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P
honons are incisive probes of charge
and bonding in extended solids. This
exquisite sensitivity can be traced to

the influence of charge on the shape of the
potential surface.1,2 When combined with
vibrational property measurements, anal-
ysis of these interactions reveals Born effec-
tive charge, charge ordering and dispro-
portionation, and proximity effects among
others.3�9 Systems in which the lattice is
coupled with spin are less common and
have received significantly less attention.
When magnetoelastic interactions are pre-
sent, investigations reveal local lattice dis-
tortions, coupling mechanisms, and new
types of transitions that take place due to
collective effects.10�21 CoFe2O4 attracted
our attention as a rich system with which
to explore these developments because
(i) coupling in a magnetic oxide is antici-
pated to be large13�15 and (ii) confinement
effects21�24 can be explored.
CoFe2O4 crystallizes in an inverse spinel

structure with the general formula AB2O4

where A and B denote tetrahedral and
octahedral cation sites in a close-packed
oxygen environment.25,26 The unit cell is
cubic (a = 0.8391 nm at 300 K) with 8
formula units and a Fd3m space group
(Figure 1a).25�27 Group theory predicts four
triply degenerate (T1u) infrared-active vibra-
tional modes.28 Several authors have ana-
lyzed the lattice dynamics of the AB2O4

system and compared their findings with
infrared and Raman data. This work re-
vealed mode assignments, displacement
patterns, charge and bonding information,
and thermodynamics.27,28 Below the 860 K
Curie temperature (TC), CoFe2O4 presents

long-range collinear ferrimagnetic order
(with antiferromagnetic intersublattice ex-
change interactions). Local canting and anisot-
ropy reduces the moment to 3.35 μB at 300 K,
and the easy magnetization axis is along
[100].25 The discovery of nanoscale CoFe2O4

enables investigation of finite length scale
effects. Major findings at this time include
synthetic techniques that yield excellent size/
shape control,29�32 the crossover to single
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ABSTRACT

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To

investigate confinement in combination with strong magnetoelastic interactions, we

measured the infrared vibrational properties of CoFe2O4 nanoparticles and compared our

results to trends in the coercivity over the same size range and to the response of the bulk

material. Remarkably, the spectroscopic response is sensitive to the size-induced crossover to

the superparamagnetic state, which occurs between 7 and 10 nm. A spin�phonon coupling

analysis supports the core�shell model. Moreover, it provides an estimate of the magnetically

disordered shell thickness, which increases from 0.4 nm in the 14 nm particles to 0.8 nm in the

5 nm particles, demonstrating that the associated local lattice distortions take place on the

length scale of the unit cell. These findings are important for understanding finite length scale

effects in this and other magnetic oxides where magnetoelastic interactions are important.
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domainbehavior at∼40nm,32 thecubic anisotropy,33�35

and superparamagnetism in small particles.30�36,37 As
magnetic insulators,26 spinels are attractive for device
applications.38�40

In order to investigate finite length scale effects in
CoFe2O4, wemeasured the infrared vibrational proper-
ties of a series of nanoparticles and compared the
results to coercivity trends over the same size range and
the response of the bulkmaterial. Strongmagnetoelastic
coupling enables the spectra to convey magnetic prop-
erty information that is hidden in many other systems.
Magnetoelastic coupling is manifest asmode splitting of
bulk CoFe2O4 (from which we extract a ∼6.3 N/m
spin�phonon coupling constant) and peak positions
that change with size in the confined materials. A
detailed analysis of spin�phonon coupling in the nano-
particles reveals a size-induced crossover to the super-
paramagnetic state between 10 and 7nm that correlates
with coercivity and surface area trends. At the same time,
our coupling analysis provides spectral support for the
core�shell model in which a core of aligned spins is
surrounded by a magnetically disordered shell. Remark-
ably, the spectral data also allow a shell thickness
analysis. We find a 0.4 nm shell thickness in the 14 nm
particles and a 0.8 nm shell thickness in the 5 nm
particles. These values are consistent with the
0.8391 nm unit cell size, and the trend is in excellent
agreement with the neutron scattering data of Lin et al.
(1.2 nm shell in 4 nm particles).41 Taken together, these
findings showcase the power and breadth of vibrational
spectroscopy for fundamental property investigations of
magnetic oxides.

RESULTS AND DISCUSSION

Superparamagnetic Transition in CoFe2O4 Nanoparticles.
Figure 1c shows coercivity, Hc, as a function of nano-
particle size. The 14.0 and 10.4 nm particles display
magnetic hysteresis loops and nonzero coercivities,
whereas hysteresis loops are not observed in the 7.1
and 5.0 nm materials (Figure S3 and Table SI). There is
clearly a size-driven crossover between the hysteretic

and nonhysteretic (Hc = 0) regimes in the 7�10 nm size
range. Above the magnetic crossover, the 14.0 and
10.4 nmCoFe2O4 nanoparticles are in the ferrimagnetic
state. We can understand the behavior of these larger
particles by considering themagnetocrystalline anisotropy
energy, EA, which goes as KV sin2θ.36,42,43 Here, K is the
magnetocrystalline anisotropy, V is the nanoparticle
volume, and θ is the angle between the magnetization
direction and the easy axis of the nanoparticle. A
hysteresis loop is observed when magnetocrystalline
anisotropy is larger than the thermal energy,36,43 which
in this case is 300 K. A reduced remanence can also be
extracted (Supporting Information). Below the mag-
netic crossover, the 7.1 and 5.0 nm particles are in the
superparamagnetic state.32 Here, spin acts as a giant
moment, the energy landscape is characterized by
doubly degenerate minima separated by an energy
barrier, and when temperature is larger than the
barrier, themagnetization direction flips randomly.38,44

Stoner�Wohlfarth theory provides a framework within
which we can understand these effects.37,42 Here, the
coercivity of a single-domain particle is expressed as
2K/μ0Ms, where K is the previously mentioned magne-
tocrystalline anisotropy, Ms is the saturation magneti-
zation, and μ0 is the permeability of free space. In the
superparamagnetic state, magnetocrystalline anisot-
ropy is overcome by thermal effects, a situation that
renders K unimportant (and effectively zero). Figure 1c
also displays the surface-to-volume ratio as a function of
particle size. The Hc > 0 behavior of the 14.0 and 10.4 nm
CoFe2O4 particles correlates with low surface-to-volume
ratios,whereas the superparamagnetic (Hc =0) stateof the
7.1 and 5.0 nm particles correlates with larger surface-to-
volume ratios.31,36,45 In the following discussion, we com-
bine thesemagnetic property trendswith complementary
vibrational spectroscopies to more deeply investigate the
ferrimagneticf superparamagnetic transition and signa-
tures of surface spin disorder in magnetic nanoparticles.

Spin�Phonon Coupling in Bulk CoFe2O4. Figure 2a dis-
plays the infrared absorption of bulk and nanoscale
CoFe2O4. The spectrum of the bulk material shows
three vibrational modes at ∼577 (ν1), 382 (ν2), and

Figure 1. (a) 300 K crystal structure of CoFe2O4 spinel with ferrimagnetic ordering along the [100] direction.25 (b) TEM image
of the 5.0 nm particles. (c) Surface-to-volume ratio and coercivity as a function of particle diameter. The magnetic crossover
regime (from the hysteretic ferrimagnetic regime at large sizes to the superparamagnetic state at small particle sizes) is
denoted by the vertical gray band. The green line connecting coercivity data points guides the eye.
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190 cm�1 (ν3), in agreement with prior results.27,48,49 In
the nanoparticles, ν3 is extremely weak, probably due
to combined phonon lifetime effects, damping, and
(for coupled systems such as CoFe2O4) magnetic re-
laxation time effects.21,36,50�52 We therefore focus on
trends in ν1 and ν2 to reveal the spectroscopic signa-
tures of the superparamagnetic transition and surface
spin disorder. Figure 2f and g display the calculated
displacement patterns for ν1 and ν2.

27,53 For ν1, the
tetrahedral metal centers vibrate against the oxygen
cage, and the octahedral metal centers vibrate against
each other and the surrounding oxygen sites. For ν2,
the tetrahedral metal center is fixed and oxygen cage
vibration is balanced by octahedral cation þ cage
motion. Here, the octahedral metal center vibrates
against the other B site cation and the surrounding
oxygen centers.

We can understand the peak shape in bulk CoFe2O4

by recalling that this system is ferrimagnetic at room
temperature.26 Figure 2b shows a representative two-
oscillator fit to ν1 and ν2. The presence of magnetic
ordering26 motivates our assignment based upon
strong spin�phonon coupling and provides a natural
physical explanation for the observed doublet struc-
ture in this and other spinels.21,27,46 The motion of ions
in a solid is well known to couple with charge.6,51,54,55

This type of interaction is the basis for traditional
dynamics calculations that yield mode frequencies
and displacement patterns of the sort discussed above.
In some materials, the motion of ionic centers also
couples with spins.14,21,46 The Hamiltonian for the ion

motion is written asH = p2/2μþ V(u). Here, V(u) is the
effective potential, u is the displacement, p is the
translational momentum, and μ is the reduced mass.
When the atomic centers in a unit cell vibrate, the
exchange interactions become a function of the dis-
placement, and spin�spin interaction changes the
effective phonon potential. This generic mechanism
couples spin to the lattice as10,14,20,46

ω2 ¼ ω0
2 þ λÆSi 3 Sjæ (1)

whereω = (k/μ)1/2 is the perturbedmode frequency (in
the presence of spin�spin interactions, k is the spring
constant), ω0 is the bare phonon frequency without
spin�spin interactions, λ = 1/μ 3 J

00 is the macroscopic
spin�phonon coupling constant,56 J is the magnetic
exchange, J00 is the second derivative with respect to u,
and ÆSi 3 Sjæ is the nearest-neighbor spin�spin correla-
tion function. Here, we employ a single J Hamiltonian,
where the exchange interaction is negative (positive)
for antiferromagnetic (ferromagnetic) interactions.57

For a system with dominant antiferromagnetic inter-
actions, ÆSi 3 Sjæ will be negative. This model predicts
that a triply degenerate vibrational mode in a two-
sublattice ferrimagnetic cubic environment (as exists
in a system like MnO) will split into two branches
below TC.

21,46,58,59

Let us apply these ideas to bulk CoFe2O4. The
presence of both coupled and uncoupled components
is evidenced by the doublet character of ν1 and ν2
(Figure 2b). Even ν3 displays weak splitting (inset

Figure 2. (a) 300 K absorption spectra of bulk powder and nanoscale CoFe2O4. The particle sizes are indicated, and the curves
are vertically shifted for clarity. Inset: Close-up view of ν3 in the bulk powder. (b) Example peak fit of the bulk CoFe2O4

spectrumusingVoigt line shapes. Twooscillators are required tofit eachmode. (c) Examplepeakfit of the 5.0 nmnanoparticle
spectrum using Voigt line shapes. Only one oscillator is required to fit each mode. (d and e) Peak position of ν1 and ν2 as a
function of particle size. The dashed lines indicate the limiting bulk values with and without spin�phonon coupling, and the
dotted lines guide the eye.21,46 The gray shaded area indicates the transition regime (from ferrimagnetic at large particle sizes
to superparamagnetic at small sizes.) (f and g) Schematic view of calculated displacement patterns of ν1 and ν2 vibrational
modes in CoFe2O4 in the rhombohedral primitive cell.27,28,47 Here, the shaded green polyhedra denote tetrahedral sites, and
the top four ions correspond to octahedral positions.
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Figure 2a).60 A symmetry analysis reveals the origin of
the coupled and uncoupled branches and the resultant
mode splitting. The displacement patterns of ν1 and ν2
(Figure 2f and g) both show that the tetrahedral A sites
have either (i) the same or (ii) zero directional motion.
As a consequence, no coupling emanates from the A
sublattice in the AB2O4 spinel structure. In other words,
this branch has no spin�spin correlations. In contrast,
ions of the B sublattice (formed by the octahedral
metal sites) vibrate against each other. This symmetry
is consistent with spin�phonon coupling, and the
branch is softened by spin�spin interactions. The
intersublattice motion also involves out-of-phase vi-
bration and likewise contributes to coupling. The
horizontal dashed lines in Figure 2d and e denote the
uncoupled and coupled components of the phonon at
higher and lower frequency, respectively. The size of
the splitting (Δων1 =�32 cm�1 andΔων2 =�46 cm�1)
is a measure of the perturbation and is related to the
coupling constant for each mode.

Equation 1 provides a framework within which we
can estimate the spin�phonon coupling constants of
ν1 and ν2 for bulk CoFe2O4. We already have the
frequency shift from our measured data,61 but we still
need to obtain the spin�spin correlation function.62

Here, we employ an approximate method that was
originally developed for Fe3O4.

58,63 It assumes an Ising
Hamiltonian, nearest-neighbor interactions, and the
two-sublattice ferrimagnetic model.58,63 Under these
assumptions, we can write ÆSi 3 Sjæ = ∑SBi 3 SBj � ∑SAi 3 SBj
for a single formula unit. Here, SAi denotes the spin at
the A sublattice site, and SBi denotes the spin at the B
sublattice site. Substituting S = 5/2 for Fe3þ and S = 3/2
for Co2þ, we find ÆSi 3 Sjæ = �13/2 for the fully inverted
spinel.56 CoFe2O4 is, however, known to display an
inversion fraction of 0.75,64 and the chemical formula is
better written as (Co0.25

2þ Fe0.75
3þ )(Co0.75

2þ Fe1.25
3þ )O4.

65 For
the partially inverted case, we find ÆSi 3 Sjæ = �9/8.56

With the latter value of the spin�spin correlation
function and the previously mentioned frequency
shifts,61 we can roughly estimate the coupling constant
of both modes as J00 = λμ≈ 6.3 N/m. In this calculation,
we employed ÆSi 3 Sjæ for the partially inverted spinel
because it most closely resembles the situation in bulk
CoFe2O4. The error bars are large (probably(1or 2N/m),
mainly due to uncertainties in ÆSi 3 Sjæ. On the other hand,
the extracted coupling constant of the partially inverse
spinel (J00 = λμ≈ 6.3 N/m) is similar to the values found in
other oxides such as MnO and ZnCr2O4.

13,14,21,66

Spin�Phonon Coupling in CoFe2O4 Nanoparticles. We also
employed standard peak-fitting techniques to reveal
size-dependent trends in the position of ν1 and ν2.

67

The line shapes in the various nanoparticle samples are
much more symmetric than that of the bulk due to the
short phonon lifetime and fast magnetic relaxation
time.21,36,50�52,68,69 As a result, only one oscillator is
needed to fit each mode (Figure 2c). Figure 2d and e

summarize the behavior of ν1 and ν2 as a function of
nanoparticle size. The resonance frequencies increase
with decreasing size through the magnetic crossover
regime. This trend parallels the diverging surface-to-
volume ratio (Figure 1c) and suggests a correlation
with the transition to the superparamagnetic state and
the development of surface spin disorder.45 This con-
nection is discussed below. As anticipated, the data
points are positioned between the low- and high-
frequency limits defined by coupled and uncoupled
branches of each phonon in the bulk.

Spin�phonon coupling in the CoFe2O4 nanoparti-
cles is different than in the bulk. This is because robust
magnetic order exists primarily in the core, whereas the
shell has a more random spin arrangement.45 Magneto-
elastic coupling is therefore different in the two re-
gions. Interestingly, infrared spectroscopy is sensitive
to this change. Although there is no splitting of ν1 and
ν2 (Figure 2a), these features still carry information on
the coupling in an average way that causes peak
positions to shift with decreasing particle size. Of
course, it is not really particle size that matters here
but the relative proportion of core and shell. The
core�shell model (where we assume that the particle
consists of a core of aligned spins surrounded by a
magnetically disordered shell)45 accounts for these
effects. We consider each region in turn and then bring
them together.

In the core of a single-domain nanoparticle such as
CoFe2O4,

32 spins align ferrimagnetically according to
their various exchange interactions,41,45 a process that
mirrors the development ofmagnetic order in the bulk.
Phonons that reside primarily in the core are sensitive
to this magnetic structure, and they engage in spin�
phonon coupling just like the bulk. Core phonon
modes thus possess both coupled and uncoupled
branches, as previously discussed, although confine-
ment effects reduce the phonon lifetime21,51,52,68 to
yield only an averaged spectral response. This occurs
because the phonon lifetime (10�14�10�13 s) is shorter
than the spectroscopic time scale (10�12�10�13 s),69 so
the spectrum will measure multiple phonon vibrations
in the same time period, which eliminates the possibi-
lity of distinguishing between coupled and uncoupled
branches.21,51,52,68

The surface of a magnetic nanoparticle is different.
Here, large surface strains, broken bonds, and broken
exchange interactions between magnetic centers
cause surface spins to lose their order.41,45 Under these
conditions, the spin�spin correlation function ÆSi 3 Sjæ
will be close to zero. Since ω2 = ω0

2 þ λÆSi 3 Sjæ, the
vibrational contribution of the nanoparticle shell will
thus be a peak at the unperturbed phonon frequency,
ω0, regardless of the value of λ. In other words, there
can be no coupling without spin order. Variable-
temperature infrared spectroscopy provides an addi-
tional test for the presence of surface spin disorder.41,45
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Our experiments on the 5 nm particles reveal a gradual
red-shift of the peak positions with decreasing tem-
perature (on theorder of 5 cm�1 for ν1 and2 cm

�1 for ν2),
consistent with presence of surface spin disorder at high
temperature and the possibility of a low-temperature
surface spin glass state.41,45 These data are available
in the Supporting Information.

Let us bring the behavior of the core and shell
together. We already argued that the spectrum of the
nanoparticles catches only theweighted average value
of the coupled and uncoupled branches of each mode
due to the short phonon lifetime and fast magnetic
relaxation time.21,36,50�52,68 This averaged response
can be expressed as ωav = xωshell þ (1 � x)ωcore. Here,
ωav is the weighted average frequency, x is the volume
fraction of the shell, (1� x) is the volume fraction of the
core, andωcore andωshell are the core and shell phonon
frequencies, respectively. Moreover,ωcore is always less
than ωshell because the core includes the coupled
branch contribution whereas the shell does not. If we
assume that ωcore and ωshell do not change with size
over the range of our investigation, larger values of x
will shift the observed peak atωav to higher frequency.
This is in agreement with the data in Figure 2d and e,
and it provides a natural explanation for the similarity
between these trends and the surface-to-volume ratio
in Figure 1c. As shown in Figure 2d and e, the peak
position of the 7.1 nmparticles is elevated compared to
that of the larger particles, and ωav of the 5.0 nm
particles is approaching the bare phonon frequency
of the bulk. Moreover, both the 5 and 7 nmparticles are
in the superparamagnetic state under these condi-
tions. The spectral sensitivity to the superparamag-
netic transition in these ferrimagnetic spinel nano-
particles is thus due to magnetoelastic coupling (with
a boundary at ∼0.5(ω0 þ ω) of bulk values estimated
from Figure 2d and e). Moreover, the core�shell model
captures the physics of this situation extremely well.

Using Vibrational Spectroscopy to Estimate Shell Thickness.
We can also employ our spectral data to estimate the
relative size of the core and shell. First, we calculate the
weighted average phonon frequencies of ν1 and ν2 for
the bulk material. This is done using peak-fitted mode
positions and the normalized areas of the coupled and
uncoupled components.56 Using ν2 as an example, the
weighted average frequency can be written as ωav =
yωþ (1� y)ω0. The factors of y (0.69) and (1� y) (0.31)
are the normalized areas of the coupled (ω= 368 cm�1)
and uncoupled (ω0 = 413 cm�1) branches of ν2 in the
bulk (Figure 3a). We find ωav = 382 cm�1. This number
rigorously describes the bulk and reasonably approx-
imates the nanoparticle core. We further fix the core
phonon frequency in our set of 14, 10, 7, and 5 nm
particles to be that of the bulk. In other words, we
assume that this value (ωav = 382 cm�1) does not
depend on size. Lastly, we also allow the shell phonon
to be represented by the uncoupled phonon in the

bulk, an assumption that is justified because ÆSi 3 Sjæ≈ 0.
Using the weighted average phonon frequency of
the 5 nm particles from the measured spectrum
(ωav = 404 cm�1, Figure 3b) and our expression for
the overall average responseωav = xωshellþ (1� x)ωcore,
we can back-calculate the volume fraction of the
shell. We find x= 0.71 for the 5 nmparticles. An analysis
of ν1 yields a similar value (x = 0.63). Using the average
of these two quantities (x = 0.67), we can estimate the
shell thickness as x = (4/3πR3 � 4/3πr3)/(4/3πR3). Here,
R is the nanoparticle radius, and r is the radius of the core.
We find r = 1.7 nm for the 5 nm particles. The shell
thickness is therefore 2.5� 1.7 =0.8 nm.A similar analysis
of the14nmparticles yields an0.4nmshell thickness. The
extracted shell thicknesses of 0.4 and 0.8 nm for the 14
and 5 nm particles are comparable with the 0.8391 nm
unit cell size for bulk CoFe2O4.

26 We therefore conclude
that the surface distortion takes place within the outer-
most unit cell, a finding that is consistent with other
length scale estimates of spin disorder.45,70�72

Figure 3c displays a schematic view of the 14 and
5 nm CoFe2O4 particles within the core�shell picture.
Shell thickness is clearly not a constant. Instead, it
increases from 0.4 to 0.8 nm over the range of our
investigation. We can see this result more clearly in
Figure 3d. While the 1.2 nm shell thickness in the 4 nm
particles investigated by Lin et al.41 is not strictly
comparable with our data because the particles were

Figure 3. (a) Close-up view of the ν2 vibrational mode of
bulk CoFe2O4 where the perturbed (ω) and unperturbed
(ω0) frequencies are clearly resolved due to magnetoelastic
coupling. The weighted average position of the coupled
and uncoupled branches,ωav, is also indicated. (b) Close-up
view of ν2 for the 14 and 5 nm particles where the spectral
peak represents the weighted average of the coupled and
uncoupled branches. In other words,ω andω0 are smeared
together due to lifetime effects, and only ωav is observed.
(c) Schematic viewof ourfindings from the core�shellmodel
for the 14 and 5 nm particles, respectively. The extracted
shell thicknesses of 0.4 and 0.8 nm are comparable with the
0.8391 nm unit cell size26 for bulk CoFe2O4. (d) Shell thick-
ness as a function of particle size determined by a spin�
phonon coupling analysis. The dotted line guides the eye.
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prepared by mechanical agitation rather than the
synthetic techniques employed here,29,30 the trend is
strikingly preserved. In any case, the inverse relation-
ship between shell thickness and particle size ema-
nates from the large surface strains that introduce
broken bonds (and interrupted exchange interactions
between magnetic centers) in the small nanoparticles.
We conclude that the large proportion of surface spin
disorder in the small CoFe2O4 particles is responsible
for the crossover to the superparamagnetic state.

CONCLUSIONS

To summarize, we measured the infrared vibrational
properties of several different CoFe2O4 nanoparticles
and compared the results to trends in the coercivity
and to the spectrum of the bulk material. A detailed
analysis of the magnetoelastic coupling allows us to

extract a spin�phonon coupling constant of∼6.3 N/m
for the bulk. Moreover, we show that these same
processes are sensitive to the size-dependent cross-
over in magnetic properties (in which the nanoparti-
cles become superparamagnetic between 7 and
10 nm). In other words, magnetoelastic coupling in
the confined system makes the mode position sensi-
tive to the superparamagnetic transition. Combining
this mode information with a spin�phonon coupling
analysis reveals the applicability of the core�shell
model with a core of aligned spins surrounded by a
magnetically disordered shell. We use this model to
evaluate the shell thickness and find that it is on the
order of 1 unit cell. It increases from 0.4 nm in our
14 nm particles to 0.8 nm in the 5 nm particles. These
findings are unique in that they verify the core�shell
model from the spectroscopic point of view.

MATERIALS AND METHODS
Our CoFe2O4 particles were prepared by high-temperature

decomposition of themetal precursors following themethod of
Sun et al.29,30 Nearly monodisperse CoFe2O4 particles were
obtained by varying the reaction time or the surfactant con-
centration. Four different particle sizes between 5 and 14 nm
were prepared for this work. The synthetic details and char-
acterization can be found in the Supporting Information.
Figure 1b displays the transmission electron microscopy (TEM)
image of the 5.0 nm diameter particles. The particles have a
well-defined sphere-like shape. X-ray analysis indicates that the
nanoparticles are essentially isostructural with the bulk (Figure
S1). The preparation of pure CoFe2O4 nanoparticles is also
confirmed by energy dispersive X-ray spectroscopy. The mag-
netic hysteresis loops for pressed powder samples were mea-
sured by a superconducting quantum interference device, and
coercivity was extracted from the loop width (Figure S3). All of
the CoFe2O4 nanoparticles of interest here are single-domain.32

For comparison, bulk CoFe2O4 powder (99.31%) was purchased
directly from Alfa Aesar.73,74 Here, the crystallites are 0.1 mm
diameter on average. For our spectroscopic work, the bulk
powder and nanoparticles were mixed with paraffin (∼3 mass
percent) to form isotropic composites. Transmittance was
measured using a Bruker 113 V Fourier transform infrared
spectrometer (20�5000 cm�1; 0.5 cm�1 resolution) at room
temperature. A helium-cooled bolometer detector was em-
ployed for added sensitivity. The absorption coefficient was
obtained as R(ω) = �(1/hd) lnT(ω), where h is the loading, d is
the thickness, and T(ω) is the measured transmittance. Low-
temperature experiments were carried out with an open flow
cryostat. Traditional peak fitting techniques were employed as
appropriate.
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