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Abstract
A powerful technique for the analysis of nonlinear oscillators is the rigorous reduction to phase models, with a single variable
describing the phase of the oscillation with respect to some reference state. An analog to phase reduction has recently been
proposed for systems with a stable fixed point, and phase reduction for periodic orbits has recently been extended to take
into account transverse directions and higher-order terms. This tutorial gives a unified treatment of such phase reduction
techniques and illustrates their use through mathematical and biological examples. It also covers the use of phase reduction
for designing control algorithms which optimally change properties of the system, such as the phase of the oscillation. The
control techniques are illustrated for example neural and cardiac systems.

Keywords Phase reduction · Optimal control · Nonlinear oscillators · Control of biological systems

1 Introduction

Nonlinear oscillators—dynamical systems with stable peri-
odic orbits—arise in many systems of physical, technologi-
cal, and biological interest. Examples from biology include
pacemaker cells in the heart, the firing of action potentials in
neurons, and circadian rhythms.

A powerful classical technique for the analysis of periodic
orbits is the rigorous reduction to phase models, with a single
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variable describing the phase of the oscillation with respect
to some reference state. Through reduction to phase mod-
els, one can understand the dynamics of high-dimensional
and analytically intractable models in a more convenient
form (see, e.g., [2,33,43,53,117]), and design useful phase-
based control strategies (see, e.g., [15,18,48,69,75,76,95,96,
106,110,118]). There are also situations for which extensions
of phase reduction can improve the ability to understand
and control the dynamics of a system with a periodic orbit
[5,37,71,105,113].Moreover, a useful analog to phase reduc-
tion can be formulated for systems with a stable fixed point,
which allows novel control algorithms to be developed for
such systems [112].

This tutorial gives a unified treatment of phase reduc-
tion for nonlinear oscillators and for systems with a stable
fixed point and includes a discussion of recent develop-
ments,mathematical examples forwhich results can be found
analytically, and biological examples for which numerical
techniques must be employed. It also covers the use of phase
reduction for the design of control algorithms which opti-
mally change properties of the system, such as the phase of an
oscillation, with examples for controlling neural and cardiac
systems. Although by no means comprehensive, this tuto-
rial illustrates the exciting potential of phase reduction and
phase-based optimal control methods for biological applica-
tions, and it is hoped that it will provide a useful entry point
for the reader who wishes to explore such methods further.
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This tutorial is organized as follows. Section 2 describes
the standard phase reduction and phase response curves for
nonlinear oscillators and uses these to design energy-optimal
phase control and time-optimal control of a thalamic neuron.
Section 3 describes isostable reduction for systems with a
stable fixed point and a method for controlling cardiac alter-
nans based on this reduction. Section 4 covers an extension
of standard phase reduction called augmented phase reduc-
tion which includes the concept of isostable response curves
for nonlinear oscillators and applies this to energy-optimal
phase control; it also describes an extension to second-order
phase reduction. Section 5 discusses global isochrons and
isostables and includes a control scheme for steering a tra-
jectory from a stable periodic orbit to an unstable fixed point
which uses knowledge of such global coordinates. Section 6
gives a brief introduction to phase-based control of oscillator
populations. Concluding thoughts are given in Sect. 7.

2 Standard phase reduction and control

Consider an autonomous vector field

dx
dt

= F(x), x ∈ R
n, (n ≥ 2) (1)

having a stable hyperbolic periodic orbit xγ (t) with period
T . We define the set of all points in the basin of attraction as
B. For each point x∗ in B, there exists a unique θ(x∗) such
that [9,33,45,53,59,115–117]

lim
t→∞

∣
∣
∣
∣
x(t) − xγ

(

t + T

2π
θ(x∗)

)∣
∣
∣
∣
= 0, (2)

where x(t) is a trajectory startingwith the initial point x∗. The
function θ(x) is called the asymptotic phase of x and takes
values in [0, 2π). Other conventions, related to this through
a simple rescaling, define the asymptotic phase to take values
in [0, T ) or in [0, 1).

Let xγ
0 be the point on the periodic orbit where the phase is

zero.Our typical convention is to choose xγ
0 as corresponding

to the global maximum of the first coordinate on the periodic
orbit. An isochron is a level set of θ(x), that is, the collection
of all points in the basin of attraction of xγ with the same
asymptotic phase [115,117].We note that if x(0) is a point on
a periodic orbit, the isochron associated with that point is the
set of all initial conditions x̃(0) such that ||x(t)− x̃(t)|| → 0
as t → ∞. Isochrons extend the notion of phase of a stable
periodic orbit to the basin of attraction of the periodic orbit.
It is conventional to define isochrons so that the phase of a
trajectory on the periodic orbit advances linearly in time:

dθ

dt
= 2π

T
≡ ω (3)

both on and off the periodic orbit. Points at which isochrons
of a periodic orbit cannot be defined form the phaseless set
[116].

Isochrons can be shown to exist for any stable hyper-
bolic periodic orbit. They are codimension one manifolds
as smooth as the vector field, and transversal to the periodic
orbit xγ . Their union covers an open neighborhood of xγ .
This can be proved directly by using the implicit function
theorem [9,33] and is also a consequence of results on nor-
mally hyperbolic invariant manifolds [103].

Control theory seeks to design inputs to a dynamical sys-
tem which change its behavior in a desired way. With this in
mind, we consider the perturbed system

dx
dt

= F(x) + U(x, t), (4)

where U(x, t) is a small control input. The evolution of this
system in terms of isochrons is [2,53]

dθ

dt
= ∂θ

∂x
· dx
dt

= ∂θ

∂x
· (F(x) + U(x, t)) = ω + ∂θ

∂x
· U(x, t).

Evaluating on the periodic orbit xγ for the unperturbed sys-
tem gives, to leading order,

dθ

dt
= ω + Z(θ) · U(xγ , t), Z(θ) = ∂θ

∂x

∣
∣
∣
∣
xγ (θ)

≡ ∇xγ θ.

(5)

Here Z(θ) ∈ R
n is the gradient of phase variable θ evaluated

on the periodic orbit and is referred to as the (infinitesimal)
phase response curve (PRC) [19,24,38,78,117]. It quantifies
the effect of an external perturbation on the phase of a peri-
odic orbit. We call (5) the standard phase reduction. In this
tutorial we will consider inputs U(t), with no dependence
on x.

2.1 Calculating phase response curves

Given the importance of PRCs for phase reduction, we now
describe several ways in which they can be calculated.

Direct method [28,78,117]
This is the classical way to compute the PRC, which

is useful especially in experimental studies. Letting x =
(x1, x2, . . . , xn), by definition

∂θ

∂xi

∣
∣
∣
∣
x̃γ

= lim
Δxi→0

Δθ

Δxi
, i = 1, . . . , n, (6)

where Δθ = θ(x̃γ + Δxi î) − θ(x̃γ ) is the change in θ(x)
resulting from the perturbation x̃γ → x̃γ + Δxi î from the
base point x̃γ on the periodic orbit in the direction of the i th
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coordinate. Since θ̇ = 2π/T everywhere in the neighbor-
hood of xγ , where the dot indicates d

dt , the difference Δθ

is preserved under the flow; thus, it may be measured in the
limit as t → ∞, when the perturbed trajectory has collapsed

back to the periodic orbit. That is, ∂θ
∂xi

∣
∣
∣
xγ

can be found by

comparing the phases of solutions in the infinite-time limit
with initial conditions on and infinitesimally shifted from
base points on γ .

Practically, determination of the change in phase Δθ in
computation of (6) can vary from relatively straightforward
to quite complex depending on the particular features of the
system of interest. For instance, when applying phase reduc-
tion strategies in neurons [78], the timing of a neural action
potential is generally taken to correspond to θ = 0. In this
case, the change in phase Δθ resulting from a perturbation
can simply be inferred by measuring deviations from the
expected timing between spikes. On the opposite end of the
spectrum, phase estimation becomes difficult in more com-
plicated models when there are no easily identifiable features
that directly correspond to the phase. In these cases, more
sophisticated methods need to be employed. For example,
motivated by the problem of understanding the oscillatory
biomechanics of cockroach running, the authors of [84]
devise amethodology to estimate the phase of a population of
phase-locked oscillators from multivariate data that is both
robust to noise and measurement error. These ideas were
later built upon in [85] to identify the dimension required to
adequately characterize a periodic orbit using only measure-
ment data. See [10] for other results on phase response curves
for running cockroaches. Other phase inference algorithms
[89] have been developed for use in low signal-to-noise
environments, for instance, in electroencephalogram (EEG)
recordings. Other methods have been developed that are
applicable tomultiple coupled oscillatorswhich are not phase
locked. For example, Kralemann et al. [50] develops a strat-
egy to simultaneously measure the phases of two interacting
oscillators using passive observations and uses this tech-
nique to analyze respiratory influence on heart rate variability
[100]. Also, Wilson and Moehlis [111] developed a strategy
for inferring the phase response curve of individual oscilla-
tors from aggregate population data, Kralemann et al. [51]
proposes a method for determining directional connectivity
in small populations of oscillators, and Krishnan et al. [52]
investigates phase response curves that result when multiple
perturbations are applied per cycle. While phase reduction
methods are immensely useful for reducing the complexity
of a complicated model displaying stable periodic oscilla-
tions, there are many practical considerations to be aware
of when working with real, noisy, and possibly unreliable
experimental data.

Adjoint method [2,20,23,40]
Another technique for finding the PRC involves solving an

associated adjoint equation, which we now derive following
[2]. This adjoint equation can be solved numerically with the
program XPP [20].

Consider an infinitesimal perturbationΔx to the trajectory
xγ (t) at time t = 0. Let x(t) be the trajectory evolving from
this perturbed initial condition. Defining Δx(t) according to
x(t) = xγ (t) + Δx(t),

dΔx(t)
dt

= DF(xγ (t))Δx(t) + O(‖Δx‖2). (7)

For the phase shift defined as Δθ = θ(x(t)) − θ(xγ (t)), we
have

Δθ = 〈∇xγ (t)θ,Δx(t)〉 + O(‖Δx‖2), (8)

where 〈·, ·〉 defines the standard inner product and ∇x(t)θ is
the gradient of θ evaluated at x(t). We recall from above that
Δθ is independent of time (after the perturbation at t = 0) so
that taking the time derivative of (8) yields, to lowest order
in ‖Δx‖,
〈
d∇xγ (t)θ

dt
,Δx(t)

〉

= −
〈

∇xγ (t)θ,
dΔx(t)

dt

〉

= −〈∇xγ (t)θ, DF(xγ (t))Δx(t)〉
= −〈DFT(xγ (t))∇xγ (t)θ,Δx(t)〉. (9)

Here the matrix DFT(xγ (t)) is the transpose (i.e., adjoint) of
the (real) matrix DF(xγ (t)). Since the above equalities hold
for arbitrary infinitesimal perturbations Δx(t), we have

d∇xγ (t)θ

dt
= −DFT(xγ (t))∇xγ (t)θ. (10)

This follows from non-degeneracy of the inner product,
which states that if < a, b >= 0 for all b, then a = 0.
To see this more rigorously, we can rearrange (9) to give

〈

d∇xγ (t)θ

dt
+ DFT(xγ (t))∇xγ (t)θ

︸ ︷︷ ︸

a(t)

, Δx(t)

〉

= 0.

At any time t , by choosingΔx(t) to be a(t)we get 〈a, a〉 = 0
which from definite positivity of the inner product implies
that a = 0. This can be rearranged to give (10).

Finally, note that

dθ

dt
= ∇xθ · dx

dt
= ∇xθ · F(x) = ω,
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Fig. 1 Thalamic neuron model:
Left panel shows how the spike
time changes by δT under an
external perturbation δv. Here,
black (resp., red) line shows the
voltage under no (resp., δv)
perturbation. In the right panel,
the blue line (resp., red dots)
shows the first component of the
PRC computed from the adjoint
(resp., the direct) method (color
figure online)
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which in particular must hold at t = 0. Thus, we must
solve (10) subject to the condition

∇xγ (0)θ · F(xγ (0)) = ω. (11)

Since ∇xγ (t)θ evolves in R
n , (11) supplies only one of n

required initial conditions; the rest arise from requiring that
the solution ∇xγ (t)θ to (10) be T -periodic [20,23,40].

We note that [37] describes amethod for calculating a gen-
eralization of phase response curves based on an invariance
equation for planar systems and shows that this is equivalent
to the adjoint method. This approach will be discussed in
more detail in Sect. 5.

Example PRC calculation: thalamic neuron model
As an illustration, we calculate the PRC using both the

direct method and the adjoint method for the thalamic neu-
ron model [88] for the spiking behavior of neurons in the
thalamus:

v̇ = −IL(v) − INa(v, h) − IK (v, h) − IT (v, r) + Ib
Cm

+u(t), (12)

ḣ = h∞(v) − h

τh(v)
, (13)

ṙ = r∞(v) − r

τr (v)
. (14)

In these equations, Ib is the baseline current, whichwe take as
5µA/cm2, v is the transmembrane voltage, and h, r are the
gating variables of the neuron which describe themodulation
of the flow of ions across the neural membrane. u(t) repre-
sents the applied current as the control input. For details of
the currents (IL , INa, IK , IT ), functions h∞, τh, r∞, τr , and
the rest of the parameters, see Appendix A. With no con-
trol input, these parameters give a stable periodic orbit with
period T = 8.3955 ms.

The first (i.e., voltage) component of the PRC for this peri-
odic orbit is shown in the right panel of Fig. 1. In this figure,

weusedXPP to calculate thefirst component of thePRC from
the adjoint method. For the direct method, a MATLAB code
was written where perturbations of size δv = − 0.3 were
given at 20 points spread along the periodic orbit. Once the
perturbed trajectories came reasonably close to the periodic
orbit, spike time changes caused by the perturbations were
scaled to obtain the corresponding phase changes, which
when normalized by the magnitude of the perturbation gives
the first component of the PRC.

Analytical results
There are certain dynamical systems for which PRCs can

be calculated analytically. Here we consider three illustrative
examples which can arise for simplified models of biologi-
cal systems and physiological rhythms [24,28,117]: general
radial isochron clocks which capture key characteristics of
phase models, λ−ω systems including the Hopf bifurcation
normal form, and a system which has been used to model
neurons undergoing a SNIPER bifurcation.

• General radial isochron clocks
Consider planar dynamical systems that can be written in

the form

dr

dt
= G(r),

dφ

dt
= K (φ), (15)

where r and φ are standard polar coordinates in two dimen-
sions, K (φ) > 0 for all φ, and there is a stable periodic orbit
xγ with radius rpo found by solvingG(rpo) = 0. Such a peri-

odic orbit will have period T = ∫ 2π
0 dφ/K (φ). Because the

dynamics of φ are independent of r , the isochrons for such
systems are radial lines. When K (φ) is a constant, such a
system is often referred to as a radial isochron clock [28,41].
Because we allow K to be non-constant, we will refer to
this system as a general radial isochron clock. The follow-
ing calculation of PRCs for general radial isochron clocks
generalizes previously published results in [28,41] for radial
isochron clocks.
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y
rpo

φ
x

Fig. 2 Geometrical setup for finding the PRC for a general radial
isochron clock. Sample isochrons are shown as dotted lines

For such systems, it is possible to find the PRC using the
following geometrical argument. From Fig. 2, we see that

tan φ = y

x
.

Taking the partial derivative of both sides with respect to x ,

sec2 φ
∂φ

∂x
= − y

x2
.

Rearranging and evaluating on the periodic orbit (i.e., using
x = rpo cosφ and y = rpo sin φ),

∂φ

∂x

∣
∣
∣
∣
xγ

= − sin φ

rpo
.

PRCs are defined in terms of the change in the phase variable
θ , and to obtain this, we recall that the isochrons are radial
and note that

dθ

dφ
= dθ/dt

dφ/dt
= ω

K (φ)
. (16)

Therefore

∂θ

∂x

∣
∣
∣
∣
xγ

= dθ

dφ

∂φ

∂x

∣
∣
∣
∣
xγ

= − ω

rpoK (φ)
sin φ. (17)

Similarly,

∂θ

∂ y

∣
∣
∣
∣
xγ

= ω

rpoK (φ)
cosφ. (18)

We can rewrite the right-hand side of (17) and (18) in terms
of the phase variable θ by using (16) to give

θ = f (φ) ≡
∫ φ

φ0

ω

K (φ′)
dφ′, (19)

where we take θ = 0 at φ = φ0; inverting this will give φ as
a function of θ .

As an alternative derivation, we can start with (19) and
differentiate with respect to r and φ to give

(
∂θ

∂r
,
∂θ

∂φ

)

=
(

0,
ω

K (φ)

)

. (20)

Transforming to Cartesian coordinates using

∂θ

∂x
= ∂θ

∂r

∂r

∂x
+ ∂θ

∂φ

∂φ

∂x

and a similar expression for ∂θ
∂ y , we can obtain the PRC as

Z(φ) = ω

rpoK (φ)

(− sin φ x̂ + cosφ ŷ
)

. (21)

This is identical to (17) and (18). We note that PRCs for gen-
eral radial isochron clocks take both positive and negative
values, meaning that the same instantaneous, infinitesi-
mal perturbation can either increase or decrease the phase,
depending on when it is applied.

• λ − ω systems
Consider planar systems that can be written in the form

dr

dt
= G(r),

dφ

dt
= H(r), (22)

where r and φ are again standard polar coordinates in two
dimensions and there is a stable periodic orbit with nonzero
radius rpo (found by solving G(rpo) = 0) and angular fre-
quency ω = H(rpo). We assume that G ′(rpo) = 0. Note that
these equations can be viewed as a polar coordinate represen-
tation of λ−ω systems [24,49] and include the normal forms
for the Hopf bifurcation and the Bautin bifurcation [35,54].
The PRC for examples of such systems has been calculated
in references including [2,5,19,22,24,37,40,68]. In general,
we have

d

dt

(
∂θ
∂r

∣
∣
xγ

∂θ
∂φ

∣
∣
∣
xγ

)

= −DFT(xγ )

(
∂θ
∂r

∣
∣
xγ

∂θ
∂φ

∣
∣
∣
xγ

)

,

where

DFT(xγ ) =
(

G ′(rpo) H ′(rpo)
0 0

)

.

It is readily verified that this is solved by (cf. [46,68])

(
∂θ

∂r

∣
∣
∣
∣
xγ

,
∂θ

∂φ

∣
∣
∣
∣
xγ

)

=
(

−H ′(rpo)
G ′(rpo)

, 1

)

. (23)

Transforming to Cartesian coordinates (x, y) = (r cosφ,

r sin φ), and using the fact that θ = φ on the periodic orbit
(since ∂θ/∂φ = 1, and choosing θ = 0 to coincide with
φ = 0), we obtain
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Z(θ) =
(

∂θ

∂x

∣
∣
∣
∣
xγ

,
∂θ

∂ y

∣
∣
∣
∣
xγ

)

=
(

−H ′(rpo)
G ′(rpo)

cos θ − sin θ

rpo

)

x̂

+
(

−H ′(rpo)
G ′(rpo)

sin θ + cos θ

rpo

)

ŷ, (24)

cf. [22,24],where x̂ and ŷ are unit vectors in the x and y direc-
tions, respectively. We note that PRCs for λ − ω systems are
appropriately scaled and shifted sinusoidal functions, which
take both positive and negative values. As for the general
radial isochron clocks, the same instantaneous, infinitesi-
mal perturbation can either increase or decrease the phase,
depending on when it is applied.

• SNIPER example [2,19]
The SNIPER (Saddle-Node Infinite PERiod) bifurcation

[35,54], also called SNIC (Saddle-Node on Invariant Circle)
bifurcation, takes place when a saddle-node bifurcation of
fixedpoints occurs on a periodic orbit. This bifurcation arises,
for example, for Type I neurons [19]. Following the method
of [19], we ignore the direction(s) transverse to the periodic
orbit and consider the one-dimensional normal form for a
saddle-node bifurcation of fixed points:

ẋ = η + x2, (25)

where x may be thought of as local arclength along the peri-
odic orbit. For η > 0, the solution of (25) traverses any
interval in finite time; as in [19], the period T of the orbit
may be approximated by calculating the total time necessary
for the solution to (25) to go from x = −∞ to x = +∞ and
making the solution periodic by resetting x to−∞ every time
it “fires” at x = ∞. This gives T = π√

η
; hence, ω = 2

√
η.

Since (25) is one-dimensional, Ermentrout [19] computes

∂θ

∂x
= ω

∂t

∂x
= ω

dx
dt

,

where dx
dt is evaluated on the solution trajectory to (25). This

gives

∂θ

∂x
= 2

ω
[1 − cos θ ] (26)

as first derived in [19], but with explicit ω-dependence dis-
played as in [2]. In contrast to general radial isochron clocks
andλ−ω systems, the PRC for this SNIPER system is always
positive. Thus instantaneous, infinitesimal perturbations will
always increase the phase (or decrease the phase, depending
on the sign of the perturbation) regardless of the time atwhich
they are applied, although the magnitude of the phase change

will be different. Wewill consider a different SNIPER exam-
ple later in Sect. 4. Also note that the example in [21] shows
that care must be used in relating bifurcations to PRCs.

It is also possible to calculate analytic approximations to
the PRC near a homoclinic bifurcation [2], a heteroclinic
orbit [90], and for relaxation oscillators [44].

2.2 Control based on standard phase reduction

Since phase-reduced models have lower dimension than the
full models fromwhich they came, optimal control problems
for phase-reduced models give lower-dimensional boundary
value problems and thus are simpler to solve. In this tuto-
rial, we will consider control problems for which the control
input only directly affects a single state variable. For exam-
ple, in neural control applications one might apply control in
the form of an injected electrical current which only affects
the equation for the transmembrane voltage. Moreover, we
assume that the control input only depends on time, and not
on the state variables. That is,we takeU(x, t) = (u(t), 0n−1),
where without loss of generality we say that the control
affects the first state variable x1, and 0n−1 is a vector of
(n − 1) zeros.

We consider three different problems. The first, energy-
optimal phase control, illustrates the basics of how standard
phase reduction can be used to find optimal control inputs.
The second, energy-optimal phase control with a charge-
balance constraint, illustrates how integral constraints can
be incorporated into such problems. The third, time-optimal
control with a charge- balance constraint, illustrates how the
choice of a cost function affects the nature of the optimal
control inputs.

Energy-optimal phase control [69]
Suppose at t = 0 our system starts at the point x0 on

xγ (t). Without any control input, we expect the trajectory
will return to the point x0 at time t = T . Our objective here
is to devise a control which returns the trajectory to its initial
position after time t = T1, where T1 = T . Possible motiva-
tions include changing the time at which a neuron fires (a first
step toward controlling neural populations), shifting one’s
circadian rhythm to adjust to a new time zone, or changing
the phase of cardiac pacemaker cells to treat cardiac arrhyth-
mias [71].

To do this, consider the standard phase reduction for the
oscillator given by

dθ

dt
= ω + Z(θ)u(t), (27)

where ω is the oscillator’s natural angular frequency, Z(θ) is
the component of the phase response curve in the x1 direc-
tion, and u(t) is the control stimulus. We assume that Z(θ)

vanishes only at isolated points and that ω > 0, so orbits
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of full revolution are possible. We will assume that θ = 0
corresponds to a special event for the oscillator, such as the
firing of an action potential for a neuron, i.e., when a neuron’s
transmembrane voltage is maximal.

Suppose that for the specified time T1 and for all stimuli
u(t) which evolve θ(t) via (27) from θ(0) = 0 to θ(T1) =
2π ,wewant tofind the onewhichminimizes the cost function

G[u(t)] =
∫ T1

0
[u(t)]2dt, (28)

that is, the square-integral cost on the current. For example,
for a neural system thiswould correspond to causing a neuron
which fires an action potential at t = 0 to fire another action
potential at t = T1; if the system has resistance R obeying
Ohm’s law, this corresponds to minimizing the power P ∼
u2R.

We apply calculus of variations (see Appendix B) to min-
imize [25]

C[u(t)] =
∫ T1

0

{

[u(t)]2 + λ(t)

(
dθ

dt
− ω − Z(θ)u(t)

)}

︸ ︷︷ ︸

L

dt,

(29)

with λ being the Lagrange multiplier (sometimes called a
costate) which forces the dynamics to satisfy (27). The asso-
ciated Euler–Lagrange equations are

∂L
∂u

= d

dt

(
∂L
∂ u̇

)

,
∂L
∂λ

= d

dt

(
∂L
∂λ̇

)

,

∂L
∂θ

= d

dt

(
∂L
∂θ̇

)

,

⇒ u(t) = λ(t)Z(θ(t))

2
, (30)

dθ

dt
= ω + Z(θ)u(t) = ω + λ(t)[Z(θ)]2

2
, (31)

dλ

dt
= −λ(t)Z ′(θ)u(t) = −[λ(t)]2Z(θ)Z ′(θ)

2
, (32)

where ′ = d/dθ . To find the optimal u(t), (31) and (32) need
to be solved subject to the conditions

θ(0) = 0, θ(T1) = 2π. (33)

This is a two-dimensional two-point boundary value prob-
lemwhere the boundary conditions for θ(t) are given in (33).
The appropriate initial conditions (θ(0), λ(0)) can be found,
for example, by using a shooting method in which updated
initial conditions are determined via Newton iteration; see
Appendix C. The solution (θ(t), λ(t)) using this initial con-
dition can then be used in (30) to give the optimal stimulus

T1

0
Euler-Lagrange equations

θ(t), λ(t)

U(t) =
λ(t)Z(θ(t))

2 , 0, . . . , 0
T

0 ≤ t ≤ T1

[0, 0, . . . , 0]T t > T1

x(t) =
t

0
[F(x) +U(t)] dt

Fig. 3 Flowchart describing the energy-optimal control algorithm
based on standard phase reduction

u(t). Reference [69] shows under certain conditions that the
optimal stimulus for this problem is unique.

Energy-optimal phase control example: thalamic neuron
model

As an example, consider the thalamic neuron model given
by Eqs. (12–14) with the same parameters as before. We set
T1 = 1.2T to demonstrate the control. We calculate the PRC
of the model using XPP and then solve the Euler–Lagrange
equations (31–32) as a two-point boundary value problem
with boundary conditions given by Eq. (33). This gives θ(t)
and λ(t) as a time series, from which we obtain u(t) from
(30). Then with the obtained input, we solve the full model
(12–14) to see how the control algorithm based on reduced
model performs when applied to the full model. The control
algorithm based on standard phase reduction is outlined in
the flowchart in Fig. 3, and the results are shown in Fig. 4.
It can be seen that control input is of opposite sign of the
PRC, which slows down the θ dynamics; see (27). In fact, as
shown in [69] for control objectiveswith T1 ≈ T , the shape of
the optimal input u(t) is very similar to the shape of the PRC
(here the shape is “flipped” because our control objectivewas
to slow down the oscillator). Since the control input is small,
it does not drive the trajectory far away from the periodic
orbit. The optimal control found with this procedure works
very well when applied to the full model: The spike occurs
at a time which differs from the desired time of 1.2T by
only 0.04%.The total control energy consumed (

∫ T1
0 u(t)2dt)

comes out to be 10.8 units. This is approximately 25% less
power than what would be required to achieve the same T1
with a constant input u(t) = − 1.19, with a total control
energy consumed of 14.3 units.

Note that if we applied optimal control theory to the full
thalamic neuron model with the objective of changing the
time at which the neuron fires, we would need to solve a six-
dimensional boundary value problem: three dimensions for
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Fig. 4 Energy-optimal phase
control for the thalamic neuron
model: Left column shows the
trajectory and time series, the
middle column shows the
evolution of phase θ(t) and λ(t),
and the right column shows the
PRC and the control input.
Control is on (resp., off) for the
portion shown by the thick black
(resp., thin blue) line. The
trajectory starts at the small red
circle. The red horizontal line
shows the amplitude of the
uncontrolled periodic orbit
(color figure online)
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the variables V , h, and r , and three more dimensions for the
corresponding Lagrange multipliers. Additionally, the trans-
formation to phase variables allows for an intuitive definition
of when the neuron spikes (i.e., when θ = 0). By contrast,
for the thalamic neural model, a hypersurface corresponding
to the moment of a neural spike would need to be defined,
ultimately resulting in a significantly more difficult optimal
control problem to solve.

The above calculation assumes that we know the exact
expression for the PRC for the system that we wish to con-
trol. In an experimental setting, one expects that the PRC
which is found using the direct method will not be exactly
correct, due to noise and other uncertainties. However, the
following illustrates that the control which is found from an
approximate PRC can still give good results, suggesting that
the optimal control calculation has a good level of robustness.

Consider the left panel of Fig. 5, in which an approx-
imate PRC is found by fitting a Fourier series to noisy
data from the direct method; here the fit includes constant,
cos(θ), sin(θ), cos(2θ), sin(2θ), cos(3θ), and sin(3θ) terms.
We use the approximate PRC in (30–32) with T1 = 1.2T =
10.07 to calculate the control input, which is shown in the
right panel of Fig. 5. The next spike which occurs with this
input is at t = 9.95 = 1.185T , so it approximately achieves
the desired control objective. Interestingly, the input found
using the approximate PRC consumes less total energy (9.4
units) than the optimal input found for T1 = 1.2T using
the exact PRC (10.8 units); this can be understood by noting
that it should require less power to make the neuron fire at
t = 9.95 than at t = 10.07, since this is a milder objective.
The optimal input calculated for a target time of T1 = 9.95
with the exact PRC would require even less power.

More rigorous investigations of the robustness of optimal
control schemes for phase models can be found, for exam-
ple, in [106,107,110]. However, there is still muchwork to be
done to develop robust control algorithms for noisy, uncer-
tain, heterogeneous biological systems.

We note that in optimal control problems, it is common to
consider a Hamiltonian formulation which is equivalent to
the Euler–Lagrange equations. In particular, one can define
conjugate momenta pi to the generalized coordinates qi as
pi = ∂L

∂q̇i
. Then, the Legendre transformation [30] gives

H(q, p, t) =
∑

q̇i pi − L(q, q̇, t),

from which one obtains Hamilton’s equations

q̇i = ∂H

∂ pi
, ṗi = −∂H

∂qi
. (34)

For the present problem, qi ∈ {u, λ, θ}, and the only nonzero
conjugate momentum is the conjugate momentum to θ given
by pθ = ∂L

∂θ̇
= λ. Therefore,

H = θ̇λ −
(

[u(t)]2 + λ

(
dθ

dt
− ω − Z(θ)u(t)

))

︸ ︷︷ ︸

L
= −[u(t)]2 + λω + λZ(θ)u(t).

From Hamilton’s equations, we then obtain

0 = −∂H

∂u
= 2u − λZ(θ),

θ̇ = ∂H

∂λ
= ω + Z(θ)u(t),

λ̇ = −∂H

∂θ
= −λZ ′(θ)u(t).

It is readily shown that these are the same as the Euler–
Lagrange equations in (30–32).

Energy-optimal phase control with charge-balance con-
straint: [14,74]

It may be desirable for energy-optimal phase control
to restrict control inputs to obey the integral constraint
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Fig. 5 The green dots in the left panel show noisy PRC measurements
that might arise, for example, from applying the direct method to a tha-
lamic neuron. The red line in the left panel shows the approximate PRC
obtained by fitting a Fourier series to these data, while the blue line

shows the exact PRC for this system. In the right panel, the red (resp.,
blue) line shows the control calculated using the approximate (resp.,
exact) PRC (color figure online)

∫ T1
0 u(t)dt = 0. If u(t) is an electrical input, this corresponds
to a charge-balance constraint: The total amount of charge
injected into the system over one control cycle is zero. We
note that for neuroscience applications, charge-imbalanced
inputs can cause Faradaic chemical reactions to take place
near the stimulating electrode, which can result in damage
to the tissue [67]. We can restate this constraint as follows:
Let Q(t) be the amount of charge injected instantaneously at
time t . Then, we get

Q̇ = u(t). (35)

Integrating both sides of this equation from 0 to T1, we obtain

Q(T1) − Q(0) =
∫ T1

0
u(τ )dτ.

For the charge-balance constraint to hold, we need the right-
hand side of this equation to be zero. This means Q(T1) =
Q(0), and assuming that the input is being applied from time
t = 0, which implies Q(0) = 0, we also have Q(T1) = 0.

Similar to above, suppose that for a specified spike timeT1,
for all stimuli u(t) which evolve θ(t) via (27) from θ(0) = 0
to θ(T1) = 2π , we want to find the stimulus which mini-
mizes the cost function (28) and yields q(T1) = 0. We apply
calculus of variations to minimize [25]

C[�(t), �̇(t), u(t)]
=

∫ T1

0

{

[u(t)]2 + [λ1(t) λ2(t)] ·
[

θ̇ − ω − Z(θ)u(t)
Q̇ − u(t)

]}

︸ ︷︷ ︸

L[�,�̇,u(t)]

dt,

(36)

where �(t) = [θ(t), Q(t), λ1(t), λ2(t)]T. The Lagrange
multipliers λ1(t) and λ2(t) force the dynamics to satisfy
Eqs. (27) and (35).

Using vector notation, the associated Euler–Lagrange
equations are

∂L
∂u

= d

dt

(
∂L
∂ u̇

)

,
∂L
∂�

= d

dt

(
∂L
∂�̇

)

,

so that

u(t) = λ1(t)Z(θ) + λ2(t)

2
, (37)

θ̇ = ω + λ1(t)[Z(θ)]2 + λ2(t)Z(θ)

2
, (38)

Q̇ = u(t) = λ1(t)Z(θ) + λ2(t)

2
, (39)

λ̇1 = −[λ1(t)]2Z(θ)Z ′(θ) + λ1(t)λ2(t)Z ′(θ)

2
, (40)

λ̇2 = 0. (41)

To find the optimal u(t), (38)–(41) need to be solved subject
to the boundary conditions

θ(0) = 0, θ(T1) = 2π, Q(0) = 0, Q(T1) = 0. (42)

This is a four-dimensional two-point boundary value problem
where the boundary values for θ(t) and Q(t) are given in (42).

Charge-balanced control example: thalamic neuron model
Todemonstrate the control,we again consider the thalamic

neuron model given by Eqs. (12–14) with same parameters
as before. We set T1 = 1.2T and show the results in Fig. 6.
The steps taken to generate these results are similar to the
ones given in Fig. 3.

It can be seen from Fig. 6 that control input takes both
positive and negative values, as is necessary for charge bal-
ance. In order to slow down the oscillation, the input is most
negative when the PRC is most positive. Moreover, when the
input is most positive, it has little effect on the oscillation
because the PRC is close to zero at those times; such positive
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Fig. 6 Energy-optimal phase control with charge-balance constraint
for the thalamic neuron model: Left column shows the trajectory and
time series, the middle column shows the evolution of phase θ(t) and
instantaneous charge Q(t), and the right column shows the PRC and
the control input. Control is on (resp., off) for the portion shown by the

thick black (resp., thin blue) line. The trajectory starts at the small red
circle. The red horizontal line shows the amplitude of the uncontrolled
periodic orbit, whereas the red dashed line highlights the charge-balance
constraint (color figure online)

inputs are necessary to achieve charge balance. The total con-
trol energy consumed (

∫ T1
0 u(t)2dt) here is 37.9 units, which

is almost 4 times the amount of energy consumed for the
previous control without a charge-balance constraint. Since
the control input is moderately large, it drives the trajectory
away from the periodic orbit, which eventually returns back
to the orbit once the control is turned off after time T1.

Note that if we applied optimal control theory to the full
thalamic neuron model with the objective of changing the
time at which the neuron fires and with the charge-balance
constraint, we would need to solve an eight-dimensional
boundary value problem: three dimensions for the variables
V , h, and r , three more dimensions for the correspond-
ing Lagrange multipliers, and two more dimensions for the
charge-balance constraint.

This algorithm has been successfully applied to in vitro
neurons in [76], showing that it is robust to noise and uncer-
tainty inherent in real experimental systems. Moreover, an
extension of such charge-balanced phase control to include
constraints on the range of allowed control inputs is given
without a charge-balance contraint in [15] and with a charge-
balance constraint in [16].

Time-optimal control with charge-balance constraint:
[75]

As an alternative control objective, suppose we want to
find the control input u(t) that, when bounded to be less than
a certain value ū in magnitude, i.e., |u(t)| ≤ ū, would result
in the minimum or maximum value of the timing of an event
such as an action potential. For example, one might want a
neuron to fire as quickly as possible subject to a constraint
on the magnitude of the allowed input current; this could be
used to increase the firing rate of neurons with a constraint

due to hardware limitations and/or concern that large inputs
might cause tissue damage. This is an optimization problem
in which the next spike time T1 needs to be extremized. We
will consider this problem with a charge-balance constraint
imposed on the control input.

In particular, we seek a control input u(t) which extrem-
izes

G(T1) =
∫ T1

0
1 dt, (43)

with the following constraints:

θ̇ = ω + Z(θ)u(t), θ(0) = 0, θ(T1) = 2π,

Q̇ = u(t), |u(t)| ≤ ū, Q(0) = 0, Q(T1) = 0.
(44)

Following a similar procedure to above, the Hamiltonian
associated with this system is

H(θ, q, λ1, λ2, u) = 1 + λ1(ω + Z(θ)u(t)) + λ2u(t),

(45)

where λ1 and λ2 are the Lagrange multipliers for this system.
To obtain the necessary conditions for optimality, one can use
the Hamiltonian in (45) to give

θ̇ = ∂H

∂λ1
⇒ θ̇ = ω + Z(θ)u(t),

λ̇1 = −∂H

∂θ
⇒ λ̇1 = −λ1(t)Z

′(θ)u(t),

Q̇ = ∂H

∂λ2
⇒ Q̇ = u(t),

λ̇2 = −∂H

∂q
⇒ λ̇2 = 0.
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Fig. 7 Time-optimal control with charge-balance constraint for the tha-
lamic neuron model: Left column shows the trajectory and time series,
the middle column shows the evolution of phase θ(t) and instantaneous
charge Q(t) under optimal control, and the right column shows the PRC

and the control input. Control is on (resp., off) for the portion shown
by the thick black (resp., thin blue) line. The trajectory starts at the
small red circle. The red horizontal line shows the amplitude of the
uncontrolled periodic orbit (color figure online)

The optimal control for this problem is obtained from Pon-
tryagin’s minimum principle [47,57], which states that an
optimal control must minimize the Hamiltonian. For the
present problem, this gives

u(t) = argM|u(t)|≤ū (1 + λ1 (ω + Z(θ)u(t)) + λ2u(t)) ,

whereM ∈ {min,max}. This yields the following equations
for the optimal control input,u(t), for the cases ofminimizing
the inter spike interval (or T1) of the neuron and maximizing
it:

u(t) = − sign[λ1Z(θ) + λ2]ū for the min problem,

(46)

u(t) = + sign[λ1Z(θ) + λ2]ū for the max problem.

(47)

Equations (46) and (47) indicate that the magnitude of the
optimal control is always equal to its bound and that only its
sign changes with respect to time. This solution, known as
bang–bang control, is expected since the objective here is to
achieve extreme final time, and thus, one expects maximum
effort from the control stimulus.

Time-optimal control with charge-balance constraint exam-
ple: thalamic neuron model

To demonstrate the control, we again consider the tha-
lamic neuron model given by Eqs. (12–14) with the same
parameters as before. We set ū = 1 and consider the inter-
spike interval minimization problem. We solve the optimal
control equations subject to constraints given in Eq. (44) and
plot the results in Fig. 7. Here as well, the steps taken to
generate results are similar to the ones given in Fig. 3. With

ū = 1, we get minimum T1 = 0.93T under charge-balance
constraint (the results from applying the optimal input to the
phase model and the full model differ by only 0.06%). Since
the control input is moderately small, the trajectory remains
close to the periodic orbit. As can be seen from bottom panel
of the right column of Fig. 7, the control input is positive
and negative for equal amounts of time, thus giving zero net
charge inflow at the end of the control.

Reference [75] shows for a different example neuron that
the time-optimal control input obtained using this method
gives good results when applied to the full non-reduced
model for a range of input constraints ū; see, for example,
Fig. 6 from that reference.

3 Isostable reduction and control for
systems with a stable fixed point

Before moving on to more sophisticated formulations of
phase reduction for systems with a stable periodic orbit, we
will first discuss a reduction which is analogous to the stan-
dard phase reduction, but for systems with a stable fixed
point.

3.1 Isostables for a fixed point

Reference [112] proposed a method of phase reduction for
systems with a stable fixed point, based on the notion of
isostables [65], cf. [86]. Isostables are analogous to isochrons
for asymptotically periodic systems and can be defined as sets
of points in phase space that approach a fixed point together,
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Fig. 8 The left panel shows
isostable coordinates of (50)
numerically calculated
according to (49). Black lines
denote level sets of isostables.
Dashed white lines show two
different trajectories starting
from different initial conditions
and ultimately approaching the
fixed point (gray dot). In the
right panel, the black trace takes
longer to return to the fixed
point than the red trace, as
predicted from their initial
isostable coordinate values
(color figure online)
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in awell-defined sense described below. Isostables are related
to the eigenfunctions of the Koopman operator [65].

The calculation of an isostable field, I(x), exploits the
linear nature of nonlinear dynamics near a fixed point x0.
For a linear system

ẋ = A(x − x0),

and solutions φ(t, x(0)) (also known as the flow) approach
the fixed point as

φ(t, x(0)) − x0 =
n

∑

j=1

s j (x(0))v je
λ j t , (48)

where s j (x) are the coordinates of the vector x in the basis
{v j | j = 1, . . . , n} of unit eigenvectors of A, with asso-
ciated eigenvalues {λ j | j = 1, . . . , n}, sorted so that λ1
corresponds to a unique slowest direction of the stable man-
ifold, i.e., Re(λ j ) < λ1 < 0, ∀ j > 1. Here, we assume
that λ1 is real and unique, and as shown in [65], the mag-
nitude of s1(x) determines the infinite-time approach to the
origin. In other words, hyperplanes of constant isostables,
Iτ ≡ {x ∈ R

n|I(x) = τ }, near a fixed point are parallel to
the faster directions v2, . . . , vn .

For nonlinear systems, the isostable field within the fixed
point’s entire basin of attraction, I(x), can be calculated by
monitoring the infinite-time approach of φ(t, x) to the fixed
point, x0, by computing

I(x) = lim
t→∞ e−λ1t ||φ(t, x) − x0||, (49)

where ||·|| can be any norm; herewewill beworkingwith the
1-norm on Rn . Intuitively, Eq. (49) compares the asymptotic
approach to the fixed point along the slowest direction of the
stable manifold, v1, to an exponential function governed by
the associated eigenvalue, λ1. We emphasize that Eq. (49) is
valid for systems with a stable fixed point where λ1 is real
and unique. In other cases, such as when λ1 is complex or
the fixed point is unstable, isostables can still be calculated,

and we refer the interested reader to [65] for a more complete
discussion.

As an intuitive illustration of the notion of isostable coor-
dinates, consider a FitzHugh–Nagumo-based model of an
excitable system given in [87]:

V̇ = c1V (V − a)(1 − V ) − c2Vw,

ẇ = b(V − dw). (50)

Here the variables V and w are dimensionless and could
be used to represent a cell membrane voltage and the state
of a gating variable, respectively. In this example, we take
a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1, and d = 1.
With this choice of parameters, there is a stable fixed point at
(V , w) = (0, 0). In the vicinity of the fixed point, small posi-
tive perturbations in the V variable result in large excursions.
Numerically, λ1 is determined to be 0.013 and isostable coor-
dinates are calculated directly according to (49) and shown
in Fig. 8. As is characteristic of isostable coordinates, larger
isostable values correspond to initial conditions that will take
longer to approach the stable fixed point.

3.2 Isostable reduction

Isostables provide a useful coordinate system from which to
define a reduced set of equations, similar to the phase reduc-
tion discussed in Sect. 2. To do so, consider an n-dimensional
differential equation

ẋ = F(x) + U(x, t); x ∈ R
n, (51)

where F(x) is the vector field andU(x, t) is an external stim-
ulus. For a given set of initial conditions, suppose that the
system follows the known trajectory γ to the stable fixed
point x0.

Our objective is to simplify (51) to a one-dimensional
equation by defining scalar isostable coordinates ψ(x) ∈
(−∞,∞] for all x in some neighborhood U of x0 within
its basin of attraction. It will be convenient to take ψ(x) =
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− log(I(x)), where I(x) is defined in (49). Changing vari-
ables to isostable coordinates using the chain rule yields

dψ

dt
= ∂ψ

∂x
· dx
dt

= ∂ψ

∂x
· (F(x) + U(x, t)) ,

= ω + ∂ψ

∂x
· U(x, t), (52)

where the final line is obtained by noting that dψ/dt = −λ1
at all locations whenU(x, t) = 0 (see equation (2.3) of [112]
for further explanation of this feature of isostable coordi-
nates). Thus ∂ψ

∂x · F(x) = ω, with ω = −λ1 (recall that λ1
is negative). Reduction (52) for systems which approach a
fixed point is directly analogous to standard phase reduction
(5) for systems with a stable period orbit. Moreover, calcu-
lation of the gradient along a trajectory x(t) is also similar,
as shown in [112]:

d∇x(t)ψ

dt
= −DFT(x(t))∇x(t)ψ, (53)

with

〈∇x(t)ψ, v j
〉 = 0 ∀ j ≥ 2, (54)

where v j is the j th right eigenvector of DF(x0) when the
eigenvalues are sorted in terms of increasing magnitude of
their real parts. (Recall that x0 is stable, so all eigenvalues
have negative real part.) We refer to this gradient ∇x(t)ψ

as the isostable response curve (IRC); it gives a measure
of the effect of a control input on the value of ψ . In the

absence of external stimuli, dψ

dt = ω, i.e., ψ(x) increases at
a constant rate.We note thatψ can be rescaled by a constant if
desired, which will yield a different constant rate of change.
By definition, ψ(x) = ∞ corresponds to x = x0, meaning
that in the absence of external control, all trajectories in the
domain of attraction of x0 approach the fixed point in infinite
time.
Example of control based on the isostable reduction: con-
trolling alternans

Isostable reduction strategies have been shown to be use-
ful in cardiological applications [112,114] where the timing
of the approach to the associated system’s fixed point is of
interest. Cardiomyocytes are the electrically excitable cells
within the heart which work together to produce a coordi-
nated heartbeat. For these electrically coupled cells, small
voltage perturbations from the resting state result in an action
potential. The action potential duration (APD) is a (gener-
ally) increasing function of the diastolic interval (DI), i.e.,
time duration for which the cell remains quiescent preceding
the next action potential [31]. This relationship is known as
the APD restitution curve.

Under healthy conditions, a constant pacing interval, often
referred to as the basic cycle length (BCL), produces steady-

state period-1 behavior resulting in APDs which are constant
on a beat-to-beat basis. However, pathological conditions can
arise which result in period-2 behavior with action poten-
tials of alternating duration. This phenomenon, known as
alternans, has been well studied in the past decades and
is generally viewed as a precursor to more deadly cardiac
arrhythmia [77,81]. Seminal work by Nolasco and Dhalen
[79] showed that alternans can emerge as a result of a period
doubling bifurcation when the slope of the APD restitution
curve is greater than 1. The understanding of the exact cause
of alternans has become more complicated in recent years as
unstable calcium dynamics [82,83] and memory of pacing
history [7,99] have been shown to play a contributing role.

In this example, cf. [112], we will consider the problem
of eliminating alternans in the FMG model of cardiac action
potentials [26]; see Appendix A. In this model, alternans
ermeges primarily due to steep APD restitution. Using the
nominal parameter set from [26], the single cell is paced
at a BCL of 175 ms. Under steady-state conditions, alter-
nans develops with action potentials of alternating duration,
as shown in Panel A of Fig. 9. Previous work has focused
on eliminating alternans by stabilizing the unstable period-1
behavior [8,27,114]. Isostable reduction allows one to inves-
tigate alternans elimination strategies in a weakly perturbed
setting. Advantages of using this strategy as compared to
others are that it can be implemented in high-dimensional
models, does not require continuous feedback about state
variables from the cell, and does not require the application
of premature pulses.

Much like the analysis of the energy-optimal phase control
of neural action potentials presented earlier, we begin with a
standard isostable reduction (52)

ψ̇ = ω + I(ψ)u(t). (55)

In the context of controling cardiac arrhythmia,ψ represents
the infinite-time decay of the smallest magnitude eigenvalue
of the fixed point, ω is determined by the rate of decay, and
I(ψ) ≡ dψ/dV is the isostable response curve to time vary-
ing voltage perturbations u(t). Here I (ψ) is a scalar function
because we assume that the control only affects the voltage
equation for the system. Note that while isostable coordi-
nates are defined in terms of the ultimately linear infinite-
time behavior near the fixed point, the reduction is valid in
the entire basin of attraction of the fixed point. In this exam-
ple, ψ = 0 is defined to correspond to the moment that
dV /dt = 0 during the action potential plateau. Additionally,
the isostable coordinates are scaled so that ω = 1/2000.

For this model, as is the case with most cardiac cells, the
APD restitution curve is monotonically increasing as shown
in Panel B of Fig. 9. We will also assume that in the absence
of control, the APD is amonotonically increasing function of
the isostable coordinate, i.e., APDn = Λ(ψn) where APDn
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Fig. 9 a The steady-state
alternans behavior when pacing
the FMG model at a rate of BCL
= 175 ms with action potentials
alternating between long and
short durations. b APD
restitution curves measured with
different pacing histories. To
measure one datapoint from the
light blue curve, for instance, the
model is paced at 250 ms until
transient behavior dies out; the
next action potential is initiated
once the DI reaches a prescribed
value. Different color curves
highlight memory in the system
[7,99]. All curves increase
monotonically with the DI 0 50 100 150
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is the nth APD and ψn is the value of the isostable coordi-
nate immediately preceeding the upstroke of the nth action
potential. Such a relation certainly holds in the unperturbed
case, where longer DIs allow the system to travel closer to the
fixed point resulting in larger values of ψ and longer APDs
on the subsequent beat.

We will formulate our optimal control problem assuming
that alternans is present and apply control on the (n+1)th beat
when APDn < APDn−1. In other words, we will be applying
control tomodify a longAPD.We define t = 0 to correspond
to the time the next action potential starts and define t1 to be
the moment ψ(x(t1)) = 0. Our objective will be to modify
the isostable coordinate at t = BCL (corresponding to the
moment the following action potential occurs) in order to
restore period-1 behavior. We do this by requiring

ψ(BCL) = ω(BCL − t1) − ω(APDn − APDn−1)/2. (56)

Intuitively, the above relation advances the isostable coordi-
nate midway between isostable coordinates which produce
long and short action potentials. Because we assume that the
APD is a monotonically increasing function of the isostable
coordinate immediately preceeding the upstroke in the action
potential, satisfying this control objective will ultimately
stabilize the unstable period-1 behavior in this system and
eliminate alternans (see [112] for further explanation). Sup-
pose that we also want to achieve this control objective using
the stimulus u(t) which minimizes the cost functional

G[u(t)] =
∫ BCL

t1
[u(t)]2dt, (57)

which is the same square-integral cost as (28). This optimal
control formulation produces an analogous calculus of vari-
ations problem to the one posed in Sect. 2 resulting in similar

Euler–Lagrange equationswhich can be solved for the appro-
priate boundary conditions using a shooting method.

In order to calculate IRCs along trajectories of the FMG
model we take the slowly varying sarcoplasmic reticulum
calcium concentration [Ca2+]SR to be equal to its average
value of 318 µmol steady-state behavior using a BCL of 175
ms. We calculate IRCs using this reduced model for trajec-
tories determined from action potentials in systems paced
at BCLs ranging from 160 to 210 ms. Numerically, this is
accomplished by integrating until the trajectory approaches
the fixed point, determining the initial value of the IRC using
both (54) and dφ

dt = ∂ψ
∂x · F(x) = ω, and integrating (53)

backwards in time to determine the IRC. The IRC is simi-
lar over multiple trajectories, and the dashed lines in Panel
A of Fig. 10 show boundaries within which 90 percent of
the calculated IRCs fit. Because they are so similar, we use
the average value of each calculated IRC in reduction (55).
Optimal control is calculated by finding the u(t) which min-
imizes cost functional (57) subject to constraint (56). The
resulting control is applied to the full 13-dimensional FMG
model. Results are presented in panel B of Fig. 10, which
show the measured APD as a function of the beat number.
Without control (unshaded regions), alternans develops in the
system. With control (shaded regions), alternans are quickly
eliminated and the action potential does not change signifi-
cantly on a beat-to-beat basis.

The control strategy documented above was investigated
in greater detail in [112] and was shown to be effective for
eliminating alternans in single-cell models. Later work [114]
extended this general strategy for use in PDE models of car-
diac tissue with one and two spatial dimensions. This and
other alternans control elimination strategies [8,27] require
control to be given at multiple locations throughout the tis-
sue when considering large domains, and it remains an open
question whether alternans can be eliminated throughout the
heart by applying local perturbation; [71] proposes a pos-
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Fig. 10 Despite using different BCLs to obtain different action poten-
tials for the FMG model, the IRCs are nearly identical. Dashed lines
in a show bounds within which 90% of all measured IRCs fit. b The
APD as a function of the beat number when control is applied (shaded

regions) and without control (unshaded regions). Upon application of
the optimal control, alternans is quickly eliminated resulting in period-
1 behavior. When control is turned off, alternans reemerges in steady
state

sible approach to do this by controlling cardiac pacemaker
cells.

When compared to the wealth of the literature on opti-
mal control methods using phase reduction (see, e.g., [15,18,
48,69,75,76,95,96,106,110,118]), isostable coordinates are
relatively new and control applications are still emerging.
Preliminary applications, including the one presented above,
have suggested that isostable control methods are particu-
larly useful when the timing of a system’s approach to a
fixed point or stationary solution is of practical interest. Addi-
tional applications include [62], which investigates optimal
control input used to either speed or slow the convergence of
a dynamical system to its fixed point. Also, [92,108] develop
control strategies to drive a population of excitable systems
to the same isostable coordinate, thereby synchronizing their
resulting convergence to a fixed point.

4 Augmented phase reduction for systems
with a periodic orbit

Standard phase reduction (5) is valid only in a small neighbor-
hood of the periodic orbit. Therefore, a control input derived
based on the standard phase reduction can only be expected
to be effective if its amplitude is small enough that it does not
drive the system far away from the periodic orbit. This limi-
tation becomes even more important if the nontrivial Floquet
multiplier, which describes the rate of decay of perturbations
transverse to the periodic orbit, has magnitude close to unity
[71]. This limits the ability to achieve certain control objec-
tives and necessitates the use of augmented phase reduction,
to be described below. Augmented phase reduction uses the
concept of isostables for a periodic orbit [113], which are
coordinates that a give a sense of the distance in directions
transverse to the periodic orbit; see Fig. 11. The addition of
these transversal coordinates allows one to design control
algorithms which, while achieving the desired control objec-

θ = 0

ψ1(x) = ϑ

ψ1(x) = λ1ϑ

γ

Γ0

xγ(t)

Fig. 11 A sketch of the behavior of a two-dimensional system near
its limit cycle xγ (t). The red and blue lines represent two trajectories
which start on the isostable level set indicated as a dotted line, and after
one period are on the isostable level set indicated as a dashed line. The
isostable coordinate ψ1 decreases at an exponential rate governed by
the Floquet multiplier λ1 (color figure online)

tive, also keep the controlled trajectory close to the periodic
orbit [71]. Reference [71] devises an energy-optimal control
algorithm to change the phase of a periodic orbit and shows
how such a control algorithm is effective in situations where
the control algorithmbased on standard phase reduction fails;
wewill give a summary of this approach in Sect. 4.2.We note
that augmented phase reduction is related to other proposed
reductions given in [5,34,91,101]; for more detail, see [71].

Toward defining isostable coordinates for (4) with a peri-
odic orbit, consider a point x0 on the periodic orbit xγ (t)
with the corresponding isochron Γ0. The transient behavior
of the system near x0 can be analyzed by a Poincaré map P
on Γ0,

P : Γ0 → Γ0; x → P(x).
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Here x0 is a fixed point of this map, and we can approximate
P in a small neighborhood of x0 as

P(x) = x0 + DP(x − x0) + O(||x − x0||2),

where DP = dP/dx |x0 . Suppose DP is diagonalizable with
V ∈ R

n×n as a matrix with columns of unit length eigen-
vectors {vk |k = 1, . . . , n} and the associated eigenvalues
{λk |k = 1, . . . , n} of DP . These eigenvalues λi are the Flo-
quet multipliers of the periodic orbit. For every nontrivial
Floquet multiplier λi , with the corresponding eigenvector vi ,
the set of isostable coordinates is defined as [113]

ψi (x) = lim
j→∞

[

eTi V
−1(x j

Γ − x0) exp(− log(λi )t
j
Γ /T )

]

,

i = 1, . . . , n − 1. (58)

Here x j
Γ and t jΓ ∈ [0, T ) are defined to be the position and

the time of the j th crossing of the isochron Γ0, and ei is a
vector with 1 in the i th position and 0 elsewhere. Note that
eTi V

−1 is a left eigenvector of the linearization DP which

selects for the appropriate component of x j
Γ −x0 in the basis

of eigenvectors of DP . As shown in [113], cf. [5], we get the
following equations forψi and its gradient∇γ (t)ψi under the
flow ẋ = F(x):

ψ̇i = kiψi , (59)
d∇γ (t)ψi

dt
=

(

ki I d − DFT(γ (t))
)

∇γ (t)ψi , (60)

where ki = log(λi )/T are Floquet exponents, DF is the
Jacobian of F, and I d is the identity matrix. We refer to this
gradient ∇γ (t)ψi ≡ Ii (θ) as the isostable response curve
(IRC). To ensure uniqueness of the IRC, along with its T -
periodicity, we take the normalization condition∇x0ψi ·vi =
1. The IRC gives a measure of the effect of a control input
in driving the trajectory away from the periodic orbit. The
n-dimensional system can be realized as [113]

θ̇ = ω + Z(θ) · U(t), (61)

ψ̇i = kiψi + Ii (θ) · U(t), for i = 1, . . . , n − 1. (62)

We refer to (61–62) as the augmented phase reduction.
Here, the phase variable θ indicates the position of the tra-
jectory along the periodic orbit, and the isostable coordinate
ψi gives information about transversal distance from the
periodic orbit along the i th eigenvector vi . We note that,
at this order, the phase (θ ) dynamics are unaffected by the
isochron coordinates (ψi ’s) and are identical to the phase
dynamics for standard phase reduction (5). Therefore, the
augmented phase reduction does not lead to any correction
to the phase dynamics. In Sect. 4.3, we will show that this
is no longer the case when the phase reduction is carried out

to next order. The augmented phase reduction is identical to
the two-dimensional system given by equation (22) in [5], in
which θ and σ describe the dynamics along, and transverse
to the periodic orbit, respectively. It is evident from (61, 62)
that the control input affects the oscillator’s phase through
the PRC and its transversal distance to the periodic orbit
through the IRC. In practice, isostable coordinates with non-
trivial Floquetmultiplier sufficiently close to 0 can be ignored
as perturbations in those directions decay quickly under the
evolution of the vector field. If all isostable coordinates are
ignored, the augmented phase reduction reduces to the stan-
dard phase reduction. In this tutorial, we consider dynamical
systems that only have one of the nontrivial Floquet multipli-
ers close to one, and the remaining n − 2 nontrivial Floquet
multipliers sufficiently close to zero. We then can write the
augmented phase reduction as

θ̇ = ω + Z(θ) · U(t), (63)

ψ̇ = kψ + I(θ) · U(t). (64)

Here we have removed the subscript for ψ and k, as we only
have one isostable coordinate. Note that for planar systems,
the eigenvector v is the unit vector along the one-dimensional
projection of the isochron Γ0, and the nontrivial Floquet
exponent k can then be computed, for example, from the
divergence of the planar vector field as [29]

k =
∫ T
0 ∇ · F(xγ (t))dt

T
. (65)

4.1 Calculating isostable response curves

Given the importanceof IRCs for the augmentedphase reduc-
tion, we now describe several ways in which they can be
calculated.

Direct method: [113]
PRCs are calculated by the direct method by giving per-

turbations to the oscillator at various phases and recording
the phase change caused by the perturbation as a function
of the stimulation phase. IRCs can be measured in a similar
way. We apply perturbations (x̃γ + Δxi î) at various phases
along the periodic orbit in the direction of the i th coordinate.
We record a time series of crossings of the Γ0 isochron, t

j
Γ ,

as well as the crossing locations, x j
Γ , and use this informa-

tion with the definition of isostable in (58) to calculate the
isostable changeΔψ caused by the perturbation, whichwhen
scaled by the magnitude of the perturbation yields the IRC.

Adjoint method: [5,113]
Unlike solving for the PRC, backwards integration of (60)

will result in positive Floquet exponents and hence a periodic
solution that is unstable. To see why, consider the related

123



Biological Cybernetics

Fig. 12 IRC for the thalamic
neuron model: The blue line
(resp., red dots) shows IRC in
response to voltage
perturbations computed from
the adjoint (resp., the direct)
method (color figure online)
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adjoint equation (10), which yields Floquet exponents that
are identical to those of the periodic orbit when integrated
backwards in time. By contrast, the Floquet exponents of
(60) will each be shifted by ki . Because (10) has a Floquet
exponent of zero (corresponding to the periodic orbit itself),
the shifted Floquet exponent in (60) will be positive, result-
ing in an unstable periodic orbit. We have therefore found it
useful to formulate the calculation as a boundary value prob-
lem and solve it with Newton iteration; see Appendix C. The
first step is to compute and save the periodic solution xγ (t)
using an ODE solver. For the two-point boundary value for-
mation, we take the boundary conditions as I(0) = I(T ). For
Newton iteration, we take

cν = I(0),

g(cν) = I(0) − I(T ),

∂g

∂c

∣
∣
∣
∣
cν

= I d − J ,

where I d is the identity matrix and J is the Jacobian matrix

J = ∂I(T )

∂I(0)
,

which is computed numerically. Once a periodic solution is
obtained, the computed IRC is scaled by the normalization
condition ∇x0ψ · vi = 1.

Example IRC calculation: thalamic neuron model
As an illustration, we calculate the IRC using both the

direct method and the adjoint method for the thalamic neu-
ron model given by Eqs. (12–14) with the same parameters
as before. Those parameters give a stable periodic orbit
with time period T = 8.3955 ms and nontrivial Floquet
multipliers 0.8275 and 0.0453. Since one of the nontriv-
ial Floquet multipliers is close to 0, we only consider the
isostable coordinate corresponding to the larger nontrivial
Floquet multiplier in the augmented phase reduction. To
calculate the IRC by the adjoint method, we solve the cor-
responding adjoint equation as a two-point boundary value

problem. For the direct method, a MATLAB code was writ-
ten where perturbations of size δv = −0.3 were given at 20
points spread along the periodic orbit. Once the perturbed
trajectories came reasonably close to the periodic orbit, the
corresponding isostable change was calculated, which when
normalized by the magnitude of the perturbation gives the
first component of the IRC. The first (i.e., voltage) compo-
nent of the IRC for the periodic orbit is shown in Fig. 12.

Analytical results
We now derive analytical results for IRCs for two illus-

trative examples which can arise for simplified models of
biological systems and physiological rhythms: : λ − ω sys-
tems andgeneral radial isochron clocks. Someof these results
are similar, but obtained using a different method, to the
results in [37].

• λ − ω systems
Recall from (24) that the PRC for a λ − ω system is

Z(θ) =
(

−H ′(rpo)
G ′(rpo)

cos θ − sin θ

rpo

)

x̂

+
(

−H ′(rpo)
G ′(rpo)

sin θ + cos θ

rpo

)

ŷ.

At a point (x, y) = (rpo, 0) ≡ (x0, y0), the isochron is in the
direction orthogonal to the PRC (because surfaces of constant
phase are orthogonal to the gradient of the phase). Thus, the
eigenvector v is given as

(

− 1
rpo

)

x̂ +
(

− H ′(rpo)
G ′(rpo)

)

ŷ
√
(
H ′(rpo)
G ′(rpo)

)2 + 1
rpo2

.

Wewill use this vector in the normalization condition for the
IRC below. The IRC (in polar coordinates: ∂ψ

∂r r̂ + ∂ψ
∂φ

φ̂ ≡
Ir r̂ + Iφ φ̂) can be found by solving the adjoint equation
subject to T -periodicity and normalization condition as:
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İr = (

k − G ′(rpo)
)

Ir − H ′(rpo)Iφ,

İφ = k Iφ

⇒ Iφ = Iφ0e
kt .

To find k, we note that near the periodic orbit we have the
linear approximation ṙ = G ′(r0)r , with solution r(t) =
r0 exp[G ′(r0)t]; since r(T ) = r0 exp[G ′(r0)T ], the Floquet
exponent k = G ′(r0). Since Iφ and Ir are T -periodic, we
must have Iφ0 = 0. Thus, the IRC in polar coordinates is

Ir ,φ = Ir0 r̂ + 0 φ̂;

equivalently in Cartesian coordinates the IRC is

Ix,y = Ir0 cos θ x̂ + Ir0 sin θ ŷ.

To find the constant Ir0 , we use the normalization condition
at point (x0, y0)

Ix0,y0 · v = 1.

⇒ {

Ir0 x̂ + 0 ŷ
} ·

⎧

⎪⎪⎨

⎪⎪⎩

(

− 1
rpo

)

x̂ +
(

− H ′(rpo)
G ′(rpo)

)

ŷ
√
(
H ′(rpo)
G ′(rpo)

)2 + 1
rpo2

⎫

⎪⎪⎬

⎪⎪⎭

= 1,

⇒ Ir0 = −
√

1 + rpo2H ′(rpo)2
G ′(rpo)2

.

This gives the IRC in polar and Cartesian coordinates as

Ir ,φ = −
√

1 + rpo2H ′(rpo)2
G ′(rpo)2

r̂ + 0 φ̂, (66)

or, equivalently,

Ix,y = −
√

1 + rpo2H ′(rpo)2
G ′(rpo)2

(

cos θ x̂ + sin θ ŷ
)

. (67)

We see that the Cartesian components of the IRC for a λ−ω

system each take positive and negative values, depending
on the value of the phase θ . Thus, the same instantaneous,
infinitesimal perturbation can either increase or decrease the
isostable coordinate (moving the trajectory inward or out-
ward from the periodic orbit, in the sense of isostables),
depending on when it is applied.

We now consider two special cases of λ − ω systems.

Hopf bifurcation normal form
The normal form for a Hopf bifurcation [35] in Cartesian

coordinates is:

ẋ = ax − by + (x2 + y2)(cx − dy),

ẏ = bx + ay + (x2 + y2)(dx + cy),

which can be written in polar coordinates as:

ṙ = ar + cr3,

φ̇ = b + dr2.

Thus, the Hopf normal form is a λ − ω system, with
G(r) = ar + cr3 and H(r) = b + dr2. With parameters
c < 0 (corresponding to a supercritical Hopf bifurcation),
and a < 0, the system has a stable fixed point. As a increases
through 0, a stable periodic orbit is born, and the fixed point
loses stability. For a > 0, the radius of the stable peri-
odic orbit is rpo = √−a/c, and its time period is given by

T = 2π/
(

b + dr2po
)

. Using Eqs. (66, 67), we get the IRC
as

Ix,y = −
√

1 + d2

c2
(

cos θ x̂ + sin θ ŷ
)

. (68)

We note that a special case of this problem was considered
using different methods in Example 5.1 from [37].

Bautin bifurcation normal form
The Bautin normal form [36,54] can capture a saddle-

node bifurcation of periodic orbits, where an unstable branch
of periodic orbits born out of a subcritical Hopf bifurcation
turns around and gains stability. This can be written in polar
coordinates as:

ṙ = ar + cr3 + f r5,

φ̇ = b + dr2 + gr4.

The Bautin normal form is thus a λ − ω system with
G(r) = ar + cr3 + f r5 and H(r) = b + dr2 + gr4.
With parameters c > 0, f < 0, and a > 0, the sys-
tem has an unstable fixed point and a stable periodic orbit.
As a decreases through 0, an unstable periodic orbit is
born in a subcritical Hopf bifurcation, and the fixed point
becomes stable. As a decreases further, the stable and unsta-
ble periodic orbits annihilate in a saddle-node bifurcation of
periodic orbits at a = c2/4 f . The bifurcation diagram is
shown in Fig. 13. Now consider the stable periodic orbit

with radius rpo =
√

−c−
√

c2−4a f
2 f and time period T =

2π/
(

b + dr2po + gr4po
)

. Using Eqs. (66, 67), we get the IRC

in polar and Cartesian coordinates as

Ir ,φ = −
√
√
√
√1 + r2po

(

2drpo + 4gr3po
a + 3cr2po + 5 f r4po

)2

r̂ + 0 φ̂,

Ix,y = −
√
√
√
√1 + r2po

(

2drpo + 4gr3po
a + 3cr2po + 5 f r4po

)2
(

cos θ x̂ + sin θ ŷ
)

.
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Fig. 13 Bautin normal form bifurcation diagram for c = 1, and f =
−2. Solid blue (resp., dashed red) lines show stable (resp., unstable)
solutions (color figure online)

We now consider the IRC for the thalamic neuron model
for a parameter regime for which the system undergoes a
saddle-node bifurcation of periodic orbits, and compare with
the results for the Bautin normal form.

Example: IRC for thalamic neuron model near saddle-node
bifurcation of periodic orbits

For the thalamic neuron model (12–14) with u = 0 and
Ib = 0.3281µA/cm2, there exists a stable periodic orbit near
a saddle-node bifurcation of periodic orbits with time period
T = 88.6816 ms and nontrivial Floquet multipliers 0.8415
and 2.584× 10−8. Since one of the nontrivial Floquet multi-
plier is close to 0, we only consider the isostable coordinate
corresponding to the larger nontrivial Floquet multiplier for
the augmented phase reduction. The nontrivial Floquet expo-
nent comes out to be k = − 0.001946. Figure 14 shows the
periodic orbit for the thalamic neuron model with the given
parameter values. Figure 15 shows the numerically computed
IRC for the thalamic neuron model for these parameters. We
see that the IRC along the voltage v and gating variable r
match closely with a sinusoid, whereas the IRC along the
gating variable h does not. This is because the Bautin normal
form only captures the turning around of an unstable peri-
odic orbit branch born out of a subcritical Hopf bifurcation

and gaining stability in a saddle-node bifurcation of periodic
orbits. However, it does not capture the relaxation nature of
dynamics present in some models, including this one. That
is why the IRC computed numerically for such models does
notmatch closely in shapewith the derived analytical expres-
sion, cf. [44]. The variables x and y in theBautin normal form
vary at a similar rate, but the variables v and h in the thalamic
neuron model vary at a much faster rate than the variable r .

• General radial isochron clocks
Recall from (21) that the PRC for the general radial

isochron clock is

Z(φ) = ω

rpoK (φ)

(− sin φ x̂ + cosφ ŷ
)

,

which can be rewritten in terms of the phase variable θ by
using (16). To use adjoint Eq. (60) for the IRC (withψi → ψ

and ki → k),we need an expression for the nontrivial Floquet
exponent k, whichmust be negative for a stable periodic orbit.
As for a λ − ω system, k = G ′(r0).

The isochrons are radial lines,with eigenvector v = x̂+0 ŷ
at point (x, y) = (−rpo, 0) ≡ (x0, y0). Thus, the adjoint
equation for the IRC becomes:

İr = 0,

İφ =
(

G ′(rpo) − dK (φ)

dφ

)

Iφ.

Since the IRC is T -periodic, Iφ0 = 0. Thus, we get the IRC
in polar and Cartesian coordinates:

Ir ,φ = Ir0 r̂ + 0 φ̂,

Ix,y = Ir0 cosφ x̂ + Ir0 sin φ ŷ.

To find the constant Ir0 , we use the normalization condition
at point (x0, y0)

Fig. 14 Periodic orbit for the
thalamic neuron model with
Ib = 0.3281
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Fig. 15 IRC for the thalamic
neuron model near the
saddle-node bifurcation of
periodic orbits: The blue line
shows the numerically computed
IRCs, while the red line shows
the best matching sinusoid
curve. The left, middle, and
right panels show the v, h, and
r components of the IRC and its
closest matching sinusoid,
respectively (color figure online) 0 2 4 6
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Thus, it gives the IRC in polar and Cartesian coordinates as

Ir ,φ = −r̂ + 0φ̂, (69)

Ix,y = − cosφ x̂ − sin φ ŷ. (70)

We note that the Cartesian components of the IRC for a gen-
eral radial isochron clock take both positive and negative
values depending on the value of φ, which is related to the
phase θ through (16). Thus, as for λ − ω systems, the same
instantaneous, infinitesimal perturbation can either increase
or decrease the isostable coordinate (moving the trajectory
inward or outward from the periodic orbit in the sense of
isostables), depending on when it is applied.

General radial isochron clock SNIPER example
A simple system which undergoes a SNIPER bifurcation

is

ṙ = ρr − r3 ≡ G(r),

φ̇ = = η − sin φ ≡ K (φ; η),

where r and φ are standard polar coordinates and ρ > 0.
This is an example of a general radial isochron clock and
was considered using different methods in Example 5.2 in
[37]. As the bifurcation parameter η varies, two fixed points
annihilate at η = 1, φ = π/2, and r = √

ρ, giving rise to
a periodic orbit for η > 1. The periodic orbit is stable with
radius rpo = √

ρ and time period T = 2π/
√

η2 − 1. The
phase variable θ = f (φ; η) is found from (19) as

θ = 2 arctan

⎛

⎝

η tan
(

φ
2

)

− 1
√

η2 − 1

⎞

⎠ + π. (71)

Thus, as φ varies from −π to π , θ advances linearly in time
from 0 to 2π . The bifurcation occurs at φ = π/2, which
corresponds to θ = π . The periodic trajectory spends most
of its time near φ = π/2 near the bifurcation, as shown in
the left panel of Fig. 16. Thus, we expect the PRC to be large

near φ = π/2 (i.e., θ = π ), and small elsewhere. From (20),
we get the PRC as

(
∂θ

∂r
,
∂θ

∂φ

)

=
(

0,

√

η2 − 1

η − sin φ

)

, (72)

which in terms of θ is

(
∂θ

∂r
,
∂θ

∂φ

)

=
(

0,
η2 − cos θ − √

η2 − 1 sin θ

η
√

η2 − 1

)

. (73)

It is clear from (72) that the PRC is always positive, and it
blows up to infinity at φ = π/2 (i.e., θ = π) at the bifur-
cation. This is evident from Fig. 16. Note: For η � 1, the
expression in (73) reduces to ∂θ

∂φ
= 1−cos θ

ω
, which is consis-

tent with the SNIPER example given in Sect. 2, cf. [2,19].
Transforming to Cartesian coordinates (x, y) = (r cosφ,

r sin φ), we can write the PRC as

Z(θ) = cos θ + √

η2 − 1 sin θ − 1
√

ρ
√

η2 − 1
x̂

+ sin θ − √

η2 − 1 cos θ√
ρη

ŷ.

From (69–70), we get the IRC in polar and Cartesian coor-
dinates:

Ir ,φ = −r̂ + 0φ̂,

Ix,y = − cosφ x̂ − sin φ ŷ.

At first glance, it seems that the IRC is sinusoidal. It is, but
only far away from the bifurcation point. As we approach the
bifurcation, φ no longer varies linearly with phase (see the
left panel of Fig. 16). The “sinusoidal” IRC gets expanded
near the bifurcation point and squeezed away from the bifur-
cation point. This is seen in Fig. 17, which plots the IRC
as the bifurcation parameter η varies. We see that near the
bifurcation point, the IRC stays close to zero in the x direc-
tion and close to − 1 in the y direction. This observation
agrees with the intuitive definition of IRC. Near the bifurca-
tion point, the periodic trajectory points in the x direction,
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Fig. 16 φ evolution and PRC for the general radial isochron clock
SNIPER bifurcation model: The left panel plots the evolution of
azimuthal angle φ as a function of the phase θ of the periodic orbit,
which advances linearly in time. The middle (resp., the right) panel

plots the PRC Zφ versus θ (resp., φ). The blue, red, green, and black
lines correspond to η = 20, 1.5, 1.05, and 1.0005 respectively (color
figure online)
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Fig. 17 IRC for the general radial isochron clock SNIPER bifurcation model: The left (resp., the right) column plots the IRC Ix (resp., Iy) versus
θ . In both plots, the blue, red, green, and black lines correspond to η = 20, 1.5, 1.05, and 1.00001 respectively (color figure online)

so the IRC, which is the gradient of ψ coordinate, is zero
along that direction. On the other hand, the y coordinate is
antiparallel to the isochron, along which the gradient of ψ is
unity. We can write IRC as a function of phase as

Ix,y =
√

η2 − 1 sin θ − (η2 − 1) cos θ
√

η2 − 1 sin θ + cos θ − η2
x̂

+
η
(

1 − √

η2 − 1 sin θ − cos θ
)

√

η2 − 1 sin θ + cos θ − η2
ŷ.

We now consider a neural model for parameters near a
SNIPER bifurcation and compare the PRC and IRC with the
results from the preceding SNIPER example.

Example: Morris–Lecar model, cf. [37]
The Morris–Lecar model [72], a two-dimensional neuron

model, is given as

CM v̇ = Ib − gL(v − EL) − gK n(v − EK )

−gCam∞(v)(v − ECa),

ṅ = φ(n∞(v) − n)/τn(v).

In these equations, Ib is the baseline current, v is the trans-
membrane voltage, and n is the gating variable. For details

of the functions m∞(v), n∞(v), τn(v) and the rest of the
parameters, see Appendix A. For Ib = 39.9957 mA, the
system has a stable periodic orbit near a SNIPER bifurca-
tion with time period T = 1002.88 ms, nontrivial Floquet
multiplier λ = 3.632 × 10−45, with corresponding nontriv-
ial Floquet exponent k = − 0.1020. The time series for one
period is shown in Fig. 18. Figure 19 plots the PRC and IRC
for the Morris–Lecar oscillator. The PRC is sinusoidal and
does not change sign, just like the simple model (see Fig. 16
for comparison). The IRC looks like a sinusoid skewed to
one side, similar to the IRC calculated for the simple model
(see Fig. 17 for comparison).

4.2 Energy-optimal phase control revisited [71]

As mentioned previously, when the control objective is more
demanding, control based on standard phase reduction can
fail because the controlled trajectory leaves the vicinity of
the unperturbed periodic orbit where the reduction is valid.
This can occur, for example, when trying to control cardiac
pacemaker cells or circadian oscillators [71]. This motivates
a control formulation based on the augmented phase reduc-
tion (63–64). This control algorithm minimizes not only the
control energy, but alsominimizes the oscillator’s transversal
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Fig. 18 Morris–Lecar model:
Time series for the periodic orbit
near the SNIPER bifurcation.
Here Ib = 39.9957 mA
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Fig. 19 Morris–Lecar model:
Top (resp., bottom) row plots the
PRC (resp., IRC) near the
SNIPER bifurcation. Here
Ib = 39.9957 mA
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distance to the uncontrolled periodic trajectory. We take the
following cost function: [71]

C[u(t)] =
∫ T1

0

[

αu2 + βψ2 + λ1
(

θ̇ − ω − Z(θ)u(t)
) + λ2

(

ψ̇ − kψ − I (θ)u(t)
)]

︸ ︷︷ ︸

L

dt .

(74)

The first term in the cost function ensures that the control law
uses aminimumenergy input, and the second termminimizes
the transversal distance (in the direction of the slow isostable
coordinate ψ) from the uncontrolled periodic trajectory. The
last two terms ensure that the system obeys the augmented
phase reduction, with λ1 and λ2 being the Lagrange multi-
pliers. The Euler–Lagrange equations are obtained from

∂L
∂q

= d

dt

(
∂L
∂q̇

)

, q = λ1, λ2, θ, ψ, u,

which gives

θ̇ = ω + Z(θ)u(t), (75)

ψ̇ = kψ + I (θ)u(t), (76)

λ̇1 = −u
(

λ1Z
′(θ) + λ2 I

′(θ)
)

, (77)

λ̇2 = 2βψ − kλ2, (78)

where

u(t) = λ1Z(θ) + λ2 I (θ)

2α
. (79)

These equations are solved as a four-dimensional two-point
boundary value problem (seeAppendixC)with the boundary
conditions

θ(0) = 0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0.

The last boundary condition ensures that trajectory ends
back on the periodic orbit. The corresponding optimal con-
trol problem with standard phase reduction, as described in
Sect. 2, can be obtained by setting β = 0 and λ2 = 0 in the
cost function.

Energy-optimal phase control example using augmented
phase reduction: thalamic neuron model

To demonstrate the control, we again consider the tha-
lamic neuron model given by Eqs. (12–14) with the same
parameters as before and Ib = 5µA/cm2. This gives a stable
periodic orbit with time period T = 8.3955 ms and nontriv-
ial Floquet multipliers 0.8275 and 0.0453. Since one of the
nontrivial Floquet multipliers is close to 0, we only consider
the isostable coordinate corresponding to the larger nontrivial
Floquetmultiplier in the augmented phase reduction.We set a
more “aggressive” control objective T1 = 0.5T and calculate
the energy-optimal control based on both the augmented and
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Fig. 20 Thalamic neuron
model: Top row shows the
uncontrolled periodic orbit,
PRC, and IRC for the thalamic
neuron model with parameters
given in the main text. The
middle (resp., bottom) row
shows the trajectory, time series,
and control input for control
based on the augmented (resp.,
standard) phase reduction.
Control is on (resp., off) for the
portion shown by the thick black
(resp., thin blue) line. The
trajectory starts at the small red
circle. The red horizontal line
shows the amplitude of the
uncontrolled periodic orbit
(color figure online)
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standard phase reduction. The results are shown in Fig. 20.
The numerical steps taken to generate these results are similar
to the ones given by the flowchart in Fig. 3. To compare the
control laws, we compute the control energy as

∫ T1
0 u(t)2dt

and the control error as the normalized Euclidean distance
between the final position x(T1) and the initial position x(0).

As seen in middle and bottom panels of the left column of
this figure, the control based on the augmented phase reduc-
tion does better at keeping the trajectory close to the periodic
orbit. On the other hand, with control based on the stan-
dard phase reduction, the trajectory moves far away from the
periodic orbit. Since one of the Floquet multipliers is close
to zero, the voltage state returns back quickly, but the other
states still remain far away from the limit cycle. This is evi-
dent from the first two panels of the bottom rowof Fig. 20.We
also see that for the augmented phase reduction-based con-
trol, the control input is large when the IRC is near zero and
is small when the IRC is large. This diminishes the effect
of the control input on the isostable coordinate, and thus,
the oscillator’s transversal distance from the periodic orbit
remains small. This ensures that the augmented phase reduc-
tion represents the dynamics accurately, making the control
more effective. The better performance of the augmented
phase reduction- based control is also reflected in the con-
trol error, which is 0.023 and 0.045 for the augmented and
standard phase reduction-based optimal control, respectively.
The augmented phase reduction-based control does better at
the expense of consuming more energy (434.82 units) com-
pared to (329.25 units) in the standard phase reduction- based
control.

Reference [71] gives other examples which illustrate how
the use of the augmented phase reduction for energy-optimal

phase control can give better results than the use of standard
phase reduction, including cases where the standard phase
reduction completely fails. It also considers the robustness
of this algorithm to noise.

4.3 Second-order phase reduction [105]

Standard phase reduction (5) is valid for infinitesimal per-
turbations to a periodic orbit. In practice, however, provided
the perturbations are small enough so that the system’s state
does not travel too far from the unperturbed periodic orbit, (5)
can be used in control problems where the applied control is
certainly not infinitesimal (e.g., for phase- and time-optimal
control problems from Sect. 2). In situations where the
applied control must be larger, Eq. (62) can be used with the
explicit goal of limiting the magnitude of the isostable coor-
dinates so that the phase-reduced dynamics remain valid, as
was done in Sect. 4.2. In this instance, the augmented phase-
reduced equations (61–62) provide a reasonably simplified
framework from which further analysis can be performed.

Note, however, that to a leading order approximation, the
phase and isostable dynamics from (61–62) are uncoupled so
that the phase dynamics of (61) are no different than those
of (5). In many cases, it can be useful to employ a second-
order approximation to the phase and isostable dynamics to
better understand how the phase-reduced dynamics change
as the system is perturbed from its stable periodic orbit. Previ-
ous authors have investigated the computation of second and
higher-order approximations of isochrons near the periodic
orbit [93,94], which is useful for understanding the perturbed
behavior of initial conditions from the periodic orbit itself.
However, such strategies are difficult to apply to systems
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which have already been perturbed from the periodic orbit
without explicit knowledge of the state with respect to the
periodic orbit. As we show below, isostable coordinates can
be used to bridge this gap resulting in a closed set of equa-
tions for a second-order accurate phase-amplitude reduction.
This reduction framework was originally presented in [105]
and is summarized below.

To begin, to leading order, the gradient of the phase and
isostable coordinates near the stable periodic orbit can be
written as

∂θ

∂x

∣
∣
∣
∣
xγ (θ)+Δx

= ∂θ

∂x

∣
∣
∣
∣
xγ (θ)

+ ∂2θ

∂x2

∣
∣
∣
∣
xγ (θ)

Δx + O(|Δx|2)

= Z(θ) + Hθ,xγ (θ)Δx + O(|Δx|2), (80)

∂ψi

∂x

∣
∣
∣
∣
xγ (θ)+Δx

= ∂ψi

∂x

∣
∣
∣
∣
xγ (θ)

+ ∂2ψi

∂x2

∣
∣
∣
∣
xγ (θ)

Δx + O(|Δx|2)

= Ii (θ) + Hψi ,xγ (θ)Δx + O(|Δx|2),
i = 1, . . . , n − 1, (81)

where Hθ,xγ (θ) and Hψi ,xγ (θ) are the Hessian matrices of
second derivatives of θ and ψi evaluated at xγ (θ). Near the
periodic orbit, Floquet theory [32,35] allows us to write

Δx(t) =
n

∑

j=1

c j exp(k j t)q j (t),

where k j are the Floquet exponents associated with the lin-
earizationof differential equation (1) byΔẋ=DF(xγ (t))Δx,
q j are T -periodic vectors, and c j are chosen to satisfy ini-
tial conditions. Using the definition of isostables (58), one
can show that c j = ψ j so that the following relation can be
derived as in [105]:

Δx(θ, ψ1, . . . , ψn−1) =
n−1
∑

j=1

ψ jp j (θ), (82)

where p j (θ(0) + ωt) = q j (t). Recalling the fact that
dθ/dt = ∂θ/∂x · dx/dt , one can combine (82), (80) and
perturbed system dynamics (4) to obtain a second- order
correction to the phase reduction. Likewise, the relation
dψi/dt = ∂ψi/∂x ·dx/dt , along with Eqs. (82), (81) and (4),
provides a second-order correction to the isostable dynamics.
The augmented reduction to this order is given as

θ̇ = ω + Z(θ) · U(t) +
n−1
∑

j=1

[

B j (θ)ψ j

]

· U(t), (83)

ψ̇i = kiψi + Ii (θ) · U(t) +
n−1
∑

j=1

[

C j
i (θ)ψ j

]

· U(t), (84)

for i = 1, . . . , n − 1, where B j (θ) ≡ Hθ,xγ (θ)p j (θ) and

C j
i (θ) ≡ Hψi ,xγ (θ)p j (θ). Equation (83) is a second-order

correction to the standard phase reduction (5). Unlike the
augmented reduction (61–62), the phase dynamics depend
on the isostable coordinates.

Ultimately, to find a second-order accurate augmented
phase reduction, one must have knowledge of Hθ,xγ (θ) and
Hψi ,xγ (θ). These can be obtained by noting that for an initial
condition on the periodic orbit, perturbation results in the
following changes to the phase coordinate:

Δθ = ∇xγ θΔx + 1

2
ΔxTHθ,xγ Δx + O(|Δx|3). (85)

If we consider a infinitesimal perturbation Δx, to the tra-
jectory xγ (t) at time t = 0, letting x(t) be the trajectory
resulting from this initial condition and defining Δx(t) =
xγ (t) + Δx(t), then to a second-order approximation,

Δx(t)
dt

= DF(xγ (t))Δx(t) + 1

2

⎡

⎢
⎢
⎢
⎣

ΔxT(t)H1,xγ (t)

ΔxT(t)H2,xγ (t)
...

ΔxT(t)Hn,xγ (t)

⎤

⎥
⎥
⎥
⎦

Δx(t)

+O(|Δx|3), (86)

where Hi,xγ (t) is the Hessian matrix of second partial deriva-
tives of the i th component of F. Similar to the process of
obtaining (10) from both (8) and (7), one can take the time
derivative of (85) (noting that dΔθ/dt = 0), substitute (86)
into the result, and collect allO(|Δx|2) terms of the result to
yield (cf. [105])

dHθ,xγ (t)

dt
= −

n
∑

k=1

[

Zk(xγ (t))Hk,xγ (t)
]

− DFT(xγ (t))Hθ,xγ (t) − Hθ,xγ (t)DF(xγ (t)),
(87)

where Zk(x(t)) ≡ ∂θ/∂xi |x(t). The solution to (87) must be
T -periodic with the additional normalization condition

−DFT(xγ (t))∇xγ (t)θ = Hθ,xγ (t)F(xγ (t)), (88)

in other words, for an initial perturbation along the periodic
orbit the change in the PRC predicted according to adjoint
equation (10) [i.e., the left-hand side of Eq. (88)] must be
identical to the change predicted by using Hθ,xγ (t) [i.e., the
right-hand side of Eq. (88)].

As shown in [105], one can use similar arguments to those
presented above to show Hψi ,xγ (θ) can be obtained by finding
the periodic solution of
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Fig. 21 A Different level sets of
ψ1 for the thalamic neural
model (12–14). B The
component of B1(θ) associated
with voltage perturbations. In C,
the gradient of the phase
coordinate is calculated using
the direct method (dots) and
estimated according to the
reduced equation (solid lines)
for locations corresponding to
different values of θ and ψ1

dHψi ,xγ (t)

dt
= ki Hψi ,xγ (t) −

n
∑

k=1

[

Ii,k(xγ (t))Hk,xγ (t)
]

− DFT(xγ (t))Hψi ,xγ (t) − Hψi ,xγ (t)DF(xγ (t)), (89)

subject to the normalizing condition

(

ki I d − DFT(xγ (t))
)

∇xγ (t)ψi = Hψi ,xγ (t)F(xγ (t)), (90)

where Ii,k(xγ (t)) ≡ ∂ψi/∂xk |xγ (t). Notice that (87) requires
knowledge of the PRC and that (89) requires knowledge of
the IRC, both of which must be found, for instance, using
(10) and (60), respectively.

As discussed in [105], the computational effort required
to find the matrices Hθ,xγ (t) and Hψi ,xγ (t) using (87) and
(89) grows with the square of the dimension of system (1).
As such, this computation becomes a limiting factor in the
reduction, especially in higher-dimensional systems. Prelim-
inary results, however, suggest that it is possible to directly
compute the termsB j (θ) andC j

i as part of (83) and (84) using
an alternative strategy with computational effort that scales
with the dimension of the system. Such a method would be
preferable especially when some of the isostable coordinates
have small- magnitude Floquet multipliers and are neglected.
Such investigations will be the subject of future work by the
authors.

Example: second-order phase reduction for thalamic neuron
model

Figure 21 gives an example of the second-order reduc-
tion methodology detailed above applied to the thalamic
neural model considered earlier in Sect. 2 with parame-
ters given in Appendix A. Nonunity Floquet multipliers

associated with this periodic orbit are numerically deter-
mined to be λ1 = 0.8275 and λ2 = 0.0453. Because λ2
is close to zero, we will only consider the decay of solu-
tions associated with the more slowly decaying direction in
this example. The solid line in panel A shows the periodic
orbit, and curves of the form x(θ, ψ1) = xγ (θ) + ψ1p1(θ)

for ψ1 = ± 0.05 are shown as dashed lines. The function
B1(θ) is numerically determined according to (83) by first
calculating Hθ,xγ (θ) using to (87). B1

V (θ), i.e., the compo-
nent of B1(θ) associated with voltage perturbations is shown
in panel B. Panel C shows the gradient of the phase coordi-
nate at locations x(θ, ψ1) = xγ (θ) + ψ1p1(θ). Numerical
calculations using direct method (6) are shown with dots,
and the predicted values are shown according to the relation
∂θ
∂V = ZV (θ)+ψ1B1

V (θ)where ZV (θ) is the components of
Z(θ) associated with voltage perturbations. Practically, the
neuron in this examplemight be perturbed from its limit cycle
solution to a nonzero isostable coordinate; the reduction strat-
egy suggested here gives a sense of how the effective phase
response curve will change due to those perturbations. The
ability to predict how a periodic dynamical system “adapts”
to past inputs is important in many biological applications
(cf., [11,52,99]). Additional control applications where this
reduction strategy is useful are also shown in [105]. In gen-
eral, it is expected that using the second-order reduction with
optimal control algorithms will give improved accuracy over
the standardor augmentedphase reduction, particularlywhen
the control input causes the trajectory to move away from
the immediate neighborhood of the unperturbed periodic
orbit.
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5 Global isochrons and isostables

The phase dynamics associated with weak control inputs can
typically be understood in terms of the phase reduction for-
mulations presented so far. However, for stronger control
inputs it might be necessary to consider the full global prop-
erties of the isochrons and isostables. The reduction in terms
of global isochron and isostable coordinates is

θ̇ = ω + Z(ψ, θ) · U(t), (91)

ψ̇ = kψ + I(ψ, θ) · U(t), (92)

which is identical to (63–64), except that we now have a
global PRC and a global IRC instead of evaluating these on
the periodic orbit. This reduction is exact in the full basin of
attraction of the periodic orbit.

With this inmind, herewe describe severalmethodswhich
have been proposed to calculate isochrons and isostables
throughout the basin of attraction of a periodic orbit.

(Brute force) forward integration method: [45]
Here one chooses an initial condition x0 ∈ xγ and inte-

grates forward for some large time τ . One then takes an intial
condition xtest in the basin of attraction of xγ and integrates
forward for the same time τ . Let Φt (x) denote the flow of
the dynamical system, i.e., the trajectory starting at x. If

|Φτ (x0) − Φτ (xtest)| < ε,

for some appropriately small tolerance ε, then xtest approx-
imately lies on the isochron defined by x0. If not, one
considers a different xtest which is expected to give a smaller
|Φτ (x0) − Φτ (xtest)| after time τ , for example based on a
bisection algorithm. This is repeated for enough points x0
and xtest in order to find the isochrons of interest. While
this method can in principle be used for systems of any
dimensionality, in practice one expects that it will be com-
putationally very costly.

Backward integration method: [4]
Here one chooses an initial condition x0 ∈ xγ and an

initial condition xtest near x0 on the local approximation to
isochron as determined by the PRC. (Note that since the
PRC is the gradient of the phase θ , it is perpendicular to
the isochrons, which are level sets of θ .) The pointsΦ−τ (x0)
and Φ−τ (xtest), which can be obtained numerically through
backward integration, approximately lie on same isochron.
By choosing enough initial points, all isochrons of interest
can be approximated numerically. In principle, this method
can be used for systems of any dimensionality, but it typically
has only been used for planar systems.

Boundary value problem formulation: [80]
It is possible to formulate the calculation of isochrons as

a boundary value problem as follows. Truncating (7), we
obtain the linearization about the periodic orbit xγ

dΔx(t)
dt

= DF(xγ (t))Δx(t).

Now, notice that if Δx(0) is tangent to an isochron, then

Δx(T ) = μΔx(0)

whereμ is the Floquet multiplier for the periodic orbit. Thus,
locally an isochron is given by the stable eigenvector of the
linearization about the periodic orbit. This defines a boundary
value problem, and one can trace out isochrons by using
different (small-magnitude) vectors in the direction Δx(0).

We note that for fast–slow dynamical systems, which are
common for biological oscillators, |μ| can be quite small, in
which case it can be numerically advantageous to let

Δx(t) = e(logμ)tw(t), τ = t/T .

Then

dw
dτ

= T (DF(xγ ) − logμ)w, w(1) = w(0).

In [80], this was solved using the boundary value solver from
the numerical continuation package AUTO. This method
works well for fast–slow systems as often arise for biological
problems and can allow isochrons to be calculated in beau-
tiful detail [55,56,80], but thus far it has only been used for
planar systems.

Method of Fourier averages: [64]
Reference [64] makes the observation that isochrons of a

periodic orbit with angular frequency ω = 2π/T are level
sets of the Fourier average defined by

f ∗
ω(x) = lim

τ→∞
1

τ

∫ τ

0
( f ◦ φt )(x)e−iωtdt,

where f : Rn → R is a continuously differentiable observ-
able function and φt (x) is the flow induced by (1). This is
related to the fact that Fourier averages are eigenfunctions of
the Koopman semigroup of operators Ut which are defined
by Ut f (x) = f ◦ φt (x). The Fourier averages can be cal-
culated numerically for specific trajectories using forward
integration of a set of initial conditions, and interpolation is
used to obtain the isochrons. This method can be used for
systems with dimensionality two or greater; see, e.g., [66]
for its application to bursting neurons. Reference [63] devel-
ops a related framework to calculate global isochrons and
isostables for periodic orbits.
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Invariance equation approach: [5,37,42]
This method is based on a parameterization K (θ, σ ) of

the stable manifold of a periodic orbit for a planar system
which gives the simplified equations

θ̇ = 1/T ,

σ̇ = λσ/T ,

where λ is the nontrivial Floquet exponent for the periodic
orbit. These equations are equivalent apart from scaling to
what we called the augmented phase reduction for a planar
system in the absence of control input (in particular, θ here
is a rescaled version of the phase in the augmented phase
reduction, andσ is a scaled version of the isostable coordinate
ψ). This parametrization satisfies the invariance equation [3]

(
1

T
∂θ + λσ

T
∂σ

)

K (θ, σ ) = F(K (θ, σ )),

which is solved numerically in [37] using a series method
and in [42] using a Newton method. Isochrons and isostables
then can be deduced from the solution for K , as can the phase
response curve and the isostable response curve generalized
to be defined throughout the basin of attraction of the periodic
orbit, rather than just in its neighborhood [5,37]. Thus far, this
approach has only been applied to planar systems.

Hamilton–Jacobi formulation: [17]
By definition of isochrons,

dθ

dt
= ∂θ

∂x
· dx
dt

= ω,

from which we obtain the (static) Hamilton–Jacobi equation
for θ(x):

∂θ

∂x
· F(x) = ω, (93)

which holds for all points x in the basin of attraction of
the periodic orbit. A simple boundary condition for this
PDE is obtained by numerically finding the phase every-
where on the periodic orbit itself: One chooses an initial
point on the periodic orbit and calculates the phase accord-
ing to dθ/dt = ω. After solving (93), any isochron can
be visualized by taking an isocontour of θ(x). Reference
[17] demonstrates this approach by using a particular finite
difference discretization of (93) and an iterative fast sweep-
ing method which allows numerical calculation of isochrons
for systems with dimensionality two or greater. Unlike the
method of Fourier averages which solves for a number of
specific trajectories, this is an Eulerian method which can
often lead to faster computations for higher-dimensional
systems.

Analytical results: global isostables and isochrons
Wenowderive the coordinate systems for global isostables

and isochrons for two classes of planar dynamical systems
which can arise for simplified models of biological sys-
tems and physiological rhythms: λ − ω systems and general
radial isochron clocks. Some of these results are similar, but
obtained using a different method, to the results in [37].

• λ − ω systems
In general, the dynamics of the isostable coordinate in the

polar coordinate system are given by

dψ (x)
dt

= kψ (x) = ∂ψ

∂r
ṙ + ∂ψ

∂φ
φ̇, (94)

where k is the nontrivial Floquet exponent for the periodic
orbit. Becauseλ−ω systems are radially symmetric, ∂ψ

∂φ
= 0,

i.e., ψ is a function of r only. Using this and (22), we can
then rewrite (94) as:

dψ (r)

dr
= kψ (r)

G(r)
, (95)

with the condition that ψ(rpo) = 0 for all φ. Note that these
results are consistent with (66), which says that the IRC (i.e.,
the gradient of ψ evaluated on the periodic orbit) points in
the radial direction.

We can carry out a similar analysis to find global isochron
coordinates, cf. Example 5.3 of [37]. Unlike the case of the
isostable coordinate, the isochron coordinate has a depen-
dence on both r and φ; this results from the requirement that
θ changes with φ on the periodic orbit. We equate the time
derivative to the appropriate partial derivatives:

dθ (x)
dt

= ω = ∂θ

∂r
G(r) + ∂θ

∂φ
H(r).

Because φ̇ depends only on r , it is constant along the peri-
odic orbit; therefore, φ̇

(

rpo
) = ω and we can without loss

of generality specify that, along the periodic orbit, θ = φ,
meaning ∂θ

∂φ
= 1. Furthermore, for a fixed value of r = r1,

θ (r1, φ)+2π = θ (r1, φ + 2π) and ∂θ
∂φ

must be independent
of φ because of the system’s radial symmetry (the dynam-
ics are completely independent of φ so the phase dynamics
should be similarly independent). Thus, we can extend the
result on the periodic orbit and conclude that ∂θ

∂φ
= 1 for all

r and φ. As a result, we can again reduce the system to an
ODE in r :

dθ

dr
= ω − H(r)

G(r)
, (96)
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with the global isochron coordinate being given by:

θ (x) = φ +
∫

ω − H(r)

G(r)
dr . (97)

We note that these results are consistent with (23) for the
PRC (i.e., the gradient of the phase θ evaluated on a periodic
orbit) of a λ − ω system.

Example: supercritical Hopf bifurcation
For the supercritical Hopf bifurcation, G(r) = ar + cr3

and H(r) = b+dr2; this is slightlymore general than Exam-
ple 4.1.1 from [5], which uses a different but related approach
to find what we refer to as global isochrons and isostables.
The ODE (95) for the global isostable coordinates is:

dψ (r)

dr
= − 2aψ (r)

ar + cr3
, (98)

which has the general solution

ψ (r) = c1
( a

r2
+ c

)

, (99)

where c1 is an arbitrary scaling coefficient that can be chosen
to normalize as desired. To match the IRC given in (68), one
would take

c1 = −
√−ac(c2 + d2)

2
.

Note that rearranging (99) allows us to represent r in terms
of ψ instead:

r =
√

c1a

ψ − c1c
. (100)

Now, substituting (99) into (98) and simplifying yields the
IRC directly:

Ir ,φ (r) = −2ac1
r3

r̂ ⇒ Ir ,φ (ψ) = −2

√

(ψ − c1c)3

c1a
r̂ ,

Ix,y = −2

√

(ψ − c1c)3

c1a

(

cosφ x̂ + sin φ ŷ
)

.

We now carry out a similar analysis to find the global
isochron coordinates. Our ODE (96) is

dθ (x)
dr

= −d
(

r2 + a
c

)

ar + cr3
,

which is solved as:

θ (r , φ) = φ − d

c
log r + c2. (101)

To enforce φ = θ on the periodic orbit, we select c2 =
d
2c log

(− a
c

)

. The relation betweenφ and θ can thenbeflipped
and written as:

φ = θ + d

2c

(

log

(
c1a

ψ − c1c

)

− log
(

−a

c

))

. (102)

Lastly, by taking the gradient of (101), the global PRC is
given by

Zr ,φ (r , φ) = −d

c

1

r
r̂ + 1

r
φ̂,

Zx,y (r , φ) = −1

r

(
d

c
cosφ + sin φ

)

x̂

+1

r

(

cosφ − d

c
sin φ

)

ŷ.

Note that for r = rpo =
√

− a
c and using the fact that θ = φ

on the periodic orbit, this expression is equivalent to that
obtained from (24). In general, the PRC can be put in terms
of the coordinates ψ and θ by substituting for r and φ using
(100) and (102), respectively.

Example: control to an unstable fixed point
A new frontier is the application of optimal control to sys-

tems forwhich the global isochrons and isostables are known;
to our knowledge, the following is the first example of such a
calculation. Typically,whenwe consider the phase reduction,
one of the assumptions is that the trajectory remains close to
the stable periodic orbit, i.e.,ψ ≈ 0. Theremay be situations,
however, where this is not desirable; in this case, the under-
lying assumptions of the non-global approach no longer hold
and it is necessary to use global coordinates. For example,
for the supercritical Hopf bifurcation there is an unstable
fixed point interior to the stable periodic orbit; attempting to
control to this point using the traditional augmented phase
reduction analysis would yield an inaccurate result, but with
the global coordinates we can effectively drive the system to
the neighborhood of this unstable point. In terms of the sta-
ble periodic orbit’s isostable coordinates, the unstable fixed
point corresponds to ψ → ∞; this can be seen from (99).
Therefore, designing a control to reach the unstable point at
time T1 would correspond to maximizing the value of ψ at
T1.

To illustrate this, we consider the Hopf bifurcation normal
form with the parameters a = 0.1, b = 1, c = d = −1.
Additionally, we assume we can only apply a control input
in the x̂ direction. The components of the PRC and IRC in
the x̂ direction are, respectively,

Z (r , φ) = −1

r

(
d

c
cosφ + sin φ

)

(103)
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Fig. 22 Control to an unstable
fixed point for the Hopf
bifurcation normal form: The
top panel shows the computed
optimal input to reach r = 0.01
at T1 = 12, with the inset
showing more detail. The
bottom left panel shows the
trajectory of the system which
starts at (x, y) = (rpo, 0) until it
reaches the target for r , and the
bottom right panel shows the
slow relaxation back to the
periodic orbit after the control is
turned off at T1 = 12
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and

I (r , φ) = −2a

r3
cosφ. (104)

Note that for convenience, for (104) we have taken c1 = 1.
We now design a minimum energy control that brings the

system close to the fixed point. Our cost function is given
by (28), where u(t) is the control input and T1 is now the
time at which we want the trajectory to be within a specified
Euclidean distance from the unstable fixed point. We apply
calculus of variations to minimize

C[u(t)] =
∫ T1

0
[u(t)]2 + λ1

(

θ̇ − ω − Z(ψ, θ)u(t)
)

(105)

+λ2
(

ψ̇ − kψ − I (ψ, θ) u (t)
)

dt . (106)

The associated Euler–Lagrange equations are:

2u (t) − λ1Z (ψ, θ) − λ2 I (ψ, θ) = 0

⇒ u (t) = λ1Z (ψ, θ) + λ2 I (ψ, θ)

2
, (107)

dλ1
dt

= −λ1
∂Z

∂θ
u (t) − λ2

∂ I

∂θ
u (t) , (108)

dλ2
dt

= −λ1
∂Z

∂ψ
u (t) − λ2

∂ I

∂ψ
u (t) − λ2k. (109)

Because it is more convenient in general to represent the
PRC and IRC in terms of the original polar coordinates, we
calculate the partial derivatives with respect to θ and ψ by
utilizing the chain rule:

∂Z

∂ψ
= ∂Z

∂r

∂r

∂ψ
+ ∂Z

∂φ

∂φ

∂ψ
,

∂ I

∂ψ
= ∂ I

∂r

∂r

∂ψ
+ ∂ I

∂φ

∂φ

∂ψ
, (110)

∂Z

∂θ
= ∂Z

∂φ

∂φ

∂θ
,

∂ I

∂θ
= ∂ I

∂φ

∂φ

∂θ
. (111)

The partial derivatives of r and φ are computed from (100)
and (102). A shooting method on the reduced model was
employed to obtain the values of λ1 and λ2 required to give
the value of ψ corresponding to r = 0.01 at time T1; Fig. 22
shows the results of a realization for T1 = 12. Then, the
original Hopf bifurcation normal form model was simulated
using the input corresponding to these initial values for λ1
and λ2 for the reduced model. At the target time T1, the
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control was turned off (u = 0) and the system was allowed
to relax back to the periodic orbit. As can be seen, this control
strategy effectively forces the system into the vicinity of the
unstable fixed point.

We note that this method is computationally simpler than
using a Hamilton–Jacobi–Bellman approach to achieve a
similar goal of steering a trajectory to an unstable fixed point
[13,73]; however, it requires knowledge of the global PRC
and IRC, which might not always be possible.

• General radial isochron clock
Applying (94) to the general radial isochron clock sys-

tem (15) gives

kψ (r) = ∂ψ

∂r
G(r) + ∂ψ

∂φ
K (φ). (112)

If we make the ansatz that the global isostable coordinate
only depends on r , that is that ∂ψ

∂φ
= 0, then

dψ

dr
= kψ(r)

G(r)
. (113)

If we can solve this under the condition thatψ(rpo) = 0, then
the ansatz is confirmed.

The isochrons are radial for systems described by (15),
and we can use (16) to determine how the phase variable θ

depends on φ.

General radial isochron clock SNIPER example
We now consider the planar general radial isochron clock

SNIPER bifurcation example considered previously, cf. [37],
with G(r) = ρr − r3 and K (φ; η) = η − sin(φ); here
rpo = √

ρ and k = G ′(rpo) = −2ρ. From (113), the ODE
for the global isostable coordinate is

dψ (r)

dr
= −2ρψ (r)

ρr − r3
. (114)

This has the general solution:

ψ (r) = c1
(

1 − ρ

r2

)

, (115)

which is of the same form as the isostables found in (99) up
to a scaling factor. From here, we find that the global IRC is
given as:

Ir ,φ (r) = 2ρc1
r3

r̂ ⇒ Ir ,φ (ψ) = 2

√

(c1 − ψ)3

c1ρ
r̂ ,

(116)

or, equivalently,

Ix,y = 2

√

(c1 − ψ)3

c1ρ

(

cosφ x̂ + sin φ ŷ
)

. (117)

Assuming the system has a periodic orbit, the global
isochrons are found by solving (72):

dθ

dφ
=

√

η2 − 1

η − sin φ
. (118)

The resulting PRC is therefore given by:

Zr ,φ (r , φ) = 1

r

√

η2 − 1

η − sin φ
φ̂

⇒ Zr ,φ (ψ, θ) =
√

c1 − ψ

c1ρ

η2 − cos θ − √

η2 − 1 sin θ

η
√

η2 − 1
θ̂ ,

or equivalently,

Zx,y =
√

c1 − ψ

c1ρ

cos θ + √

η2 − 1 sin θ − 1
√

η2 − 1
x̂

+
√

c1 − ψ

c1ρ

sin θ − √

η2 − 1 cos θ

η
ŷ.

6 Phase-based control of a population of
oscillators

Thus far, the control applications in this tutorial have been
focused on individual oscillators. But phase-based control of
oscillator populations can also be achieved.

As an example application, consider the hypothesis that
pathological synchronization of spiking neurons in the basal
ganglia–cortical loop within the brain is a factor con-
tributing to tremors exhibited by patients with Parkinson’s
disease [6,58,102]. For patients with advanced Parkinson’s
disease who do not respond to drug therapy, there is an
established treatment option called deep brain stimula-
tion in which a neurosurgeon implants an electrode that
can inject current into the brain tissue [1]. This suggests
the control problem of designing a single electrical stim-
ulus u(t) which desynchronizes a population of neural
oscillators.

Various phase-based control methods have been proposed
to accomplish such desynchronization; see, e.g., [48,95–
97]. Here we briefly describe an approach called chaotic
desynchronization, which is based on the Lyapunov expo-
nent associated with the phase difference between a pair of
identical oscillators which both receive the same input u(t)
[110]:

Λ(τ) = 1

τ

∫ τ

0
Z ′(θ(s))u(s)ds. (119)

A control input u(t)with a positive Lyapunov exponent gives
a desynchronizing effect. Note that the expression for the
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Lyapunov exponent in (119) depends on the derivative of
the phase response curve for a single oscillator. Reference
[110] formulates the desynchronization problem as an opti-
mal control problem: Find the stimulus which maximizes
theLyapunov exponentwhile simultaneouslyminimizing the
power used by the stimulus, the latter goal being desirable
because it allows the battery which generates the electrical
stimulus to have a longer life, thereby reducing the need
for battery replacement surgery. This could also lessen the
chance of undesirable side effects of deep brain stimula-
tion, because it uses a weaker stimulus. The optimal control
from this approach was found to be a very effective strat-
egy for desynchronizing a neural population; moreover, this
methodology is robust to weak coupling and heterogeneities
of the neurons [110]. Chaotic desynchronization has been
extended to the more realistic case of extracellular stimu-
lation [109]. Other phase-based control schemes for neural
populations include phasic burst stimulation [39] and stabi-
lization of clusters [60,61]. Also notable are control schemes
which are inspired by phase reduction, in that they optimally
drive a population of oscillators to the phaseless set [116],
where the phase cannot be defined; noise then randomizes
the phases of the oscillators, leading to desynchronization
[12,73].

A different approach to the control of oscillator popu-
lations is based on a partial differential equation for the
distribution of phases. For example, suppose we have a pop-
ulation of N noise-free, identical, uncoupled oscillators all
receiving the same control input u(t), with phase dynamics
given by

dθi
dt

= ω + Z(θi )u(t), i = 1, . . . , N . (120)

Consider the probability distribution ρ(θ, t) for the limit
N → ∞, with the interpretation that ρ(θ, t)dθ is the proba-
bility that a neuron’s phase lies in the interval [θ, θ + dθ) at
time t . This distribution evolves according to the advection
equation [2,95]

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)u(t))ρ(θ, t)]. (121)

Here desynchronization corresponds to a flat distribution
ρ = 1/(2π). Different ideas for controlling a phase dis-
tribution include controlling the distribution’s peak [110],
control based on a generalization of the isostable reduction
to partial differential equations [113,114], and control which
minimizes the norm between the current and target distribu-
tions [70].

7 Conclusion/outlook

The concepts of isochrons and phase reduction for nonlin-
ear oscillators have a long history [33,53,115,117], and their
usefulness has been demonstrated for a number of systems of
physical, technological, and biological interest over the last
five decades.More recently, phase reduction techniques have
been extended to include transverse directions and higher-
order terms, and they have also been generalized to systems
with stablefixedpoints. This tutorial presented aunified treat-
ment of such phase reduction techniques and illustrated their
use through various mathematical and biological examples.

This tutorial also covered the use of phase reduction for the
design of control algorithms which optimally change proper-
ties of the system, such as thephaseor periodof anoscillation.
By reducing the dimension of the system, phase reduction
allows a more tractable approach to designing control algo-
rithms than trying to do so for the full evolution equations
for a system.

There is still much to be explored in this realm, and we
note recent results on phase reduction for stochastic oscilla-
tors [98], and operational phase reduction whichmakes more
natural ties to experimentally measurable quantities [104].
There are also ample opportunities to use phase reduction to
design control algorithms for a variety of neural, cardiac, cir-
cadian, and other biological systems, and to investigate and
design for robustness of such algorithms to noise, uncertainty,
and heterogeneity. We hope that this tutorial has illustrated
the promise of phase reduction and phase-based optimal con-
trol and will lead the reader down the path of applying such
techniques to their own systems of interest.

Acknowledgements Support for this work by National Science Foun-
dation Grants NSF-1635542 and NSF-1602841 is gratefully acknowl-
edged.

Appendix A: Models

In this appendix, we give details of the mathematical models
used in the main text.
Thalamic neuron model

The thalamic neuron model is given as

v̇ = −IL − INa − IK − IT + Ib
Cm

+ u(t),

ḣ = h∞ − h

τh
,

ṙ = r∞ − r

τr
,

where

h∞ = 1/(1 + exp((v + 41)/4)),
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r∞ = 1/(1 + exp((v + 84)/4)),

αh = 0.128 exp(−(v + 46)/18),

βh = 4/(1 + exp(−(v + 23)/5)),

τh = 1/(αh + βh),

τr = (28 + exp(−(v + 25)/10.5)),

m∞ = 1/(1 + exp(−(v + 37)/7)),

p∞ = 1/(1 + exp(−(v + 60)/6.2)),

IL = gL(v − eL),

INa = gNa(m∞3)h(v − eNa),

IK = gK ((0.75(1 − h))4)(v − eK ),

IT = gT (p2∞)r(v − eT ),

Cm = 1, gL = 0.05, eL = −70,

gNa = 3, eNa = 50,

gK = 5, eK = −90, gT = 5,

eT = 0, Ib = 5.

Morris–Lecar model
The Morris–Lecar model is given as

CM v̇ = Ib − gL(v − EL) − gK n(v − EK )

−gCam∞(v)(v − ECa),

ṅ = φ(n∞(v) − n)/τn(v),

m∞(v) = 0.5

(

1 + tanh

(
v − v1

v2

))

,

τn(v) = 1
(

cosh
(

v−v3
2v4

)) ,

n∞(v) = 0.5

(

1 + tanh

(
v − v3

v4

))

,

φ = 0.067, gCa = 4, gK = 8, gL = 2,

ECa = 120, Ek = −84,

El = −60, v1 = −1.2, v2 = 18, v3 = 12,

v4 = 17.4, CM = 20.

Fox–McHarg–Gilmour (FMG) model
The FMG model [26] describes the electrophysiological

behavior of a canine ventricularmyocyteswith behavior gov-
erned by various potassium, sodium, and calcium currents.
The transmembrane voltage dynamics are governed by the
flow of ionic current across the cell membrane

V̇ = −Iion − Istim. (122)

Here Istim represents a stimulus current used to elicit action
potentials, and Iion is the total membrane current density,
both of which have units of µA/µF. Iion is comprised of 13
individual currents, which are determined by 13 total state

variables. A full description of the equations and nominal
parameters is given in [26].

AppendixB:Derivationof theEuler–Lagrange
equations

The Euler–Lagrange equations can be derived using the
methods of analytical mechanics [30] or optimal control the-
ory [47]. Suppose we want to find the function q(t) which
extremizes the functional

C[q(t)] =
∫ T

0
L(q, q̇)dt .

The functional derivative has the property that for any func-
tion v(t),

δC

δq
· v = lim

ε→0

C[q + εv] − C[q]
ε

= lim
ε→0

1

ε

∫ T

0
{L(q + εv, q̇ + εv̇) − L(q, q̇)} dt

= lim
ε→0

1

ε

∫ T

0

{

L(q, q̇) + ∂L
∂q

εv + ∂L
∂ q̇

εv̇

+ · · · − L(q, q̇)} dt
=

∫ T

0

(
∂L
∂q

v + ∂L

∂ q̇
v̇

)

dt

=
∫ T

0

[
∂L
∂q

− d

dt

(
∂L
∂q̇

)]

vdt +
[
∂L
∂ q̇

v

]T

0
,

where the last equation follows from integration by parts
applied to the second term of the previous line. If we suppose
that v(0) = v(T ) = 0, then

δC

δq
· v =

∫ T

0

[
∂L
∂q

− d

dt

(
∂L
∂ q̇

)]

vdt .

For this to be an extremum, it must hold for any v. Therefore,
we obtain the Euler–Lagrange equation

d

dt

(
∂L
∂ q̇

)

= ∂L
∂q

. (123)

To incorporate constraints into this approach, it is instruc-
tive to first consider the simpler optimization problem where
one wants to find an extremum of the function f(x) sub-
ject to the constraint that g(x) = c. Recognizing that at an
extremum the level surface of f(x) must be tangent to the
surface defined by g(x) = c, we see that

∇f = λ∇g (124)
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for some scalar λ, which is called the Lagrange multiplier.
Finding the extremum of f while simultaneously satisfying
(124) is equivalent to finding the extremum of

F(x, λ) ≡ f(x) − λ[g(x) − c].

Indeed,

∇F = 0 ⇒ ∇f = λ∇g,
∂F
∂λ

= 0 ⇒ g(x) = c.

In optimal control problems, it is necessary to minimize
or maximize the cost function subject to the constraint that
the dynamics must satisfy the appropriate evolution equa-
tion. For example, consider the energy-optimal phase control
problemofdesigning the inputu(t) such that the cost function
G[u(t)] given by (28) is minimized, subject to the constraint
that the solution must satisfy (27). We can rewrite (27) as

dθ

dt
− ω − Z(θ)u(t) = 0.

Integrating this, we obtain

K[u(t)] ≡
∫ T1

0

[
dθ

dt
− ω − Z(θ)u(t)

]

dt = 0.

We therefore want to find u(t) such that the following hold:

δG[u(t)]
δu

= 0, K[u(t)] = 0.

By analogy with the above constrained optimization exam-
ple, the level surfaces of G[u(t)] will be tangent to surfaces
for which K[u(t)] = 0. Thus,

δG[u(t)]
δu

= −λ(t)
δK[u(t)]

δu
(125)

for some scalar function λ(t). [Without loss of generality, we
have inserted a minus sign on the right-hand side of (125).].
Rearranging (125) gives

δ

δu
{G[u(t)] + λK[u(t)]} = 0,

which is identical to the cost function (29).We now use (123)
with q(t) taken in turn to be u(t), λ(t), and θ(t), which gives
Eqs. (30–32) in the main text.

Appendix C: Solving a two-point boundary
value problem

Consider a general two-point boundary value problem

ẏ = f (t, y), y ∈ R
n, 0 ≤ t ≤ b, (126)

with the linear boundary condition

B0y(0) + Bby(b) = a, B0, Bb ∈ R
n×n .

To solve such a boundary value problem, we integrate
Eq. (126) with the initial guess c = y(0) and calculate the
function g(c):

g(c) = B0c + Bby(b) − a,

where y(b) is the solution at time b with the initial condition
c. If we had chosen the correct initial condition c, g(c)would
be 0. Based on the current guess cν , and the g(cν) value, we
choose the next initial condition by the Newton Iteration as

cν+1 = cν −
(

∂g

∂c

∣
∣
∣
∣
cν

)−1

g(cν). (127)

We compute the Jacobian J = ∂g
∂c

∣
∣
∣
cν

numerically as

Ji = g+ − g−

2ε
,

where

g+ = g
(

cν + eiε
)

,

g− = g
(

cν − eiε
)

,

Ji is the i th column of J , ε is a small number, and ei is a
column vector with 1 in the i th position and 0 elsewhere.
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