A.4) as
𝑑𝜃
𝑑𝑡

= 𝜔 + 𝑧(𝜃)𝑢(𝑡),

𝑑𝜓𝑗
𝑑𝑡

= 𝜅𝑗𝜓𝑗 + 𝑖𝑗 (𝜃)𝑢(𝑡), 𝑗 = 1,… , 𝛽, (A.5)

where 𝑧(𝜃) = 𝑍(𝜃) ⋅ 𝛿 and 𝑖𝑗 (𝜃) = 𝐼𝑗 (𝜃) ⋅ 𝛿.
Recall that standard phase reduction techniques tend to break down

when the state travels too far from the limit cycle. As such, information
about the isostable coordinates can be used to limit the distance from
the periodic orbit and consequently extend the applicability of the
phase reduced equations. Indeed, recent works (Monga & Moehlis,
2019a; Takata et al., 2021) implement various optimal control algo-
rithms on phase-isostable-based reduced order equations in exactly this
manner by penalizing the magnitude of the isostable coordinates in the
associated cost functional. Eq. (A.4) can be useful in some situations,
but is still relatively limited in terms of the amplitude of the inputs that
it can accommodate. In cases where even larger magnitude inputs are
necessary, additional modifications described in the following sections
can be implemented.
19
A.2.1. Higher order phase and isostable response curves
Computation of phase-isostable reduced order equations to higher orders

of accuracy is an essential starting point for the applications discussed in
Sections 9.1, 9.2, and 9.3. The standard phase reduction (6) and the
augmented phase-isostable reduction (A.4) evaluate gradients of their
reduced order coordinates on the periodic orbit. In order to obtain
better estimates that retain accuracy as the state is driven far from
the periodic orbit, it is convenient to consider a representation in
terms of the reduced order isostable coordinates. Following the strategy
presented in Wilson (2020c), one can use Eq. (4) as a starting point and
change to phase and isostable coordinates:
𝑑𝜃
𝑑𝑡

= 𝜔 +(𝜃, 𝜓1,… , 𝜓𝛽 ) ⋅ 𝑈 (𝑥, 𝑡),

𝑑𝜓𝑗
𝑑𝑡

= 𝜅𝑗𝜓𝑗 + 𝑗 (𝜃, 𝜓1,… , 𝜓𝛽 ) ⋅ 𝑈 (𝑥, 𝑡), 𝑗 = 1,… , 𝛽, (A.6)

where  ≡ 𝜕𝜃
𝜕𝑥 and 𝑗 ≡ 𝜕𝜓𝑗

𝜕𝑥 are not evaluated at 𝑥𝛾 (𝜃), but rather at
𝑥(𝜃, 𝜓1,… , 𝜓𝛽 ). Once again, the rapidly decaying isostable coordinates
𝜓𝛽+1,… , 𝜓𝑛−1 are assumed to be zero and truncated, thereby yielding a
reduced order set of equations. The constraint that the state 𝑥 remain
close to 𝑥𝛾 is lifted in the formulation (A.6); as such, the state must also
be represented in terms of the reduced order coordinates:

𝑥 ≈ 𝑥𝛾 (𝜃) + (𝜃, 𝜓1,… , 𝜓𝛽 ), (A.7)

where  gives the deviation between the current state and 𝑥𝛾 (𝜃).
Asymptotically expanding ,  and each 𝑗 in a basis of the isostable
coordinates yields

(𝜃, 𝜓1,… , 𝜓𝛽 ) ≈
𝛽
∑

𝑘=1

[

𝜓𝑘𝑔
𝑘(𝜃)

]

+
𝛽
∑

𝑗=1

𝑗
∑

𝑘=1

[

𝜓𝑗𝜓𝑘𝑔
𝑗𝑘(𝜃)

]

+… ,

(𝜃, 𝜓1,… , 𝜓𝛽 ) ≈ 𝑍(𝜃) +
𝛽
∑

𝑘=1

[

𝜓𝑘𝑍
𝑘(𝜃)

]

+
𝛽
∑

𝑗=1

𝑗
∑

𝑘=1

[

𝜓𝑗𝜓𝑘𝑍
𝑗𝑘(𝜃)

]

+… ,

𝑛(𝜃, 𝜓1,… , 𝜓𝛽 ) ≈ 𝐼𝑛(𝜃) +
𝛽
∑

𝑘=1

[

𝜓𝑘𝐼
𝑘
𝑛 (𝜃)

]

+
𝛽
∑

𝑗=1

𝑗
∑

𝑘=1

[

𝜓𝑗𝜓𝑘𝐼
𝑗𝑘
𝑛 (𝜃)

]

+… ,

(A.8)

for 𝑛 = 1,… , 𝛽. Above, 𝑔𝑘(𝜃) is a Floquet eigenfunction of the linearized
Eq. (A.1) associated with the Floquet exponent 𝜅𝑘. Terms of the form
𝑔𝑗𝑘 provide higher order corrections from the asymptotic expansion
of  in the basis of isostable coordinates. Likewise, 𝑍(𝜃) (resp., 𝐼𝑗 (𝜃))
is the phase response curve (resp., isostable response curve), while
terms of the form 𝑍𝑘, 𝑍𝑗𝑘, . . . (resp., 𝐼𝑘𝑗 , 𝐼 𝑗𝑘𝑗 , … ) provide higher order
corrections. By computing the required terms up to a desired order
of accuracy in the expansion in the isostable coordinates, a phase-
isostable-based reduced order model can be obtained. Indeed, Fig. 14
illustrates the accuracy of isochrons approximated from Eq. (A.6) to the
indicated order of accuracy when considering a dynamical model with
oscillations that emerge due to a Hopf bifurcation. Details about the
computation of the necessary terms of the higher accuracy expansions
are discussed in Wilson (2020c).

A.3. Adaptive phase-isostable reduction

The adaptive phase-isostable reduction is used as a starting point to pose
and solve the optimal control problem discussed in Section 10.2. Asymptotic
expansion in a basis of isostable coordinates provides one method of ob-
taining more accurate characterizations of the reduced order dynamics.
However, diminishing returns are typically observed at higher orders
of accuracy, and these reduction strategies still break down when the
underlying state travels too far from the underlying limit cycle. Recent
work (Wilson, 2021, 2022) considers a continuous family of limit cycles
that result when using different parameter sets. The strategy summa-
rized below actively chooses an appropriate nominal parameter set that
keeps the state close to the underlying limit cycle so that truncation
errors can be mitigated, resulting in highly accurate reduced order
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Fig. 14. For a 2-dimensional model with oscillations that emerge due to a Hopf bifurcation, the necessary terms of the phase-isostable formulation (A.6) are computed to the
indicated order of accuracy. Isochrons are subsequently inferred as level sets of the phase. Colored lines represent individual isochrons and black lines show the true values of the
isochrons computed directly according to the definition (2). The approximation becomes better as higher orders of accuracy are used. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Source: This figure is adapted from results originally presented in Wilson (2020c).
models. Similar strategies were considered in Kurebayashi, Shirasaka,
and Nakao (2013) and Park and Ermentrout (2016), which limited the
analysis to dynamical systems with slowly varying parameters.

Implementation of the adaptive phase-isostable reduction requires
the explicit consideration of a parameter set 𝑝 ∈ R𝑚. As such, we will
rewrite the perturbed system from Eq. (4) as
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥, 𝑝0) + 𝑈 (𝑥, 𝑡). (A.9)

Here, Eqs. (4) and (A.9) are identical, with the only difference being
in the explicit consideration of a nominal parameter set 𝑝0. Suppose
that in some allowable range of parameters 𝑝 ∈ 𝑃 , the 𝑝-limit cycle
𝑥𝛾 (𝜃, 𝑝) emerges in the absence of input. Here, we invoke the notion of
a generalized phase 𝜃(𝑥, 𝑝) and a set of generalized isostable coordinates
𝜓1(𝑥, 𝑝),… , 𝜓𝛽 (𝑥, 𝑝), each associated with both the state and the 𝑝-limit
cycle. To proceed, consider a rewritten version of Eq. (A.9)
𝑑𝑥
𝑑𝑡

= 𝐹 (𝑥, 𝑝) + 𝑈𝑒(𝑡, 𝑝, 𝑥), (A.10)

with the extended input

𝑈𝑒(𝑡, 𝑝, 𝑥) = 𝑈 (𝑥, 𝑡) + 𝐹 (𝑥, 𝑝0) − 𝐹 (𝑥, 𝑝). (A.11)

One can verify that Eqs. (A.9) and (A.10) are indeed identical. Nonethe-
less, the term 𝐹 (𝑥, 𝑝) gives the dynamics of the underlying system
using the parameter set 𝑝, and 𝑈𝑒 captures both the externally applied
input and the mismatch in the unperturbed dynamics between the two
parameter sets. Supposing that 𝑥𝛾 (𝜃, 𝑝) is continuously differentiable
with respect to both 𝜃 and 𝑝 and that 𝜃(𝑥, 𝑝) and each 𝜓𝑗 (𝑥, 𝑝) are
appropriately defined so that they are continuously differentiable with
respect to 𝑥 and 𝑝, one can consider 𝑝 to be a free variable yielding the
transformation
𝑑
𝑑𝑡
𝜃(𝑥, 𝑝) = 𝜕𝜃

𝜕𝑥
⋅
𝑑𝑥
𝑑𝑡

+ 𝜕𝜃
𝜕𝑝

⋅
𝑑𝑝
𝑑𝑡
,

𝑑
𝑑𝑡
𝜓𝑗 (𝑥, 𝑝) =

𝜕𝜓𝑗
𝜕𝑥

⋅
𝑑𝑥
𝑑𝑡

+
𝜕𝜓𝑗
𝜕𝑝

⋅
𝑑𝑝
𝑑𝑡
, 𝑗 = 1,… , 𝛽,

𝑑𝑝
𝑑𝑡

= 𝐺𝑝(𝑝, 𝜃, 𝜓1,… , 𝜓𝛽 ), (A.12)

where 𝐺𝑝 is an update function for 𝑝 that will be discussed momentar-
ily. Notice the similarities between Eq. (A.12) and both (5) and (A.3);
Eqs. (5) and (A.3) assume a constant parameter set and as such, the
terms 𝜕𝜃

𝜕𝑥 ⋅ 𝑑𝑥𝑑𝑡 and 𝜕𝜓𝑗
𝜕𝑥 ⋅ 𝑑𝑥𝑑𝑡 are identical to the terms from Eqs. (5) and

(A.3). As shown in Wilson (2022), by considering the remaining terms
and continuing to simplify (A.12), to leading order one can write

𝑑𝜃
𝑑𝑡

= 𝜔(𝑝) +𝑍(𝜃, 𝑝) ⋅ 𝑈𝑒(𝑡, 𝑝, 𝑥) +𝐷(𝜃, 𝑝) ⋅
𝑑𝑝
𝑑𝑡
,

𝑑𝜓𝑗 = 𝜅 (𝑝)𝜓 + 𝐼 (𝜃, 𝑝)𝑈 (𝑡, 𝑝, 𝑥) + 𝐸 (𝜃, 𝑝) ⋅
𝑑𝑝
, 𝑗 = 1,… , 𝛽,
20

𝑑𝑡 𝑗 𝑗 𝑗 𝑒 𝑗 𝑑𝑡
𝑑𝑝
𝑑𝑡

= 𝐺𝑝(𝑝, 𝜃, 𝜓1,… , 𝜓𝛽 ). (A.13)

Here, 𝜔(𝑝) and 𝜅𝑗 (𝑝) are natural frequencies and Floquet exponents
associated with the 𝑝-limit cycle, and 𝑍(𝜃, 𝑝) and each 𝐼𝑗 (𝜃, 𝑝) are given
by the gradients of 𝜃(𝑥, 𝑝) and 𝜓(𝑥, 𝑝) evaluated on the 𝑝-limit cycle.
Additionally, the 𝑖th component of 𝐷(𝜃, 𝑝) is identical to − 𝜕𝑥𝛾

𝜕𝑝𝑖
⋅ 𝑍(𝜃, 𝑝)

where 𝜕𝑥𝛾∕𝜕𝑝𝑖|𝜃0 ,𝑝 ≡ lim𝑎→0(𝑥𝛾 (𝜃0, 𝑝+𝑒𝑖𝑎)−𝑥𝛾 (𝜃0, 𝑝))∕𝑎, with 𝑒𝑖 being the
𝑖th component of the standard unit basis. Likewise, the 𝑖th component
of 𝐸𝑗 (𝜃, 𝑝) is given by − 𝜕𝑥𝛾

𝜕𝑝𝑖
⋅ 𝐼𝑗 (𝜃, 𝑝). Furthermore, to leading order

of accuracy in the non-truncated isostable coordinates, the state is
well-approximated given by

𝑥 ≈ 𝑥𝛾 (𝜃, 𝑝) +
𝛽
∑

𝑗=1
𝜓𝑗𝑔

𝑗 (𝜃, 𝑝), (A.14)

where 𝑔𝑗 (𝜃, 𝑝) is a Floquet eigenfunction associated with the 𝑝-limit
cycle.

Provided a function 𝐺𝑝 can be obtained that keeps each 𝜓𝑗 suf-
ficiently small, the truncation errors associated with neglecting the
higher order terms from the phase and isostable dynamics can be kept
negligibly small yielding a reduced order set of equations that is sub-
stantially more accurate than standard phase reduction strategies. This
general idea is highlighted in the schematic shown in Fig. 15. General
heuristics of the design of 𝐺𝑝 are discussed in Wilson (2022). For in-
stance, when only one non-truncated, real-valued isostable coordinate,
𝜓1, is required and 𝑝 ∈ R, one can often use

𝐺𝑝(𝑝, 𝜃, 𝜓1) = −𝛼𝜓1𝐸1(𝜃, 𝑝), (A.15)

where 𝛼 is a positive constant so that the isostable coordinate dynamics
from Eq. (A.13) become
𝑑𝜓1
𝑑𝑡

= (𝜅 − 𝛼𝐸2
1 (𝜃, 𝑝))𝜓1 + 𝐼1(𝜃, 𝑝)𝑈𝑒(𝑡, 𝑝, 𝑥). (A.16)

This choice of 𝐺𝑝 serves to drive the isostable coordinate to smaller
magnitude values with an effect that is proportional to the isostable co-
ordinate itself. Alternatively, in the special case that 𝐸1(𝜃, 𝑝) is bounded
away from zero, one can also choose

𝐺𝑝(𝑝, 𝜃, 𝜓1) = −
𝐼1(𝜃, 𝑝)𝑈𝑒(𝑡, 𝑝, 𝑥)

𝐸1(𝜃, 𝑝)
. (A.17)

Substituting the above relation into Eq. (A.13) the isostable dynamics
become 𝑑𝜓1∕𝑑𝑡 = 𝜅1(𝑝)𝜓1 and can ultimately be truncated, further
reducing the dimension of the reduction.

Appendix B. Models

In this appendix, we give details of the mathematical models con-
sidered in the main text.

Thalamic neuron model



Annual Reviews in Control xxx (xxxx) xxxD. Wilson and J. Moehlis
Fig. 15. An schematic depicting the adaptive reduction scheme. The left side shows two adjacent periodic orbits that emerge for two different parameter sets 𝑝1 and 𝑝2. The right
side shows an example trajectory. This trajectory starts closer to the blue orbit but gradually travels towards the red orbit. By converting phase and isostable coordinates from the
blue orbit to those of the red orbit at an appropriate time, the amplitude coordinate can be kept small, subsequently limiting errors induced by truncating higher order terms of
the phase-isostable reduction. The adaptive phase-isostable reduction implements this general idea in a continuous manner, i.e., by continuously updating the adaptive parameters
in order to keep the isostable coordinates small.
𝑛

The thalamic neuron model is given as

�̇� =
−𝐼𝐿 − 𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝑇 + 𝐼𝑏

𝐶𝑚
+ 𝑢(𝑡),

ℎ̇ =
ℎ∞ − ℎ
𝜏ℎ

,

�̇� =
𝑟∞ − 𝑟
𝜏𝑟

,

where

ℎ∞ = 1∕(1 + exp((𝑣 + 41)∕4)),

𝑟∞ = 1∕(1 + exp((𝑣 + 84)∕4)),

𝛼ℎ = 0.128 exp(−(𝑣 + 46)∕18),

𝛽ℎ = 4∕(1 + exp(−(𝑣 + 23)∕5)),

𝜏ℎ = 1∕(𝛼ℎ + 𝛽ℎ),

𝜏𝑟 = (28 + exp(−(𝑣 + 25)∕10.5)),

𝑚∞ = 1∕(1 + exp(−(𝑣 + 37)∕7)),

𝑝∞ = 1∕(1 + exp(−(𝑣 + 60)∕6.2)),

𝐼𝐿 = 𝑔𝐿(𝑣 − 𝑒𝐿),

𝐼𝑁𝑎 = 𝑔𝑁𝑎(𝑚∞
3)ℎ(𝑣 − 𝑒𝑁𝑎),

𝐼𝐾 = 𝑔𝐾 ((0.75(1 − ℎ))4)(𝑣 − 𝑒𝐾 ),

𝐼𝑇 = 𝑔𝑇 (𝑝2∞)𝑟(𝑣 − 𝑒𝑇 ),

𝐶𝑚 = 1, 𝑔𝐿 = 0.05, 𝑒𝐿 = −70, 𝑔𝑁𝑎 = 3, 𝑒𝑁𝑎 = 50,

𝑔𝐾 = 5, 𝑒𝐾 = −90, 𝑔𝑇 = 5, 𝑒𝑇 = 0, 𝐼𝑏 = 5.

In Section 5.1, we consider:

�̇�𝑖 = (−𝐼𝐿(𝑉𝑖) − 𝐼𝑁𝑎(𝑉𝑖, ℎ𝑖) − 𝐼𝐾 (𝑉𝑖, ℎ𝑖) − 𝐼𝑇 (𝑉𝑖, 𝑟𝑖)

+ 𝐼𝑆𝑀 + 1
𝑁

𝑁
∑

𝑖=1
𝛼𝑖𝑗 (𝑉𝑗 − 𝑉𝑖) + 𝑢(𝑡) + 𝜂𝑖(𝑡))∕𝐶,

ℎ̇𝑖 = (ℎ∞(𝑉𝑖) − ℎ𝑖)∕𝜏ℎ(𝑉𝑖), (B.1)
�̇�𝑖 = (𝑟∞(𝑉𝑖) − 𝑟𝑖)∕𝜏𝑟(𝑉𝑖), 𝑖 = 1,… , 𝑁.

Here we have augmented the voltage equation by additively including
electrotonic coupling (Johnston & Wu, 1995), DBS input, and Gaussian
white noise. Other coupling paradigms (e.g., synaptic coupling) could
also be implemented instead of electrotonic coupling. Here, 𝑁 is the
total number of neurons, 𝑉𝑖, ℎ𝑖, and 𝑟𝑖 are membrane voltage and gating
variables for neuron 𝑖, 𝛼 characterizes the coupling strength between
21

𝑖𝑗
electrotonically coupled neurons 𝑖 and 𝑗, with 𝛼𝑖𝑗 = 𝛼𝑗𝑖 and 𝛼𝑖𝑖 = 0 for
all 𝑖, 𝜂𝑖(𝑡) =

√

2𝐷 (0, 1) is the i.i.d. noise associated with each neuron,
assumed to be zero-mean Gaussian white noise with variance 2𝐷, and
𝑢(𝑡) = 𝐼(𝑡)∕𝐶 represents a common control input. In this equation 𝐼𝑆𝑀
represents the baseline current which we take to be 5𝜇A/cm2.

Hodgkin–Huxley neuron model
A model for a coupled population of Hodgkin–Huxley model neu-

rons is given below. Note, that each neuron from the population uses
the two-dimensional reduction proposed in Rinzel (1985)

�̇�𝑖 = 𝑓𝑉 (𝑉𝑖, 𝑛𝑖) +
1
𝑁

𝑛
∑

𝑖=1
𝛼𝑖𝑗 (𝑉𝑗 − 𝑉𝑖) + 𝑢(𝑡) + 𝜂𝑖(𝑡),

̇ 𝑖 = 𝑓𝑛(𝑉𝑖, 𝑛𝑖), (B.2)

for 𝑖 = 1,… , 𝑁 . Here, 𝑉𝑖 and 𝑛𝑖 are membrane voltage and gating
variables for neuron 𝑖, 𝛼𝑖𝑗 characterizes the coupling strength between
electrotonically coupled neurons 𝑖 and 𝑗, 𝜂𝑖(𝑡) ∈

√

2𝐷 (0, 1) is zero-
mean Gaussian white noise associated with each neuron with variance
2𝐷, 𝑢(𝑡) = 𝐼(𝑡)∕𝐶 represents a common control input in 𝜇𝐴∕𝜇𝐹 where
𝐶 = 1𝜇𝐹∕cm2 is the membrane capacitance and 𝐼(𝑡) is a DBS input
current. Auxiliary equations are given by:

𝑓𝑉 = (𝐼𝑏 − �̄�𝑁𝑎[𝑚∞(𝑉 )]3(0.8 − 𝑛)(𝑉 − 𝑉𝑁𝑎)

− �̄�𝐾𝑛4(𝑉 − 𝑉𝑘) − �̄�𝐿(𝑉 − 𝑉𝐿))∕𝐶,

𝑓𝑛 = 𝑎𝑛(𝑣)(1 − 𝑛) − 𝑏𝑛(𝑉 )𝑛.

Other functions and parameters for the reduced model are:

𝑚(𝑉 ) =
𝑎𝑚(𝑉 )

𝑎𝑚(𝑉 ) + 𝑏𝑚(𝑉 )
,

𝑎𝑚(𝑉 ) = 0.1(𝑉 + 40)∕(1 − exp(−(𝑉 + 40)∕10)),

𝑏𝑚(𝑉 ) = 4 exp(−(𝑉 + 65)∕18),

𝑎𝑛(𝑉 ) = 0.01(𝑉 + 55)∕(1 − exp(−(𝑉 + 55)∕10)),

𝑏𝑛(𝑉 ) = 0.125 exp(−(𝑉 + 65)∕80),

𝑉𝑁𝑎 = 50 mV, 𝑉𝐾 = −77 mV, 𝑉𝐿 = −54.4 mV,

�̄�𝑁𝑎 = 120 mS∕cm2, �̄�𝐾 = 36 ms∕cm2,

�̄�𝐿 = 0.3 mS∕cm2, 𝐼𝑏 = 10 μA∕cm2.

Here, �̄�𝑁𝑎, �̄�𝐾 , and �̄�𝐿 represent the conductances of the sodium,
potassium and leakage channels, respectively, and 𝑉𝑁𝑎, 𝑉𝐾 , and 𝑉𝐿 are
their respective reversal potentials. 𝐼𝑏, is a baseline current chosen to
ensure that the neuron is in an oscillatory (periodically spiking) regime.
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For this set of parameters, the natural period of oscillation for a single
neuron is 11.81 ms in the absence of noise and control input.

Coupled Oscillations of SCN Neurons
A model describing gene expression of 𝑁 coupled oscillators from

he suprachiasmatic nucleus is given below. This model is adapted
rom Gonze, Bernard, Waltermann, Kramer, and Herzel (2005):

�̇�𝑖 = ℎ1
𝐾𝑛

1
𝐾𝑛

1 + 𝑐𝑛𝑖
− ℎ2

𝑎𝑖
𝐾2 + 𝑎𝑖

+ ℎ𝑐
𝐾𝐹 (𝑡)

𝐾𝑐 +𝐾𝐹 (𝑡)

+ 𝑆𝑖
[

𝐿(𝑡𝑠) + 𝑢(𝑡)
]

+
√

2𝐷𝜂𝑖,

�̇�𝑖 = ℎ3𝑎𝑖 − ℎ4
𝑏𝑖

𝐾4 + 𝑏𝑖
,

�̇�𝑖 = ℎ5𝑏𝑖 − ℎ6
𝑐𝑖

𝐾6 + 𝑐𝑖
,

�̇�𝑖 = ℎ7𝑎𝑖 − ℎ8
𝑑𝑖

𝐾8 + 𝑑𝑖
, 𝑖 = 1,… , 𝑁,

�̇�𝑠 = 1,

(𝑡) = (1∕𝑁)
𝑁
∑

𝑗=1
𝑑𝑖(𝑡). (B.3)

bove, variables 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 represent the concentration of the mRNA
lock gene, the associated protein and the nuclear form of the protein,
espectively, for the 𝑖th neuron. 𝑑𝑖 represents the concentration of a
eurotransmitter that sets the coupling. Diffusion is assumed to occur
n fast enough time scales so that the average value 𝐹 (𝑡) can be used to
etermine the coupling. 𝐿(𝑡𝑠) ∈ S1 is the environmental time that sets
he nominal 24-hour light-dark cycle governed by

nom(𝑡𝑠) = 𝐿0

[

1
1 + exp(−𝜈(𝑡s − 6))

− 1
1 + exp(−𝜈(𝑡s − 18))

]

, (B.4)

where 𝐿0 is the nominal light intensity during daylight hours and 𝜈
sets the transition rate of the light intensity between day and night. A
control input 𝑢(𝑡) is applied identically to each oscillator and can be
used to implement a light exposure or avoidance strategy to promote
reentrainment after a sudden shift to the environmental time.

√

2𝐷𝜂𝑖
s an independent and identically distributed zero-mean white noise
rocess with intensity 𝐷. Nominal parameters are chosen so that the
nperturbed population settles to a near 24-hour periodic oscillation
n steady state. 𝑆𝑖 represents the sensitivity to light of neuron 𝑖 and
s used to incorporate heterogeneity into the model. Additional hetero-
eneity is incorporated by drawing ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, and ℎ6 from normal
istributions with a mean equal to the nominal parameter value. This
odel is used in the applications considered in Section 10. For a full
escription of the relevant model parameters, the reader is referred to
ither (Wilson, 2020a) or (Wilson, 2021).
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