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transition in Mn3Si2Te6
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The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment
due to the recent discovery of a field-driven insulator-to-metal transition and
associated colossal magnetoresistance as well as evidence for a new type of
quantum state involving chiral orbital currents. Strikingly, these qualities
persist even in the absence of traditional Jahn-Teller distortions and double-
exchange mechanisms, raising questions about exactly how and why magne-
toresistance occurs along with conjecture as to the likely signatures of loop
currents. Here, we measured the infrared response of Mn3Si2Te6 across the
magnetic ordering and field-induced insulator-to-metal transitions in order to
explore colossal magnetoresistance in the absence of Jahn-Teller and double-
exchange interactions. Rather than a traditionalmetal with screened phonons,
the field-driven insulator-to-metal transition leads to a weakly metallic state
with localized carriers. Our spectral data are fit by a percolation model, pro-
viding evidence for electronic inhomogeneity and phase separation. Modeling
also reveals a frequency-dependent threshold field for carriers contributing to
colossal magnetoresistance which we discuss in terms of polaron formation,
chiral orbital currents, and short-range spin fluctuations. These findings
enhance the understanding of insulator-to-metal transitions in new settings
and open the door to the design of unconventional colossal magnetoresistant
materials.

Phase transitions involving electronic heterogeneity are well-
established in quantum materials, as evidenced by the way electron
correlations lead to Mott systems with insulator-to-metal transitions1–3

and low carrier densities generate colossal magnetoresistance
(CMR)4,5. These principles were explored in nearly Dirac materials like
EuMnSb2

6, Mott insulating Ti-doped Ca3Ru2O7
7, and perovskite man-

ganites such as La1−xSrxMnO3
8,9, and although there is a significant

body of work revealing insulator-to-metal transitions triggered by
temperature, pressure, and light10–16, magnetically-driven transitions
are particularly attractive due to their ability to support CMR. The

latter typically relies upon Jahn-Teller distortions and double-
exchange mechanisms, although the recent discovery of Mn3Si2Te6
demonstrates that these interactions are not required, while also
introducing a novel quantum state involving chiral orbital currents17

that merits further investigation.
Mn3Si2Te6 hosts trigonal P�31c symmetry with two different

Mn(II) sites as well as alternately stacked honeycomb and triangular
layers18,19. This nodal line semiconductor displays an insulator-to-
metal transition and CMR under a magnetic field for H∥c20,21. Sig-
nificant magnetic anisotropy arises from strong spin-orbit coupling
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due to Te orbits coupled with Mn spins; this proximity effect is
consistent with strong hybridization betweenMn and Te orbitals and
is easily perturbed by small dc currents17,20–22. Whether Mn3Si2Te6
hosts a spin-rotation-favored insulator-to-metal transition or chiral
orbital current state-induced CMR17,21, the majority of measurements
thus far involve transport techniques, making it difficult to ascertain
the microscopic aspects of the electronic response—especially in the
presence of a chiral orbital current that might create electronic
localization in combination with spin-phonon coupling, topological
nodal-line degeneracy, magnetization anisotropy, and magnetic
fluctuations21,23–28. Questions have therefore arisen about how itin-
erary and electron correlations compete with localization and whe-
ther carriers are created homogeneously as part of the insulator-to-
metal transition and CMR effect. Magneto-infrared spectroscopy is a
powerful tool for addressing these issues.

In order to unravel the origin of CMR in a material that does not
host Jahn-Teller or double-exchange interactions and to search for
spectroscopic signatures of chiral loop currents, we measured the
infrared response of Mn3Si2Te6 across the magnetic ordering and
insulator-to-metal transitions. Rather than a conventional metal with a
Drude response and screened phonons, the field-driven insulator-to-
metal transition leads to a weakly metallic state with localized carriers.
We discuss this localization in terms of the large polaron model,
expectations for chiral orbital currents, and the ability of short-range
spin fluctuations to give rise to Slater peaks17,29–32. The dynamics of
these pinned carriers are captured by the percolation model, which
emphasizes the ubiquity of electronic heterogeneity in CMR systems.
In this case, a frequency-dependent threshold magnetic field accounts
for the gradual formationof theweaklymetallic highfield phase. These
findings complement the understanding of bad metal behavior in
correlated oxides, reinforce the role of new quantum states in field-
driven insulator-to-metal transitions and their CMR effects, and pave
the way for the development of unconventional CMR materials.

Results and discussion
Classic semiconducting properties at 300K and across the fer-
rimagnetic transition
Figure 1 displays the room temperature reflectance ofMn3Si2Te6 along
with the optical conductivity calculated via Kramers-Kronig analysis.
σ1(ω) is lowandflat, characteristicof a semiconductor, punctuatedby a
series of sharp phonons and localized electronic excitations at higher
frequencies33. Lattice dynamics calculations allow us to assign the
phonons, reveal symmetries, and analyze the displacement patterns
[Fig. 1b and Supplementary Table 1, Supplementary Information].
Extrapolation of σ1(ω) to zero frequency is in reasonable agreement
with the dc conductivity20. The electronic properties are typical of a
semiconductor with indirect and direct gaps of 0.43 and 1.73 eV,
respectively [Supplementary Note 11]. The gap sizes are similar to
those in CrSiTe3 due to the common [Si2Te6]

6− cluster anion34,35. We
assign the strong electronic features near 20,000 cm−1 shown in the
inset to a combination of charge transfer and d-to-d excitations.

To investigate how strongly these phonons interact with the Mn
spin system, we measured the infrared response across the ferrimag-
netic ordering transition. Figure 2 summarizes the optical conductivity
of Mn3Si2Te6 as a function of temperature. Here we show six repre-
sentative vibrationalmodes fit by Voigt functions, indicatedby the red-
shaded area. All of the phonons harden on approach to the magnetic
ordering transition [Fig. 2b–g]—a trend that we quantify with a tradi-
tional anharmonic model36,37. Below TC = 74K18, the frequency vs.
temperature data deviates from themodel curve that typifies the high-
temperature phase. This perturbation is characterized by a frequency
shift: Δω = λ〈Si ⋅ Sj〉, where λ is the spin-phonon coupling constant, and
〈Si ⋅ Sj〉 is the spin-spin correlation function between the (i,j) nearest
neighbors. The latter approaches S2 in the low-temperature limit. The
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Fig. 2 | Properties of Mn3Si2Te6 across the magnetic ordering transition.
a Close-up view of the optical conductivity as a function of temperature. The red
shaded area represents the fitting results. The data are offset for clarity.
b–g Frequency vs. temperature for six representative phonons. Individual points
are obtained from fits to σ1(ω) in a, and the dotted lines represent a fit to typical
anharmonic behavior36,37. The magnetic ordering temperature is indicated by the
gray vertical line at 74 K. Unless indicated, error bars are smaller than the sym-
bol size.
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Fig. 1 | Optical properties of Mn3Si2Te6 at room temperature. a Reflectance of
Mn3Si2Te6 in the ab-plane at 300K along with the crystal structure19 showing two
distinct Mn sites. Inset: reflectance over a wide frequency range. b Optical con-
ductivity calculated from a Kramers–Kronig analysis of the measured reflectance,
predicted pattern of the Eu symmetry phonons from our lattice dynamics calcula-
tions (normalized for easy comparison), and dc conductivity from ref. 20. Inset:
σ1(ω) over the full range of our measurements.

Article https://doi.org/10.1038/s41467-024-52350-1

Nature Communications |         (2024) 15:8104 2

www.nature.com/naturecommunications


spin-phonon coupling constants that we extract for the infrared-active
modes are modest—less than ± 0.25 cm−1 [Supplementary Table 1,
Supplementary Information]—similar in size to the λ’s for the Raman-
active phonons23. These values are significantly smaller than those in
heavy and mixed-metal oxides38 ruling out a substantial role for spin-
phonon coupling of q =0 phonons in the insulator-to-metal transition
and CMR effect.

Bad metal behavior in the high-field phase
Having placed the properties of the semiconducting phase on a firm
foundation, we turn our attention to the metallic phase of Mn3Si2Te6,
using a magnetic field to drive the insulator-to-metal transition.
Figure 3a shows the reflectance ratio as a function of magnetic field.
This quantity (discussed in SupplementaryNote 5) highlights the sharp
phonons as well as broad changes in the electronic background. We
used these data along with the absolute reflectance at base tempera-
ture and zero field to back-calculate the reflectance as a function of
magnetic field [Fig. 3b]. The reflectance rises systematically between 3
and 9 T, consistent with transport results that place the insulator-to-
metal transition in this range17,21. That said, the rise is nowhere near
what is expected for a true metal like copper. Instead of developing a
signature Drude response, we see over-damped behavior even at full
field (17.5 T), characteristicof a badmetal39,40.We simulate this effect in
Supplementary Note 6. At the same time, the phonons remain pro-
minent and arenotwell-screened. This reveals thatMn3Si2Te6 does not
behave as a conventional metal following the field-induced insulator-
to-metal transition.

Figure 3c displays theoptical conductivity ofMn3Si2Te6 across the
insulator-to-metal transition. The most striking feature is the build-up
of localized excitations with increasing magnetic field rather than the
development of a free carrier (Drude) response. Electronic character is
demonstrated by the broad energy range as well as the Fano lineshape
of the phonons that ride on top of this band in the high field phase41.
That said, the phonon positions are nearly rigid over the entire field
range, excluding the lattice as the origin of these effects. Close-up
views of these trends and the near-zero spin-phonon coupling con-
stants that result from the absence of a frequency shift across the field-
induced insulator-to-metal transition aregiven in Supplementary Fig. 6
of the Supplementary Note 7.

We can analyze the electronic properties in greater depth by
focusing on charge localization. A sum rule analysis of the low energy
localized excitation in σ1(ω) yields the oscillator strength trend shown
in Fig. 4a. The spectral weight, which is proportional to the effective
number of carriers, increases rapidly near 5 T and levels off above 10T.
This growth in the number of carriers aligns nicely with the field-driven
insulator-to-metal transition and the associated CMR effect. To better
connect charge localization, the number of carriers, and CMR, we
examined several fixed-frequency cuts of σ1(ω) along with the dc con-
ductivity from ref. 21. We note in passing that although the field
enhances both ac and dc conductivities across the insulator-to-metal
transition, the overall magnitude of σdc in the high field phase is not
very large, consistent with our picture of Mn3Si2Te6 as a bad metal.
Turning back to the analysis of electronic localization in the optical
conductivity [Fig. 4b], we see that the ac conductivities at 200 and 400
cm−1 vary across the insulator-to-metal transition in a manner similar to
(but broader than) the dc conductivity. This makes sense because
σ1(ω → 0) is σdc. By contrast, carriers pinned at 700 cm−1 are not nearly
as responsive to the transition. These findings suggest that carriers with
frequencies below ≈400cm−1 may be the primary contributors to CMR.

Unraveling electronic heterogeneity and localization
Electronic heterogeneity plays a foundational role in establishing the
properties of CMR manganites. One way to quantify inhomogeneity
and phase separation is with the percolation model42. This model,
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originally developed to describe progressively increasing concentra-
tions ofmetallic nanoparticles in a dielectric background like glass, has
been successfully applied to correlated electron materials like VO2

across the phase transition43, WS2 nanotubes under pressure44, and
rare-earth nickelates like NdNiO3

45. In these modern settings, the per-
colation model refers to “droplets” of metallicity embedded in a
dielectric matrix (which represents a competing phase), as illustrated
in the Supplementary Note 10. To focus on the electronic properties
(and avoid the phonons), we employ a single-frequency variant of this
approach.

We express the percolation model in fixed frequency form as
σ1ðω0Þ= S2 + ðS1 � S2Þ=ð1 + eðH�H0Þ=ΔHÞ44. Here, ω0 is the fixed frequency
in question, and σ1(ω0) is a fixed-frequency cut of σ1(ω). S1 and S2 are
the fit values of σ1(ω0) at 0 and 17.5 T. H0 defines the percolation
threshold at the fixed frequency ω0. The percolation threshold is the
criticalmagnetic field at which the concentration of themetallic phase
rises sufficiently to provide long-range connectivity. This is the para-
meter that gives physical significance to themodel.H ismagnetic field,
and ΔH represents the slope of the curve (or the range over which
percolation persists—from zero to full percolation). As shown in
Fig. 4b, trends in σ1(ω0) vs. H are perfectly captured with fits to the
model, demonstrating that the shape of the insulator-to-metal transi-
tion is a consequence of electronic heterogeneity. This means that the
insulator-to-metal transition begins with a small amount of metallic
phase embedded in a dielectric matrix, and with increasing magnetic
field, the concentration of the metallic phase grows while that of the
semiconducting phase diminishes. The fact that magnetization is not
fully saturated at 17.5 T20,21,26 is consistent with our picture of an under-
developed metallic phase above the insulator-to-metal transition.

Figure 4c shows the percolation threshold of Mn3Si2Te6 as a
function of frequency extracted from the percolation model fits in
Fig. 4b. The trend demonstrates that carriers react based on their
degree of localization. Low-frequency carriers respond quickly to
magnetic fields and reach their percolation threshold by 4 T, whereas
the higher-frequency carriers react more slowly and require larger
fields to becomemobile. In fact, examination reveals that carriers with
frequencies below 400 cm−1 exhibit a percolation threshold field
between 3 and 4 T where dc resistance is already suppressed by
>97.5%20. On the other hand, carriers above 400 cm−1 host percolation
thresholds increasewith frequency—a tendency that creates anuneven
magnetic field response in σ1(ω) [Fig. 3c]. This distribution of perco-
lation thresholds explains why the insulator-to-metal transition is so
broad and why the conductivity is not fully developed even in fields
that ought to place thematerial well above the transition. Mn3Si2Te6 is
a clean system without mixed valencies or doping, so carriers that are
less responsive to applied field are what keep the system in an elec-
tronically localized state even above the insulator-to-metal transition.

Modeling the localized excitation: large polaron, chiral loop
currents, or short-range spin fluctuations
The field-driven development of the localized electronic excitation
suggests that there may be important vibronic interactions or distor-
tions of the magnetic order that pin the charge to the lattice or spin
texture in the formof lattice ormagnetic polarons46–48. A polaronic-like
structure has alreadybeenobserved at lower energies (~40 cm−1) under
high fluences33, making it logical that additional polaronic excitations
can be created in this material. Certainly, our measurements reveal
strong field-induced charge localization in the optical conductivity,
and electron-phonon coupling is evidenced by the Fano line shape of
the in-plane Si stretching modes near 365 cm−1 [Fig. 3c]. We tested this
hypothesis by fitting a large polaron model29–31 to the optical con-
ductivity of Mn3Si2Te6 at 17.5 T. As shown in Fig. 4d, a single large
polaronmodelfits the spectrum reasonablywell.We extract a radius of
~6Å, an effective mass of 1.1me, an absorption threshold of 90 cm−1,
and a polaron density of np = 1.8 × 1019 cm−3. Within this picture, the

presence of the polaron is attributable to the low carrier density ori-
ginating from Mn-Te hybridization near the Fermi level22,49 combined
with the overall charge transfer character of the material. The limited
mobility of this structure iswhat constrains the development of amore
traditional metallic response, although it is still sufficient to produce a
CMR effect. We emphasize that the large polaron model is likely a
major simplification and that the shape of the bound state is very
sensitive to our choices of polaron size, mass, and density. The impact
of these parameters is discussed in Supplementary Note 7. In any case,
after revealing the behavior of Mn3Si2Te6 in a magnetic field and
unveiling a competing state via a percolative process, the next chal-
lenge is to study this state further and to render it stable at zero
magnetic field by chemical substitution.

The fact that phonons are rigid under a magnetic field suggests
that we should consider mechanisms beyond charge or spin polaron
models. An alternative framework for understanding the presence of
localized carriers in the high field phase of Mn3Si2Te6 involves the
presence of chiral orbital currents flowing along the edges of the
MnTe6 octahedra17. The loop currents themselves are presumably in
the ab-plane, and the moment is generated along c. Carriers pinned
near 300 cm−1 are consistent with this picture, and based on the
resonance frequency, we expect an average loop size on the order of
microns. A similar phase is present in smectic metals where current
flowing along specific chains displays localization induced by strong
interactions50. Time-dependent bistable switching17 and the slow
development of magnetization (while changes in the dc resistivity are
sharp)20 are consistent with this picture.

A different approach to understanding magneto-infrared effects
in Mn3Si2Te6 involves Slater peaks due to short-range spin excitations.
Slater argued51 that the insulating gap can occur solely due to anti-
ferromagnetic order rather than strong on-site Coulomb repulsion.
Such a system is called a Slater insulator. Later theoretical work32

showed that short-range spin fluctuations are sufficient to produce
narrow Slater peaks at the edge of the gap near the metal-insulator
transitionof theHubbardmodel,which almost continuously closes the
gap at the metal-insulator transition32,51. Such excitations come from
short-range order and yield a localized excitation in the optical con-
ductivity. One characteristic of the Slater mechanism is the relative
entropy between competing states. Typically, the metallic phase has
larger entropy than the insulating phase, although in our case, analysis
reveals that the entropies are similar52,53. More work is obviously nee-
ded to clarify the matter, especially real space spectroscopies to
unravel electronic inhomogeneities and neutron scattering to deter-
mine whether the localized excitation has a magnetic origin.

Methods
Reflectance measurements
High-quality single crystals of Mn3Si2Te6 were grown by flux
techniques21 and polished to expose the ab-plane. Near-normal
reflectance was measured between 22 and 55,000 cm−1 using a series
of spectrometers, and a Kramers-Kronig analysis provided the optical
constants54. Here, we focus on the real part of optical conductivity
(σ1(ω)). Temperature was controlled with an open-flow cryostat. The
magnetic field was applied using a 17.5 T superconducting magnet
(H∥c) at theNationalHighMagnetic Field Laboratory inTallahassee, FL.

Lattice dynamic calculations
First-principles calculations were performed using density functional
theory as implemented in Vienna ab initio simulation package55–57 with
the projector-augmented wave method57,58 and the Perdew-Burke-
Ernzerhof 59 exchange-correlation function. The DFT-D2 method60

provided the van der Waals correction on a Γ centered 10 × 10 × 6k-
point grid with a plane-wave cutoff energy of 500 eV. The internal
coordinates of the experimental structure19 were relaxed with
ferrimagnetic52 constraints and the vibrational modes were obtained
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using the finite difference method. Details are available in Supple-
mentary Information.

Data availability
All raw data generated in this study are provided in the Source Data
file. Source data are provided with this paper.

Code availability
All customcodes used in this study are available from the authorsupon
request.
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