
Mathematical Biosciences 355 (2023) 108953

a

b

c

d

e

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

Modeling the effects of size-dependent harvesting strategies on the
population dynamics of tropical trees
Tricia Phillips a,∗, Orou G. Gaoue b,c,d, Suzanne Lenhart e, W. Christopher Strickland b,e

Department of Mathematics, Birmingham-Southern College, 900 Arkadelphia Road, Birmingham, AL, 35254 USA
Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996 USA
Faculty of Agronomy, University of Parakou, 01 BP 123, Parakou, Benin
Department of Geography, Environmental and Management and Energy Studies, University of Johannesburg, APK Campus, Johannesburg, South Africa
Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, TN, 37996 USA

A R T I C L E I N F O

MSC:
92-08

Keywords:
Tropical trees
African mahogany
Effects of harvesting
Discrete-time modeling
Parameter estimation

A B S T R A C T

Several forest plant species are harvested both lethally for their timber and non-lethally for their non-timber
forest products by the local people for cultural and economic reasons. To maximize yield, harvesters target
various life stages of these species including both adults and juveniles particularly when the number of
harvestable adults decline. The demographic consequences of harvesting various plant sizes differ based on
what life stage is targeted. In this paper, we develop a size-structured, seasonal system of difference equations
and corresponding matrix model with time-varying harvest to model the effects of size-dependent harvesting
strategies on the population dynamics of tropical trees. We illustrate numerically our work specifically on
African mahogany, Khaya senegalensis, a tropical tree in Benin. Novel applications and combinations of
previously established matrix compression algorithms are presented to determine certain rates in our model,
with other rates coming from the use of generalized linear modeling and ordinary least squares estimation
incorporating observed population data. Harvesting rates for two types of populations are estimated, one
with simulated harvest and the other experiencing natural harvest. Eigenvalue analysis suggests that for
the populations in our study, harvesting may not have a drastic effect on the long-term persistence of the
population. However, this should be taken with caution given that our model does not account for stochastic
environmental variations that can interactively reduce population growth rates.
1. Introduction

Understanding how local people can sustainably use the environ-
mental resources on which they depend for their livelihood is critical
for biodiversity conservation and future human population dynamics.
Addressing this question has equally interested mathematical biolo-
gists [1–4] as well as empirical and theoretical ecologists [5–10]. The
approach used to investigate sustainable harvest limits markedly differs
between these two disciplines and can lead to different outcomes [3].
While most mathematical models focus on the dynamics of harvested
species [11–13], applied ecologists are directly interested in the de-
tailed influence of various harvesting strategies [14–17]. Models often
failed to account for the multi-purpose harvest of plants in tropical
forests given that most classical harvest models focus on hunting and
logging [4,16,18,19], ignoring that non-lethal harvesting of plants is
a widespread endeavour [17,20]. A more complex harvesting scheme
often faced in tropical systems combines both lethal harvesting such as
logging with non-lethal harvest of non-timber forest products [3,6,21].
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In addition, the amount of biomass or fruit quality or concentration
of secondary chemicals which confer medicinal values to plants tend
to be size dependent. Therefore, it is critical to understand how size
dependent harvest can impact the population dynamics of targeted
species while accounting for the combined lethal versus non-lethal
harvest. In this study, we explore different harvesting strategies and
the corresponding impact on tree population dynamics. This work
advances our overall understanding of the ecological processes that
occur simultaneously when populations experience harvest, which may
influence management strategies in the short-term or long-term.

In tropical regions, several plant species are harvested heteroge-
neously for timber (whole plant removal) and/or just partially by
removing branches, leaves, or reproductive organs [6]. Non-lethal har-
vesting does not directly kill the tree, but results in a reduction in
reproduction and thus the population growth rate [7]. Lethal harvesting
does directly kill the tree and also affects the growth rate of the popu-
lation [6]. Classical harvest models incorporate only the direct removal
of individuals from the population, but do not account for the indirect
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effects of non-lethal harvesting [3]. Moreover, most stage-structured
projection matrix models [22] do not explicitly include harvesting in-
tensities, and therefore identifying how harvest directly affects specific
stage transitions is challenging. The population dynamics consequences
of stage specific vital rate changes can be evaluated using life table
response experiment [23]. However, this approach limits our ability to
examine the response of harvested systems to perturbation rates that
are beyond the boundaries of rates empirically observed in nature.

Previous models incorporate non-lethal harvest to better explore the
indirect effects on the population dynamics [7,17,21,24,25] but rarely
include the effect of lethal harvest. However, failure to account for both
lethal and non-lethal harvest can limit management options in terms of
when to initiate each type of harvesting and what optimal harvesting
intensity to allocate to each [6]. Recent work [3,6] includes the devel-
opment of a general model to investigate the role of both lethal and
non-lethal harvesting on plant population dynamics with application
to timber and non-timber forest products harvest. An application of
optimal control theory was used to determine optimal time-dependent
non-lethal and lethal harvesting strategies, with the goal of maximizing
conservation and benefits of harvesters, while minimizing cost [6].
The results in [6] illustrate the need for distinguishing between non-
lethal and lethal harvesting effects on population levels and costs of
harvesting. The different ‘optimal’ intensity levels of the two harvesting
types were shown. However, these models failed to account for the
size-dependent variation in harvest intensity over time.

In this study, we develop a model to investigate the effect of size-
dependent harvesting strategies on plant population dynamics while
considering the influence of harvesting types. We used data for K.
senegalensis (African Mahogany), a large tree species in Benin that is
harvested lethally for its timber and non-lethally for both its leaves
and bark [26,27]. The latter type of harvest of non-timber forest
products (NTFP) holds economic and cultural significance; for instance,
local Fulani cattle-herders defoliate the trees in the dry season to feed
their livestock [28]. K. senegalensis is typically 30 meters high with a
3 meter diameter, and due to the risk of climbing for harvesting, Fulani
maximize the amount of foliage they obtain per tree, with an estimated
80% of trees fully defoliated on average [27].

The African mahogany harvest system has been extensively studied
including using linear matrix projection models to investigate the short
and long term dynamics of the species under harvesting and climate
variations [25,29] and the role of stochasticity in shaping species
response [30]. Work in [25] showed that the effect of NTFP harvest
was greater in the short-term compared to the long-term by looking at
differences in growth rates between low and high harvest intensities,
and that early stage survival was more important for transient dy-
namics than long-term dynamics from elasticity analysis. These results
suggested that using only long-term growth rates to inform harvest
management decisions can be misleading. This stage-structured model
generalized harvest of adults as high or low to explore short and long-
term population growth rates, but was not explicit with the amount
of harvest for each size class, and harvest did not vary over time. In
addition, this model did not include the non-lethal harvest of juveniles
or the lethal harvest of adults, which is unrealistic. These features
provide the basis for our model presented in this paper: a stage-
structured, time-varying harvesting system of difference equations and
a corresponding matrix model for a tropical tree population. We will
provide an illustration of our model specifically to the K. senegalensis
population, with our focus on one area of Benin where this tree species
grows: the Sudanian northern dry region. In our work, applications of
compression algorithms enable a set of baseline rates to be determined
for specific populations, with other rates estimated through ordinary
least squares. A reproduction function dependent on non-lethal harvest-
ing is established, as well, and the combination of these rates provide
a basis for eigenvalue analysis to determine the impact harvesting has
on the populations.

In this paper, we first describe the seasons in Benin that are incorpo-

rated into our discrete-time model based on methodologies in [31] and
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provide an explanation of the model. An overview is then given of how
the matrix model from [25] is compressed from five classes to four, a
novel application of matrix compression algorithms, in order to inform
rates in our 4 × 4 matrix in which all adults are in the same class.
This compression result is then used to find two specific 4 × 4 matrix
models representing naturally unharvested and harvested populations.
Next, the reproduction function, which is dependent on harvest, is
established for the harvested population. The remaining unknown rates
are estimated for the harvested population and simulated harvest is
applied to the unharvested population to determine effective levels
of harvest that would be required to closely match the harvested
population observed data. Finally, eigenvalue analysis is performed to
determine the long-term effects of harvesting on the tree populations,
and we then present our conclusions.

2. Methods

2.1. Background on seasons in the study system

The model we formulate in the next section is informed by seasonal
events for tropical trees and we specifically use the African Mahogany
population to discuss these as we will ultimately use this population
as an illustration of our model. The northern region of Benin, where
African mahogany is naturally distributed, experiences a dryer season
from October to April, and a rainy season from May to September.
Table 10 in the Appendix displays a detailed monthly calendar for
events that occur [32] which informs our model in Section 2.2. Data
collection on K. senegalensis tree populations happened on a yearly basis
in December [32].

In October, ‘‘early fire’’ is set in the savanna to burn vegetation
before it is too dry, as this is when grass is at its maximum height
but not fully dry ( Table 10). This prevents accidental burning later
on in the year and also facilitates community-based hunting. Because
most grass in the region are annual, they rarely resprout after fire [33],
leaving only trees to serve as the main source of fodder for livestock.
Thus, after the ‘‘early fire’’, non-lethal fodder tree branch harvesting
begins and lasts most of the dry season [27]. Lethal harvest also mostly
occurs in the dry season since it is easier for the logging companies to
transport logs out of the forest in that period than in the wet season.
Tree growth primarily takes place in the wet season. For our model, we
do not include fire explicitly but instead let it be the implicit reasoning
behind when harvest occurs.

2.2. Model formulation

Gaoue [25] developed a stage-structured matrix projection model to
measure the impact of only non-lethal harvesting of adults on popula-
tion dynamics. This model consisted of five population classes based on
size: seedlings, saplings, juveniles, small-reproductive adults, and large-
reproductive adults. Both reproductive adult classes were non-lethally
harvested. Data was gathered from six populations in the Sudanian dry
region of Benin, three of which were experiencing high harvest and the
remaining three experiencing low harvest, as well as six populations
from the Sudano-Guinean moist region in Benin with the same split in
harvesting levels [25,29]. Population matrices were built using average
population structures and harvesting intensities over 4 years.

We modified the model in [25] to develop a discrete harvesting
model, specifically a Lefkovich matrix model derived from our system
of difference equations outlined in this section [34]. The model is based
on four size classes with units of number of trees:

– Seedlings (𝑁): 0 cm < basal diameter < 2 cm
– Saplings (𝑆): 2 cm ≤ basal diameter < 5 cm
– Juveniles (𝐽 ): 5 cm ≤ diameter at breast height < 20 cm

– Adults (𝐴): diameter at breast height ≥ 20 cm.
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Table 1
Rates for our harvesting model with 𝑖 = 1 representing the seedling class, 𝑖 = 2
epresenting the sapling class, 𝑖 = 3 representing the juvenile class, and 𝑖 = 4
epresenting the adult class.
Rate Interpretation

𝜎𝑖 dry season, class 𝑖 survival probability
𝜎𝑖+4 wet season, class 𝑖 survival probability
𝛾𝑖𝑗 class 𝑖 to class 𝑗 transition probability
𝜌𝑖𝑗 class 𝑖 to class 𝑗 shrinkage
ℎ𝑁 (𝑘) time-dependent non-lethal adult harvest rate
ℎ𝐿(𝑘) time-dependent lethal adult harvest rate
ℎ𝐽 (𝑘) time-dependent non-lethal juvenile harvest rate
𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘)) fertility rate of adult class; includes seedling

survival in their first wet season (i.e.
probability of establishment)

We assume seedlings do not reproduce nor are harvested, juveniles
o not reproduce but are able to be non-lethally harvested, and finally,
dults are able to reproduce and are both non-lethally and lethally
arvested [35]. We define reproduction as new seedlings that emerge
s a result of adult trees dispersing seeds from the fruits they produce.
n a practical sense, given that both the classes previously referred to as
mall adult and large adult in [25] are reproductive and both are non-
ethally and lethally harvested, we have grouped them together into a
ingle adult (A) class [32]. They are functionally the same with respect
o harvest, so continuing the distinction of the classes would detract
rom the clarity of our model results. The compression of these classes
n the model from [25] is discussed in detail in Section 2.3.

For our discrete-time model, we denote different events for the trees
n Table 1 with 𝑖 = 1 representing the seedling class, 𝑖 = 2 the sapling

class, 𝑖 = 3 the juvenile class, and 𝑖 = 4 the adult class (where 𝑘
represents a year and 𝑘 + 0.5 represents the end of the dry season,
iscussed further below).

Harvesting can impose both direct and indirect effects on the tree
opulation [6–8,17]. For example, human trampling of seedlings by
arvesters and changes in adult canopy cover affect the survival rate of
eedlings [26]. Although saplings are too far from adults to be affected
y nonlethal harvesting and are also not affected by juvenile non-lethal
arvesting, they are affected by the lethal harvest of adults due to the
ragging of logs through the trees which damages them [32]. The two
ypes of non-lethal harvest do not affect juveniles because they are too
trong at that size to be affected. The lethal harvest of adults directly
mpacts adult tree survival and both the non-lethal and lethal harvest
f adults affects its reproduction [6–8,17].

We formulate a model that starts in the dry season with positive
nitial conditions 𝑁(0) = 𝑁0, 𝑆(0) = 𝑆0, 𝐽 (0) = 𝐽0, and 𝐴(0) = 𝐴0
nd then transitions to the wet season. We have 𝑘 ≥ 0 denoting the
ime-step that represents a full year. Dry season dynamics are given
y Eqs. (1)–(4) and run from time-step 𝑘 to 𝑘 + 0.5, while wet season
ynamics are described by Eqs. (5)–(8), running from time-step 𝑘+ 0.5
o 𝑘 + 1.

(𝑘 + 0.5) = (1 − ℎ𝑁 (𝑘) − 𝛼1ℎ𝐿(𝑘) − ℎ𝐽 (𝑘))𝜎1𝑁(𝑘) (1)
+ 𝜌21(1 − 𝛼2ℎ𝐿(𝑘))𝜎2𝑆(𝑘)

𝑆(𝑘 + 0.5) = (1 − 𝜌21)(1 − 𝛼2ℎ𝐿(𝑘))𝜎2𝑆(𝑘) (2)

𝐽 (𝑘 + 0.5) = 𝜎3𝐽 (𝑘) (3)

𝐴(𝑘 + 0.5) = (1 − ℎ𝐿(𝑘))𝜎4𝐴(𝑘) (4)

𝑁(𝑘 + 1) = 𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘))𝐴(𝑘 + 0.5) + (1 − 𝛾12)𝜎5𝑁(𝑘 + 0.5) (5)

𝑆(𝑘 + 1) = 𝛾12𝜎5𝑁(𝑘 + 0.5) + (1 − 𝛾23)𝜎6𝑆(𝑘 + 0.5) (6)

𝐽 (𝑘 + 1) = 𝛾23𝜎6𝑆(𝑘 + 0.5) + (1 − 𝛾34)𝜎7𝐽 (𝑘 + 0.5) (7)

𝐴(𝑘 + 1) = 𝛾34𝜎7𝐽 (𝑘 + 0.5) + 𝜎8𝐴(𝑘 + 0.5). (8)

The order of events for each season is summarized in Fig. 1 with
details in Table 10 in Appendix. The dry season from October–April
3

begins at time step 𝑘, which is the end of the previous year’s wet season.
In the dry season, we assume that: there is no diameter growth and
therefore no transition to the next size (see [36,37] regarding minimal
growth), both non-lethal and lethal harvesting occur, shrinkage of
saplings to seedlings occurs caused by fires or drought [29,38], and no
reproduction occurs. Although seed dispersal occurs in some dry season
months (January and February), we consider reproduction to include
both the fertility of adult trees, which is dependent on harvesting in
the dry season, and the survival of seedlings throughout the wet season
and therefore, is placed as an event in the wet season.

In Eq. (1), a proportion of the seedlings from the previous wet
season survive (𝜎1) and is subsequently reduced by the indirect effects
of all three types of harvest of juveniles and adults, leaving (1 −
ℎ𝑁 (𝑘) − 𝛼1ℎ𝐿(𝑘) − ℎ𝐽 (𝑘))𝜎1𝑁(𝑘) seedlings by the end of the dry season.
Next, a proportion of the saplings from the previous dry season shrink
[29,38] and come into the seedling class by the end of the dry season
(𝜌21(1 − 𝛼2ℎ𝐿(𝑘))𝜎2𝑆(𝑘)). In Eq. (2) a proportion of the saplings from
the previous wet season survive (𝜎2), subsequently reduced by indirect
effects of the lethal harvesting of adults (𝛼2ℎ𝐿(𝑘)). Then, due to a
proportion of the saplings that shrink and leave to go to the seedling
class (𝜌21), the remaining saplings by the end of the dry season are
represented by ((1−𝜌21)(1−𝛼2ℎ𝐿(𝑘))𝜎2𝑆(𝑘)). For the juvenile Eq. (3), a
proportion of the juveniles from the previous wet season survive (𝜎3) to
the end of the dry season. Finally, in Eq. (4), a proportion of the adults
from the previous wet season survive (𝜎4), and then are brought down
by the lethal harvesting of adults (ℎ𝐿(𝑘)) leaving ((1 − ℎ𝐿(𝑘))𝜎4𝐴(𝑘))
adults by the end of the dry season.

The wet season from May–September starts at time step 𝑘 + 0.5,
which is the end of the dry season in year 𝑘, and is shown in Eqs. (5)–
(8). In the wet season, we assume that there is transition to the next size
classes, no non-lethal or lethal harvesting, and no shrinkage of saplings.
Reproduction of seedlings from adult trees occurs at the beginning of
the season after the adults from the dry season have been harvested.
Growth is about 1 cm per year for first 5 years, then slower after that.
Since there is essentially no growth happening in the dry season, at
the end of the second wet season seedlings will transition to saplings
(i.e. after 1.5 years instead of 2 full years) [32]. At this point, seedlings
are at a size large enough to survive fire in the upcoming dry season
and so are considered saplings [26,39].

For seedling Eq. (5), first a proportion of the seedlings from the
previous dry season survive (𝜎5), and due to a proportion (𝛾12) of those
that transition out to the sapling class, the remaining seedlings by the
end of the wet season are represented by ((1 − 𝛾12)𝜎5𝑁(𝑘 + 0.5)). Next,
seeds are dropped based on the number of adults from the previous
dry season, and a proportion of these germinate to become seedlings
by the end of the wet season, (𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘))𝐴(𝑘 + 0.5)). We note
that 𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘)) includes both the reproduction/fertility rate of
the adults, which relies on the non-lethal and lethal harvesting rates
of adults in the previous dry season, and the survival of these seedlings
in the wet season.

In Eq. (6), a proportion of the saplings from the previous dry season
survive first (𝜎6), and due to a proportion of those that transition out
to the juvenile class (𝛾23), the remaining saplings by the end of the wet
season is represented by ((1 − 𝛾23)𝜎6𝑆(𝑘 + 0.5)). Next, a proportion of
seedlings from the previous dry season transition into the sapling class
by the end of the wet season (𝛾12𝜎5𝑁(𝑘 + 0.5)).

For the juvenile class in Eq. (7), a proportion of the juveniles from
the previous dry season survive (𝜎7) and then a proportion of those
transition out to the adult class (𝛾34). Thus, the remaining juveniles by
the end of the wet season is represented by ((1− 𝛾34)𝜎7𝐽 (𝑘+0.5)). Next,
a proportion of the saplings from the previous dry season transition
into the juvenile class by the end of the wet season (𝛾23𝜎6𝑆(𝑘 + 0.5)).
For Eq. (8), a proportion of the adults from the previous dry season
survive (𝜎8) to the end of the wet season. Next, a proportion of the
juveniles from the previous dry season transition into the adult class

by the end of the wet season (𝛾34𝜎7𝐽 (𝑘 + 0.5)).
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Fig. 1. A summary of the seasonal order of events for K. senegalensis in Benin where in year 𝑘, the dry season goes from 𝑘 to 𝑘+0.5 and the wet season goes from 𝑘+0.5 to 𝑘+1.
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Our model does not incorporate density dependence since we as-
ume that harvesting has a strong top-down effect and already keeps
he population below carrying capacity. In order to utilize data and
ate information from [25,40] for African Mahogany populations, we
ompose our seasonal difference equation model into a matrix model
ith yearly time steps. To do so, we will compose matrices 𝐷 and 𝑊

or the dry and wet seasons based on the ecology of the system and
ubsequently multiply them together for the yearly model [41].

First, we represent our dry season difference Eqs. (1)–(4) with the
ry season matrix, 𝐷, where

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑑11 𝜌21(1 − 𝛼2ℎ𝐿(𝑘))𝜎2 0 0
0 (1 − 𝜌21)(1 − 𝛼2ℎ𝐿(𝑘))𝜎2 0 0
0 0 𝜎3 0
0 0 0 (1 − ℎ𝐿(𝑘))𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

ith 𝑑11 = (1−ℎ𝑁 (𝑘)−𝛼1ℎ𝐿(𝑘)−ℎ𝐽 (𝑘))𝜎1. In vector notation, we multiply
with 𝑥𝑘 = (𝑁𝑘, 𝑆𝑘, 𝐽𝑘, 𝐴𝑘)𝑇 , our vector of classes at the beginning of

he dry season, to obtain the vector of classes at the end of the dry
eason, 𝑥𝑘+0.5 = 𝐷𝑥𝑘.

Furthermore, the wet season difference Eqs. (5)–(8) may be repre-
ented by the wet season matrix, 𝑊 , where

=

⎛

⎜

⎜

⎜

⎜

⎝

(1 − 𝛾12)𝜎5 0 0 𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘))
𝛾12𝜎5 (1 − 𝛾23)𝜎6 0 0
0 𝛾23𝜎6 (1 − 𝛾34)𝜎7 0
0 0 𝛾34𝜎7 𝜎8

⎞

⎟

⎟

⎟

⎟

⎠

.

In vector notation, we multiply the wet season matrix, 𝑊 , with 𝑥𝑘+0.5 =
(𝑁𝑘+0.5, 𝑆𝑘+0.5, 𝐽𝑘+0.5, 𝐴𝑘+0.5)𝑇 , our vector of classes at the beginning of
the wet season, to obtain the vector of classes at the end of the wet
season, 𝑥𝑘+1 = 𝑊 𝑥𝑘+0.5 = 𝑊𝐷𝑥𝑘, in which we can set 𝑌 = 𝑊𝐷.
Therefore, by multiplying the dry season matrix, 𝐷, with the wet season
matrix, 𝑊 , in which the dry season occurs first and then the wet season,
this results in our annual population matrix 𝑌 [41]. This is given by

𝑌 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑦11 (1 − 𝛾12)(1 − 𝛼2ℎ𝐿(𝑘))𝜎5𝜎2𝜌21 0 𝑦14
𝑦21 𝑦22 0 0
0 (1 − 𝜌21)(1 − 𝛼2ℎ𝐿(𝑘))𝜎6𝜎2𝛾23 (1 − 𝛾34)𝜎7𝜎3 0
0 0 𝛾34𝜎7𝜎3 (1 − ℎ𝐿(𝑘))𝜎8𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

(9)

where 𝑦11 = (1−𝛾12)(1−ℎ𝑁 (𝑘)−𝛼1ℎ𝐿(𝑘)−ℎ𝐽 (𝑘))𝜎5𝜎1, 𝑦21 = 𝛾12(1−ℎ𝑁 (𝑘)−
𝛼1ℎ𝐿(𝑘) − ℎ𝐽 (𝑘))𝜎5𝜎1, 𝑦22 = 𝛾12𝜎5𝜌21(1 − 𝛼2ℎ𝐿(2𝑘+ 1))𝜎2 + (1 − 𝛾23)𝜎6(1 −
𝜌21)(1 − 𝛼2ℎ𝐿(2𝑘 + 1))𝜎2, and 𝑦14 = 𝜙𝐴(ℎ𝑁 (𝑘), ℎ𝐿(𝑘))(1 − ℎ𝐿(𝑘))𝜎4. Next,
we demonstrate the method used to extract information on rate values
from previous work.

2.3. Matrix compression

The compression of a square matrix from one dimension to a smaller
one is necessary in some cases and can be performed using one of two
previously established algorithms, depending on whether the goal is to
maintain long-term dynamics [42] or short-term dynamics [43].

In our work, we have the 4 × 4 matrix (9), in which all adults are in
one class, that we wish to gain rate information for. Much of this rate
information is available in the 5 × 5 matrix found in [25] which uses
parallel notation to our population matrix but has adults separated into
two groups. Rate information is more easily extracted if that matrix is
 S

4

compressed to a 4 × 4 matrix with the two adult groups combined like
our matrix is structured, a previously discussed idea in Section 2.2. This
better reflects the reality of harvesting practices performed on adult
trees since both of the adult classes are reproductive and non-lethally
and lethally harvested.

Therefore, in order to use rate data from previous work to inform
our novel difference equation model and population matrix, 𝑌 , we first
compress the 5 × 5 population matrix from [25] to a 4 × 4 matrix where
the two adults groups are combined into one. The general process
of matrix compression for matrix (10) from [25], modified to fit the
context of our work, is outlined below. Applications of this process to
specific tree populations will be described in Sections 3.1 and 3.2 in
which rate values for our novel 4 × 4 harvesting population matrices
for these populations are able to be determined.

The matrix projection model in [25] is given by

𝑈 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎1(1 − 𝛾12) 𝜎2𝜌21 0 𝜎4𝜙4 𝜎5𝜙5
𝜎1𝛾12 𝜎2(1 − 𝛾23 − 𝜌21) 0 0 0
0 𝜎2𝛾23 𝜎3(1 − 𝛾34) 0 0
0 0 𝜎3𝛾34 𝜎4(1 − 𝛾45) 0
0 0 0 𝜎4𝛾45 𝜎5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(10)

Rates for shrinkage of the juvenile, small adult, and large adult classes
have been set to zero, as we do not consider those dynamics in our
work. We now collapse classes 4 and 5 in matrix (10) using two
different algorithms depending on whether the goal is to maintain
long-term dynamics or transient dynamics.

For preserving long-term dynamics, a compression algorithm in [42]
regarding matrix models with both transitions and reproduction seeks
to maintain the dominant eigenvalue 𝜆 from an original 𝑛 × 𝑛 matrix
model 𝑈 for the collapsed (𝑛 − 1) × (𝑛 − 1) matrix 𝐶1. It also seeks to
maintain the associated eigenvector 𝐮= (𝑢1, 𝑢2,… , 𝑢𝑖, 𝑢𝑖+1,… , 𝑢𝑛)𝑇 in 𝐶1
as 𝐜𝟏 = (𝑢1, 𝑢2,… , 𝑢𝑖 + 𝑢𝑖+1,… , 𝑢𝑛)𝑇 when collapsing classes 𝑢𝑖 and 𝑢𝑖+1.
Applying this algorithm to collapse classes 4 and 5 while maintaining
long-term behavior results in the collapsed matrix 𝐶1, where

𝐶1 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜎1(1 − 𝛾12) 𝜎2𝜌21 0 𝜎4𝜙4
𝑢4

𝑢4+𝑢5
+ 𝜎5𝜙5

𝑢5
𝑢4+𝑢5

𝜎1𝛾12 𝜎2(1 − 𝛾23 − 𝜌21) 0 0
0 𝜎2𝛾23 𝜎3(1 − 𝛾34) 0
0 0 𝜎3𝛾34 𝜎4

𝑢4
𝑢4+𝑢5

+ 𝜎5
𝑢5

𝑢4+𝑢5

⎞

⎟

⎟

⎟

⎟

⎠

.

(11)

In this algorithm, the long-term behavior is ensured in the com-
pressed matrix by multiplying matrix (10) on the left and right by
specific matrices, denoted 𝑃 and 𝑄, that satisfy 𝑄𝐜𝟏 = 𝐮 and 𝑃𝐮 =
𝐜𝟏, with 𝑄 utilizing proportions from the stable stage distribution as
weights ( 𝑢4

𝑢4+𝑢5
and 𝑢5

𝑢4+𝑢5
). This results in

𝐶1𝐜𝟏 = 𝑃𝑈𝑄𝐜𝟏 = 𝑃𝑈𝐮 = 𝑃𝜆𝐮 = 𝜆𝑃𝐮 = 𝜆𝐜𝟏

nd therefore our resulting matrix 𝐶1, matrix (11), has the same
igenvalue as matrix 𝑈 , matrix (10), and desired associated eigenvec-
or. The specific application of this matrix compression process to an
nharvested population (Nipuni) is given in Section 3.1.

However, for some populations, maintaining accurate short-term,
r transient, dynamics is of interest. A compression algorithm by
pears [43] is for probability transition matrices (Markov chain models)
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with entries representing the probability of transitioning from state
to another in one step. The focus of this algorithm is on maintaining
accurate transient behavior and minimizing the associated error.

To apply the algorithm presented in [43] on matrix (10) we only
focus on the juvenile, small adult, and large adult classes since these
are the only transitions involved with the compression of the last two
classes. Thus, we instead consider the matrix

𝑀 =
⎛

⎜

⎜

⎝

𝜎3(1 − 𝛾34) 0 0
𝜎3𝛾34 𝜎4(1 − 𝛾45) 0
0 𝜎4𝛾45 𝜎5

⎞

⎟

⎟

⎠

.

This algorithm utilizes weights ( 𝑚2
𝑚2+𝑚3

, 𝑚3
𝑚2+𝑚3

) representing pro-
portions of each adult class out of the total adult population based
on information from the matrix on the time spent in each of these
classes. A weighted average is then taken of rows 2 and 3 and after
simplification, columns 2 and 3 are combined, and then rows 2 and
3 are combined in order to produce a 2 × 2 compressed matrix. The
compressed matrix resulting from this algorithm is given by

𝑀𝑐 =

(

𝜎3(1 − 𝛾34) 0
𝜎3𝛾34 𝜎4

𝑚2
𝑚2+𝑚3

+ 𝜎5
𝑚3

𝑚2+𝑚3

)

.

Spears’ algorithm [43] only includes information on how to prop-
erly adapt transition probabilities, and not fertility rates, to obtain
a compressed matrix. However, we observe that the result of the
algorithm used for transition terms in [43] is comparable to the result of
the algorithm in [42] with the only difference being the weights, which
depended on what dynamics the algorithm was trying to maintain.
Thus, we apply a similar intuition for the fertility rates in this case as
the algorithm in [42], where the fertility will now be weighted based
on how long trees spend in each of the adult classes. This results in

𝜎4𝜙4
𝑚2

𝑚2 + 𝑚3
+ 𝜎5𝜙5

𝑚3
𝑚2 + 𝑚3

.

Thus, we have the following compressed matrix with 4 classes from
his algorithm focused on maintaining transient dynamics

2 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜎1(1 − 𝛾12) 𝜎2𝜌21 0 𝜎4𝜙4
𝑚2

𝑚2+𝑚3
+ 𝜎5𝜙5

𝑚3
𝑚2+𝑚3

𝜎1𝛾12 𝜎2(1 − 𝛾23 − 𝜌21) 0 0
0 𝜎2𝛾23 𝜎3(1 − 𝛾34) 0
0 0 𝜎3𝛾34 𝜎4

𝑚2
𝑚2+𝑚3

+ 𝜎5
𝑚3

𝑚2+𝑚3

⎞

⎟

⎟

⎟

⎟

⎠

.

(12)

The application of this matrix compression process to a harvested
population, Soassaraoru, is provided in Section 3.2.

We have outlined compressing a 5 × 5 population matrix to a 4 × 4
opulation matrix dependent on the dynamics to be maintained. In
he next few sections, we outline how this compression process will
e performed on specific populations, including an unharvested and a
arvested population, and how the compressed matrix in this section
ill be compared to our harvesting matrix model. This will all be put

ogether to extract rate information.

. Results

Using methodologies from Section 2.3, we now collapse the matrix
opulation models with 5 classes found in [25] (with corresponding
ata in [40]) to 4 classes for two specific populations of the tree species,
pplying the appropriate algorithm depending on the desired behavior
o be maintained. One population of K. Senegalensis we focus on in this
ork is an unharvested population, Nipuni, which is a gallery forest in
national park where it has never been logged or pruned, and therefore

s considered unharvested or pristine, compressed in Section 3.1. An-
ther population, Soassararou, is a harvested population found in the
ame region but not protected in a national park. Instead, it is a popula-
ion in the wild that the Fulani people have been harvesting for several
ecades, and this population matrix is compressed in Section 3.2. Since
5

Table 2
Rates for the unharvested (Nipuni) population using data from [25] and referenced in
Matrix (10).

Rate in matrix (10) Value from [40] Rate in matrix (10) Value from [40]

𝜎1 0.4354 𝛾12 0.028
𝜎2 0.7269 𝛾23 0.2102
𝜌21 0 𝜎3 1
𝛾34 0.0304 𝜎4 1
𝜙4 0.0001 𝛾45 0.0417
𝜎5 0.9999 𝜙5 0.1603

Nipuni is in the same ecological zone, we consider this population to
be the unharvested baseline for the harvested population Soassararou.
We consider the transient phase of the trees to be 5 years because that
is when management decisions need to be re-evaluated due to human
interference. Remaining rates for these populations are estimated in
Sections 3.4 and 3.5 and eigenvalue analysis for varying harvest rates
is given in Section 3.6. For clarity of reading and reminding the reader
of the status of harvest, Nipuni will henceforth often be referred to as
our unharvested population and Soassararou our harvested population.

3.1. Compression algorithm [42] applied to preserve long-term dynamics
for unharvested (Nipuni) population

For a population that is unharvested and protected in a national
park, it can be thought of as at equilibrium. Therefore, we aim to
maintain the long-term behavior of our unharvested population. The
original matrix population model given in [40], and which follows the
form of matrix (10) in Section 2.3, is

𝑁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.4232 0 0 0.0001 0.1603
0.0122 0.5741 0 0 0

0 0.1528 0.9696 0 0
0 0 0.0304 0.9583 0
0 0 0 0.0417 0.9999

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

The values of the individual rates that go into these entries are found
in Table 2. The dominant eigenvalue for this population matrix 3.1 is
𝜆 = 1.001 and the normalized stable stage distribution is

𝐧 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.2053
0.0059
0.0285
0.0203
0.74

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Following the algorithm in [42] to maintain long-term behavior, we
obtain the following compressed matrix (calculations to obtain matrix
entries in the Appendix) with only one adult group

𝑁𝑐 =

⎛

⎜

⎜

⎜

⎜

⎝

0.4232 0 0 0.156
0.0122 0.5741 0 0

0 0.1528 0.9696 0
0 0 0.0304 0.9999

⎞

⎟

⎟

⎟

⎟

⎠

, (14)

which has dominant eigenvalue 𝜆𝑐 = 1.001 and normalized stable stage
distribution

𝐧𝑐 =

⎛

⎜

⎜

⎜

⎜

⎝

0.2053
0.0059
0.0285
0.7603

⎞

⎟

⎟

⎟

⎟

⎠

.

The proportion of adults in the original stable stage distribution 𝐧
matches the total proportion of adults in 𝐧𝑐 , and the other entries in
the stable stage distributions 𝐧 and 𝐧 match exactly, as desired.
𝑐
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Table 3
Rates for the harvested (Soassararou) population with rates originally from [25] and
referenced in Matrix (10).

Rate in matrix (10) Value from [40] Rate in matrix (10) Value from [40]

𝜎1 0.3969 𝛾12 0.0003
𝜎2 0.8616 𝛾23 0.1091
𝜌21 0 𝜎3 0.9721
𝛾34 0.0215 𝜎4 0.9604
𝜙4 0.0732 𝛾45 0.0872
𝜎5 0.9785 𝜙5 0.1564

3.2. Compression algorithm [43] applied to preserve short-term dynamics
for harvested (Soassararou) population

On the other hand, for our harvested population, we wish to main-
tain the short-term or transient behavior of the population in our
model. The original matrix population model given in [40] with cor-
responding rates in Table 3 is

𝑆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.3968 0 0 0.0703 0.153
0.0001 0.7676 0 0 0

0 0.094 0.9512 0 0
0 0 0.0209 0.8767 0.0108
0 0 0 0.0837 0.9677

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (15)

We run this model for 5 years, a reasonable timeframe before
e-evaluating forest management decisions, with initial conditions rep-
esented by [0.42, 0.05, 0.19, 0.18, 0.16]𝑇 [32]. This results in the normal-
zed population vector

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.1204
0.0243
0.2926
0.2094
0.3533

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

ext, we compress matrix (15) into 4 classes with the goal of having
t closely match this distribution of classes at the 5 year mark. Using
pears’ algorithm [43] and focusing on the juvenile, small adult, and
arge adult classes, we get

=
⎛

⎜

⎜

⎝

0.9512 0 0
0.0209 0.8767 0.0108

0 0.0837 0.9677

⎞

⎟

⎟

⎠

.

Then, following the algorithm described in detail in Section 2.3,
ith 𝑚2 = 0.9084 and 𝑚3 = 1.051 and other details outlined in the
ppendix, we obtain:

𝑐 =
(

0.9512 0
0.0209 0.9701

)

.

inally, after calculation of the fertility rate as described in Section 2.3
nd shown in the Appendix, we have the following compressed matrix
or the harvested population of interest,

𝑐 =

⎛

⎜

⎜

⎜

⎜

⎝

0.3968 0 0 0.1147
0.0001 0.7676 0 0

0 0.094 0.9512 0
0 0 0.0209 0.9701

⎞

⎟

⎟

⎟

⎟

⎠

. (16)

Our compressed matrix has adult survival and adult reproduction
ates as shown in Table 12 corresponding to the lower right hand entry
nd upper right hand entry, respectively.

Taking this 4 class matrix model and running it for 5 years with
nitial conditions [0.42, 0.05, 0.19, 0.34]𝑇 results in the following normal-
zed population vector

𝑐 =

⎛

⎜

⎜

⎜

⎜

0.117
0.0244
0.2937

⎞

⎟

⎟

⎟

⎟

.

⎝

0.5649
⎠

6

Table 4
Rates for our unharvested population (Nipuni) model combining rate information from
Tables 2 and 11 with rate notation in the third column denoting those from the
compressed matrix (14) of [40], following the general form of matrix (11).

Rate in our unharvested
population (Nipuni) matrix
model (17)

Value of rate Corresponding rate in
compressed matrix (11)

𝜎5𝜎1 = 𝜎𝑁 0.4354 𝜎1
𝛾12 0.028 𝛾12
𝜎6𝜎2 = 𝜎𝑆 0.7269 𝜎2
𝛾23 0.2102 𝛾23
𝜎7𝜎3 = 𝜎𝐽 1 𝜎3
𝛾34 0.0304 𝛾34
𝜎8𝜎4 = 𝜎𝐴 0.9999 𝜎4

𝑢4
𝑢4+𝑢5

+ 𝜎5
𝑢5

𝑢4+𝑢5

𝜙𝐴𝜎4 0.156 𝜎4𝜙4
𝑢4

𝑢4+𝑢5
+ 𝜎5𝜙5

𝑢5
𝑢4+𝑢5

.

Comparing this to 𝐬, we see there is a 2.8% error in the seedling stage
( 0.1204−0.1170.1204 = 0.0282), a 0.41% error in saplings ( 0.0244−0.02430.0243 = 0.0041),

0.38% error in juveniles ( 0.2937−0.29260.2926 = 0.0038), and finally a 0.39%
error in adults ( 0.5649−0.56270.5627 = 0.0039).

3.3. Explicit harvesting models for each population

We now apply our matrix model (9) to both the unharvested and
harvested populations and relate rate information from previous work
to this notation. For our unharvested population that is protected in a
national park, all harvesting terms (ℎ𝐽 (𝑘), ℎ𝑁 (𝑘), and ℎ𝐿(𝑘)) in matrix
9) are set to zero. This population does not shrink from sapling to
eedling size, so 𝜌21 = 0, as well. Yearly survival rates are equivalent
o surviving both the dry season and wet season, which results in the
ultiplication of seasonal survival rates in our model. This results in

he following matrix for our unharvested population, Nipuni, with rates
ecorded in Table 4:

ℎ =

⎛

⎜

⎜

⎜

⎜

⎝

(1 − 𝛾12)𝜎5𝜎1 0 0 𝜙𝐴𝜎4
𝛾12𝜎5𝜎1 (1 − 𝛾23)𝜎6𝜎2 0 0

0 𝛾23𝜎6𝜎2 (1 − 𝛾34)𝜎7𝜎3 0
0 0 𝛾34𝜎7𝜎3 𝜎8𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

. (17)

In the harvested population, adults are non-lethally harvested but
not lethally harvested, nor are juveniles harvested. As a starting point,
we will assume constant harvesting of this population and therefore,
harvesting will occur at the same rate each dry season. From matrix
(9), we do not know the unharvested rates 𝜎5𝜎1 = 𝜎𝑁 (seedling survival
rate) and 𝛾12 (rate of transition from seedling to sapling) for the pop-
ulation because harvesting is implicitly impacting the corresponding
rates in matrix (15) we are drawing rate information from [25,40].
Applying our model to the harvested population results in the rates
given in Table 5 (with the exception of the reproduction function which
is derived in Section 3.4 and the values of the unknown parameters
which are estimated in Section 3.5) and the following matrix:

𝑆ℎ =

⎛

⎜

⎜

⎜

⎜

⎝

(1 − 𝛾12)(1 − ℎ𝑁 )𝜎5𝜎1 0 0 𝜙𝐴(ℎ𝑁 )𝜎4
𝛾12(1 − ℎ𝑁 )𝜎5𝜎1 (1 − 𝛾23)𝜎6𝜎2 0 0

0 𝛾23𝜎6𝜎2 (1 − 𝛾34)𝜎7𝜎3 0
0 0 𝛾34𝜎7𝜎3 𝜎8𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

.

(18)

3.4. Estimation of harvested population (Soassararou) adult reproduction
function dependent on non-lethal harvesting

In order to determine the effective non-lethal harvesting rate that
occurs for adult individuals in our harvested population, we must first
determine a form for the reproduction function for the population that
depends on the non-lethal harvesting of adults, 𝜙 (ℎ ). We do so by
𝐴 𝑁



T. Phillips, O.G. Gaoue, S. Lenhart et al. Mathematical Biosciences 355 (2023) 108953

r
f
f
0

h
t
9
o
i

p
a

i

𝜙

S
S

𝜙

R
𝑐

𝜇

w

(

𝜙

Table 5
Rates for our harvested population (Soassararou) model combining rate information
from Tables 3 and 12 with rate notation in the third column denoting those from the
compressed matrix (16) of [40] following the general form of matrix (12).

Rate in our harvested
population (Soassararou)
matrix model (18)

Value of rate Corresponding rate in
compressed matrix (12)

𝜎5𝜎1 = 𝜎𝑁 – 𝜎1
𝛾12 – 𝛾12
𝜎6𝜎2 = 𝜎𝑆 0.8616 𝜎2
𝛾23 0.1091 𝛾23
𝜎7𝜎3 = 𝜎𝐽 0.9721 𝜎3
𝛾34 0.0215 𝛾34
𝜎8𝜎4 = 𝜎𝐴 0.9701 𝜎4

𝑚2

𝑚2+𝑚3
+ 𝜎5

𝑚3

𝑚2+𝑚3

𝜙𝐴(ℎ𝑁 ) – 𝜎4𝜙4
𝑚2

𝑚2+𝑚3
+ 𝜎5𝜙5

𝑚3

𝑚2+𝑚3

𝜎4 – –
ℎ𝑁 – –

analyzing the individual tree data for the population [44]. Since har-
vesting (pruning) and seed dispersal from fruits happen simultaneously
throughout the dry season, we make the assumption that the number of
fruits produced and reported in the data are those leftover at the end of
the dry season. They therefore have the ability to disperse seeds, which
have the potential of germinating/establishing to become seedlings.

Generalized linear model between percent pruned and fruit production

Next, we investigate the relationship between the percent loss of
foliage of adults (i.e. the percent harvested/pruned per adult indi-
vidual) and the number of fruits produced (that disperse seeds for
seedlings). To find the function that represents the effect of harvest
on reproduction, we fit a generalized linear model [45]. We use the
negative binomial distribution with mean 𝜇 for our response variable
(which is the number of fruits produced per adult individual per year)
since the variance is much bigger than the mean and is therefore
overdispersed.

The systematic part, or linear combination of our predictor vari-
ables, is defined as

𝜈 = 𝑎 + 𝑏(𝐷𝐵𝐻) + 𝑐(ℎ𝑁 )

where 𝐷𝐵𝐻 and ℎ𝑁 are the predictor variables and 𝜈 is related to the
mean of the response variable such that log(𝜇) = 𝜈. In other words, the
mean of the number of fruits produced per adult individual per year is
given by:

𝜇 = 𝑒𝑎+𝑏(𝐷𝐵𝐻)+𝑐(ℎ𝑁 ),

which ensures non-negativity for the mean of our response variable.
We then estimate 𝑎, 𝑏, and 𝑐 using maximum likelihood estimation
as implemented by the bbmle package and mle2 function with the
software package R 2022.07.1.

Utilizing data from similar populations

After considering various sets of data to most accurately build this
relationship of the number of fruits produced based on 𝐷𝐵𝐻 and
harvest levels, our results come from data of three different harvested
populations (Soassararou, Nigoussourou, and Gbeba) from 2004–2007
(a total of 146 trees with an average 𝐷𝐵𝐻 of 46.2089) since these
populations are in similar ecological zones and all experience non-
lethal harvesting of adults. As we do not have 𝐷𝐵𝐻 explicitly in our
model, we set 𝐷𝐵𝐻 = 𝐷𝐵𝐻avg using the average for the sample of
trees in the data. In this manner, we get information on the mean
fruit/seedling production per adult individual depending on its harvest
level. Due to sparse harvesting level data between 0 and 0.4 during
the years 2004–2007, we strictly used data with harvest levels of 0.4
or greater to establish a reproduction function based on non-lethal
 g
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Fig. 2. The reproduction function, 𝜙𝐴(ℎ𝑁 ), for the harvested population (Soassararou)
epresenting the average number of seedlings produced from an adult individual as a
unction of average proportion of foliage pruned per adult individual. When all of the
oliage is removed at a harvesting level of 1, the seedling production is very close to

as would be expected.

arvest. For any trees that had positive fruit leftover at the end of
he season, we used an upper bound for the level of harvest to be
9.5% [44]. Moreover, we only used data from trees that had all
f the following information: diameter breast height (𝐷𝐵𝐻), pruning
ntensity (ℎ𝑁 ), and fruit production.

In 2004, there were 3076 fruits produced overall for these three
opulations with 279 seedlings that germinated. Thus, we make the
ssumption that each fruit produces 279

3076 seedlings on average (i.e. we
view each fruit as identical with the same number of seeds and the
same potential for dispersing seeds/becoming seedlings). Therefore, to
get the average number of seedlings per adult individual in 2004, we
multiply the function 𝜇 (the mean number of fruits produced per adult
ndividual per year) by number of seedlings

number of fruits produced = 279 seedlings in 2004
3076 fruits produced in 2004

to get our reproduction function, 𝜙𝐴,

𝐴 = 279
3076

𝜇.

We implicitly make the assumption that the percent reduction in
fruit production from increased harvest is equivalent to percent reduc-
tion in seedlings by using the same exponential function (i.e. 80% re-
duction in fruit from harvesting will be an 80% reduction in seedlings).
To ensure that seedling production is near 0 when ℎ𝑁 = 1, i.e. the non-
lethal harvesting rate is 100%, we constrain our seedling function to
ensure this behavior.

We consider the constraint value to be 0.00001, so that

𝜙𝐴(1) =
279
3076

𝑒𝑎+𝑏(𝐷𝐵𝐻avg)+𝑐(1) = 0.00001.

olving for 𝑎 from this equation results in 𝑎 = −9.1128− 𝑏(𝐷𝐵𝐻avg) − 𝑐.
ubstituting into our desired function, we obtain

𝐴(ℎ𝑁 ) = 279
3076

𝑒−9.1128+𝑏(𝐷𝐵𝐻−𝐷𝐵𝐻avg)+𝑐(ℎ𝑁−1).

eturning to the following fruit reproduction function to solve for 𝑏 and
using maximum likelihood estimation,

(ℎ𝑁 ) = 𝑒−9.1128+𝑏(𝐷𝐵𝐻−𝐷𝐵𝐻avg)+𝑐(ℎ𝑁−1),

e obtain 𝑏 = 0.1216, 𝑐 = −15.0242, and can then solve for 𝑎 = 0.2924.
Therefore, the reproduction function for the harvested population

Soassararou) is given by

𝐴(ℎ𝑁 ) = 279
3076

𝑒0.2924+0.1216(46.2089)−15.0242ℎ𝑁 (19)

from the constraint case of ℎ𝑁 (1) = 0.00001. The resulting seedling
raph is shown in Fig. 2.
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Table 6
Soassararou 2005–2007 observed data from [44] used for parameter
estimation.
Class Data Notation

Seedling [12, 10, 8] Data1
Juvenile [19, 19, 18] Data2
Adult [53, 53, 54] Data3

3.5. Estimation of harvesting rates with constant harvesting intensity on
specific populations

For our harvested (Soassararou) population, a few rates need to
be determined, including that of an effective harvesting rate for the
population. From population level calculations in the field, Gaoue
observed an average pruning rate of 84% for adult individuals [44]. For
individuals that were debarked, the average debarking intensity was
28.35%. However, we cannot use these observed percentages directly
in our model and instead need to calculate ℎ𝑁 , which is the effect
harvesting has on certain vital rates, where we have assumed a linear
effect on the survival rate of seedlings and a nonlinear effect on the
reproduction rate. In addition, this harvested population has unknown
rates that need to be estimated: 𝜎𝑁 , the survival rate of seedlings; 𝛾12,
the rate of transition from the seedling to sapling class; and 𝜎4, the
survival rate of adults in the dry season.

To estimate these rates, we compare the observed data from this
harvested population (Soassararou) to simulations of our harvesting
model applied to the same harvested population to determine what
level of harvest gives the best fit and the optimal values of our unknown
rates. In addition, we take the unharvested, pristine Nipuni population,
apply simulated harvesting to it, and aim to match the output with
observed data from the Soassararou naturally harvested population as
best as possible. This allows us to determine what harvesting level the
Nipuni population would need to experience to best match observed
data from a harvested population in a similar ecological zone.

The model we will be using to simulate harvesting on both of these
populations, which is the matrix model for the harvested population
discussed in Section 3.3, is given by

𝑆ℎ =

⎛

⎜

⎜

⎜

⎜

⎝

(1 − 𝛾12)(1 − ℎ𝑁 )𝜎5𝜎1 0 0 𝜙𝐴(ℎ𝑁 )𝜎4
𝛾12(1 − ℎ𝑁 )𝜎5𝜎1 (1 − 𝛾23)𝜎6𝜎2 0 0

0 𝛾23𝜎6𝜎2 (1 − 𝛾34)𝜎7𝜎3 0
0 0 𝛾34𝜎7𝜎3 𝜎8𝜎4

⎞

⎟

⎟

⎟

⎟

⎠

.

(20)

Our model is formulated to start in the dry season and since the data
we have available is for December (a few months into the dry season),
we use those data for our initial conditions for 2004. The number of
observed trees in December 2004 was 18 seedlings, 18 juveniles, and 54
adults; there is no information on the number of saplings so we estimate
that number. The initial conditions are therefore IC = [18, 𝑆0, 18, 54].

We use the 2004 observed harvested population (Soassararou)
data points as initial conditions for both the unharvested population
(Nipuni) and harvested population (Soassararou) harvesting models so
we can observe the behaviors of the populations from the same starting
point. Once the initial value of the sapling class, 𝑆0, is estimated from
the Soassararou fitting process, we will use that value for the fitting
process with Nipuni. The remaining data points we have for the number
of Soassararou seedlings, juveniles, and adults from 2005–2007 are
shown in Table 6.

In order to estimate the unknown parameters, we aim to mini-
mize the difference between the harvested population (Soassararou)
observed data and the simulated output for each class from both the
harvested population and unharvested population harvesting models,
with simulated harvest applied to the latter population, given by matrix

(20) and using the ordinary least squares method. We do this by

8

Table 7
Rates for harvested population (Soassararou) harvesting model with bold rates
determined from parameter estimation process.

Rate in estimation Value of rate Rate in estimation Value of rate

𝜎5𝜎1 = 𝜎𝑁 0.6 𝜎8𝜎4 = 𝜎𝐴 0.9701
𝛾12 0.01 𝜙𝐴(ℎ𝑁 ) 0.1015
𝜎6𝜎2 = 𝜎𝑆 0.8616 𝜎4 0.9701
𝛾23 0.1091 ℎ𝑁 0.3860
𝜎7𝜎3 = 𝜎𝐽 0.9721 𝑆0 14
𝛾34 0.0215

summing over the differences at each time step and for each class,
letting Diff1 be the vector that represents the differences between Soas-
sararou observed seedling data and simulated values for the respective
population for seedlings from 2005–2007, Diff2 the differences between
juvenile data from 2005–2007, and Diff3 the differences in the adult
class data from 2005–2007. Then, our objective function takes the form
of

objective function =
3
∑

𝑖=1

√

∑3
𝑘=1 Diff𝑖(k)2

√

∑3
𝑘=1 Data𝑖(k)2

,

where the relative norm is taken due to differences in the sizes of the
classes with 𝑘 denoting the years and 𝑖 denoting the classes.

We assume a constant harvest each dry season for the purposes of
getting baseline harvesting values for each population and use the Mul-
tiStart algorithm and fmincon local solver from the Global Optimization
Toolbox in MATLAB R2022B to minimize our objective function. For
the harvested population (Soassararou) harvesting model, we estimate
5 parameters (𝜎𝑁 , 𝛾12, 𝜎4, ℎ𝑁 , and 𝑆0) with 9 data points. For the
Nipuni harvesting model, we estimate 1 parameter (ℎ𝑁 ) with 9 data
points.

In each case, we use 200 starting points - a sufficient number to
obtain the same global minimum and parameter values upon multiple
runs. With bounds given in Table 13 in the Appendix, the objective
function value for fitting to the harvested population (Soassararou)
harvesting matrix simulations was 0.1094 and the resulting rates for
the harvested population are bolded in Table 7. The resulting value for
𝑆0 was 14.4546, which we round down to 14 since this is a number of
trees. We also note that ℎ𝑁 = 0.3860 is a reasonable value to evaluate
𝜙𝐴(ℎ𝑁 ) at, as it is only a slight extension beyond the data (ℎ𝑁 = 0.4 to
ℎ𝑁 = 1) the function was built upon in Section 3.4. Both 𝜎𝑁 and 𝛾12
achieve their respective upper and lower bounds, and upon considering
different bounds for these parameters, they achieve any bound that is
provided. However, all of the resulting parameter estimates are very
similar with the objective function changing only slightly.

From the finalized parameters given in Table 7, the Soassararou,
harvested population matrix is given by

𝑆ℎ(Soas) =

⎛

⎜

⎜

⎜

⎜

⎝

0.3647 0 0 0.0984
0.0037 0.7676 0 0

0 0.0940 0.9512 0
0 0 0.0209 0.9701

⎞

⎟

⎟

⎟

⎟

⎠

.

We remark that this matrix, with harvesting explicitly included
and estimated, is different than the compressed matrix (16) found
in Section 3.2 since that matrix was compressed from the 5 × 5
matrix from Gaoue [40], an average of matrices over four years
(2004–2007) that did not have explicit harvest. Our rates were es-
timated using yearly observed data instead, leading to a few terms
that differ between the matrices. In Fig. 3, the fits of the harvested
population (Soassararou) harvesting model simulations to the seedling,
juvenile, and adult Soassararou observed data points are shown.

Using the estimated initial condition of approximately 14 saplings
in 2004 from the harvested population (Soassararou), the only rate
remaining to be estimated for the naturally unharvested population

(Nipuni) harvesting model is ℎ𝑁 , a simulated harvest rate. With bounds
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Fig. 3. Comparison of harvested population (Soassararou) harvesting model simulations
to Soassararou observed data during fitting process for Soassararou rates.

on this rate given in Table 13 in the Appendix, the objective function
value for fitting to the Nipuni harvesting matrix simulations was 0.2010
and a compilation of the rates for the naturally unharvested Nipuni
population with simulated harvest is given in Table 8.
9

Table 8
Rates for unharvested population (Nipuni) harvesting model with the bold rate
determined from parameter estimation process.

Rate in estimation Value of rate Rate in estimation Value of rate

𝜎5𝜎1 = 𝜎𝑁 0.4354 𝛾34 0.0304
𝛾12 0.028 𝜎8𝜎4 = 𝜎𝐴 0.9999
𝜎6𝜎2 = 𝜎𝑆 0.7269 𝜙𝐴(ℎ𝑁 ) 0.1195
𝛾23 0.2102 𝜎4 0.9999
𝜎7𝜎3 = 𝜎𝐽 1 ℎ𝑁 0.3751

Using parameters from Table 8, the Nipuni matrix with simulated
harvest is given by

𝑆ℎ(Nipuni) =

⎛

⎜

⎜

⎜

⎜

⎝

0.2645 0 0 0.1195
0.0076 0.5741 0 0

0 0.1528 0.9696 0
0 0 0.0304 0.9999

⎞

⎟

⎟

⎟

⎟

⎠

.

Similar to the harvested population, this matrix with explicit harvest
is different than the compressed matrix (14) found in Section 3.2, due to
the compressed matrix coming from a matrix that was an average over
4 years [40]. Although we do use many of those rates, we use yearly
observed data from the harvested Soassararou population to determine
an effective harvesting rate, ℎ𝑁 , which results in a few different terms
etween these matrices. In Fig. 4, the fits of the Nipuni harvesting
odel simulations to the seedling, juvenile, and adult Soassararou

bserved data points are shown.

.6. Eigenvalue analysis

The dominant eigenvalue, 𝜆1, of a population matrix gives the
ong-term growth rate of a population and the damping ratio, 𝜆1

|𝜆2|
,

suggests how quickly the population converges to the stable stage
distribution. The critical threshold for stability occurs when the norm
of the dominant eigenvalue is 1 [31,41]. We use the estimated effective
harvesting rates for our harvested population (Soassararou) and unhar-
vested population (Nipuni), ℎ𝑁 = 0.3860 and ℎ𝑁 = 0.3751, respectively,
in order to compare population dynamics for these two populations in
the long-term. We compute the dominant eigenvalue and the damping
ratio for our harvested population to determine how a population
that is regularly perturbed responds to even more perturbation. We
also compute these values for the naturally unharvested population to
provide insight on how a pristine, unharvested population responds to
perturbation.

From the results in Table 9, we see the long-term growth rate
calculated for the unharvested population is larger than that of the
harvested population for the above-mentioned respective harvesting
rates. However, since we are fitting a deterministic model to noisy data,
these results are essentially the same given that uncertainty. Since they
are both close to 1, we can consider these populations as relatively
stable. Moreover, the damping ratio for the unharvested population is
quite similar to that of the harvested population, both being close to
1. This means the respective values of 𝜆1 and 𝜆2 are close in value for
each population and thus the two eigenvalues have a similar effect on
their respective populations.

Since our reproduction function is built based on harvest levels 0.4
or above, we can understand the effect of harvesting in our model
for values in or around this range but we do not consider the case
where harvest is set to 0 for baseline eigenvalues as that is too large of
an extrapolation in the harvest level for the function. We explore the
effect of harvest on eigenvalues by seeing how sensitive they are when
harvest levels are altered. We consider various cases of harvest levels as
shown in Table 9, reporting the values of the corresponding dominant
eigenvalues and damping ratios. We observe for both the harvested
(Soassararou) and unharvested (Nipuni) populations that varying the

harvest levels does not make a significant difference in the eigenvalues
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Fig. 4. Comparison of unharvested population (Nipuni) harvesting model simulations
o Soassararou observed data during fitting process for Nipuni harvesting rate.

ith the exception of the full defoliation case, in which the dominant
igenvalue, and therefore damping ratio, drastically drops. Moreover,
or both populations, the lower the harvesting level, the higher the
ominant eigenvalue is, as we would expect.
10
Table 9
Values of the dominant eigenvalue, 𝜆1, and the damping ratio, 𝜆1

|𝜆2 |
for the Soassararou

and Nipuni populations for varying harvest levels.
Harvesting rate (ℎ𝑁 ) 𝜆1 (Soas) 𝜆1

|𝜆2 |
(Soas) 𝜆1 (Nipuni) 𝜆1

|𝜆2 |
(Nipuni)

0.3751 – – 1.0003 1.0322
0.3860 0.9704 1.0205 – –
0.4 0.9703 1.0204 1.0002 1.0319
0.5 0.9701 1.0199 1.0000 1.0315
0.6 0.9701 1.0199 0.9999 1.0312
0.7 0.9701 1.0199 0.9999 1.0312
0.8 0.9701 1.0199 0.9999 1.0312
0.9 0.9701 1.0199 0.9999 1.0312
1 0.7676 0.8070 0.5741 0.5921

4. Discussion and conclusions

When considering the K. senegalensis population, small and large
adult trees are not easily distinguished in the field as they are both
reproductive and experience both lethal and non-lethal harvesting.
Therefore, our model combined these adults trees into the same size
class. Doing so required matrices from previous work [40] to be com-
pressed in order to inform corresponding rates in our model. Compres-
sion of these matrices used algorithms [42,43] that relied on weighting
survival and fertility rates with proportions of small or large adults out
of all adults in the stable stage distribution if long-term dynamics were
of importance, or using information on how long individuals remain
in a certain class if short-term dynamics were under consideration.
We implemented a novel application of these algorithms, in which the
naturally unharvested Nipuni population was compressed to maintain
long-term dynamics, and the harvested Soassararou population was
compressed with a focus on transient dynamics.

Prior to estimating the level of harvest for the harvested population
(Soassararou) and estimating the simulated level of harvest that the un-
harvested population (Nipuni) would require to match the Soassararou
observed data, we first determined the relationship between the re-
production and pruning intensity of the Soassararou adult individuals.
The resulting reproduction function was used for both populations as
Nipuni is viewed as an unharvested baseline for Soassararou. Using
ordinary least squares and comparing model simulations to Soassararou
observed data, we were able to estimate the level of effect harvest-
ing has on the Soassararou population as a parameter in our model,
ℎ𝑁 = 0.3860 (corresponding to 84% actual observed harvest for adult
individuals), and subsequently estimate how much harvest the Nipuni
population would need to experience to match this data Soassararou
data, ℎ𝑁 = 0.3751. The fact that these values are similar speaks to the
quality of our parameter fitting process: since Nipuni is considered an
unharvested baseline for Soassararou, we would therefore expect these
values to be similar.

Our study suggests that the populations are relatively stable since
the dominant eigenvalues were close to 1. Therefore, we conclude that
nothing drastic would happen to either population in the presence of
harvesting. Further analysis of the effect of harvesting on eigenvalues
demonstrated that altering harvest levels between 0.3751 and 1 had
very little effect except for the extreme case of ℎ𝑁 = 1, in which the
populations would be fully defoliated.

This work allows us to gain information about harvesting of popu-
lations beyond what is observed in nature since harvested populations
may be experiencing other confounding factors that can lead to an over-
estimation of harvesting effects on population dynamics. Thus, applying
simulated harvested to an unharvested population that is comparable
to a naturally harvested population allows us to compare dynamics and
one can limit the influence of confounding factors directly when com-
paring (the same) population performance with and without harvest.
This information may be useful in making policy decisions about when
and how much to harvest since a better idea of the harvesting effects

are known.
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In future work, our novel harvesting model can be applied to other
ropical tree populations including others in the K. senegalensis species.

For example, the Nigoussorou population can be analyzed similarly to
that of the Soassararou population, as it is also harvested. In addition,
the effect on population dynamics from simultaneously varying all
three types of harvest, lethal and non-lethal harvesting of adults and
non-lethal harvesting of juveniles, can be explored.

This work represents only a piece of the overall effort to better
understand the ecological processes that occur from harvesting with
implications for management strategies in the short- and/or long-term.
We recognize that our model has some limitations. One such limita-
tion is not including fire and drought explicitly, which has effects on
shrinkage of the trees—particularly from the sapling to seedling stage.
Our model is also deterministic, whereas fire and drought are stochastic
processes, and we work with noisy data. Other environmental factors
such as floods, rainfall, temperature, and insects on the trees could also
be incorporated in future work to capture a more realistic environment.
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Appendix

Benin calendar

Detailed monthly events of the K. senegalensis species are outlined
in Table 10.

Compression calculations

To compress the matrix for our unharvested population (Nipuni), we
rely on information from the normalized stable stage distribution vector
n in Section 3.1. From this eigenvector, we see that in the long-term, out
of all of the adults, the proportion of small adults is: 𝑝𝑠 =

0.0203
0.0203+0.74 =

.0267, and the proportion of large adult is: 𝑝𝑙 = 0.74
0.0203+0.74 = 0.9733.

hen, we calculate

𝐴 = 𝜎4(𝑝𝑠) + 𝜎5(𝑝𝑙) = 1(0.0267) + 0.9999(0.9733) = 0.9999

nd

4𝜎4(𝑝𝑠) + 𝜙5𝜎5(𝑝𝑙) = (0.0001)(1)(0.0267) + (0.1603)(0.9999)(0.9733)

= 0.156,

he adult survival and reproduction rates, respectively. These are
ecorded in Table 11.

In order to compress matrix (15) for the harvested population in
ur work (Soassararou) as shown in Section 3.2, first we will transpose
atrix 𝑀 found in that section to match the algorithm and notation

n [43]:

𝑢 =
⎛

⎜

⎜

0.9512 0.0209 0
0 0.8767 0.0837

⎞

⎟

⎟

.

⎝ 0 0.0108 0.9677⎠

11
Table 10
Events that occur each month for K. senegalensis in Benin.

Month Season Events

October dry ‘‘early fire" to burn vegetation, lethal
harvest, grass growth, flowering on
trees begins

November dry lethal harvest, flowering continues on
trees and fruit production begins at
end of November

December very dry fruit production, non-lethal harvest,
lethal harvest

January very dry fruit production, non-lethal harvest,
fruits open and drop/disperse seeds,
lethal harvest

February dry fruit production, non-lethal harvest,
fruits open and drop/disperse seeds,
lethal harvest, ‘‘late fire" begins

March dry non-lethal harvest, lethal harvest, ‘‘late
fire" occurs

April dry/start wet germination of grass, ‘‘late fire" that
kills trees, lethal harvest, no non-lethal
harvest

May wet grass growth

June wet seedlings emerge, grass growth

July wet seedlings emerge, grass growth

August wet flooding, some seedlings die because
submerged, grass growth

September wet/start dry grass growth

Table 11
Unharvested population (Nipuni) compressed values with 𝑝𝑠
representing the proportion of small adults out of all adults in
the stable-stage distribution and 𝑝𝑙 representing the proportion
of the large adults out of all adults in the stable stage
distribution.

Calculation for compression Value of rate

𝑝𝑠 0.0267
𝑝𝑙 0.9733
𝜎𝐴 = 𝜎4(𝑝𝑠) + 𝜎5(𝑝𝑙) 0.9999
𝜙𝐴𝜎4 = 𝜙4𝜎4(𝑝𝑠) + 𝜙5𝜎5(𝑝𝑙) 0.156

Then, following the algorithm described in detail in Section 2.3, we
obtain

𝑀𝑢𝑐 =
(

0.9512 0.0209
0 0.9701

)

,

and then transposing back,

𝑀𝑐 =
(

0.9512 0
0.0209 0.9701

)

since 𝑚2 = 0.0209 + 0.8767 + 0.0108 = 0.9084, 𝑚3 = 0 + 0.0837 + 0.9677 =
1.051, and

𝜎𝐴 = 𝜎4
𝑚2

𝑚2 + 𝑚3
+ 𝜎5

𝑚3
𝑚2 + 𝑚3

= (0.9604)
( 0.9084
0.9084 + 1.051

)

+ (0.9785)
( 1.051
0.9084 + 1.051

)

= 0.9701

which corresponds to the lower right entry in the matrix.
The fertility rate is calculated via

𝜙𝐴𝜎4 = 𝜎4𝜙4
𝑚2

𝑚2 + 𝑚3
+ 𝜎5𝜙5

𝑚3
𝑚2 + 𝑚3

,

= (0.9604)(0.0732)
( 0.9084
0.9084 + 1.051

)

+ (0.9785)(0.1564)
( 1.051
0.9084 + 1.051

)

= 0.1147.
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Table 12
Harvested population (Soassararou) compressed values where
𝑚2 represents the sum of probabilities of staying in the small
adult class and 𝑚3 represents the sum of probabilities of staying
in the large adult class.

Calculation for compression Value of rate
𝑚2

𝑚2+𝑚3
0.4636

𝑚3

𝑚2+𝑚3
0.5364

𝜎𝐴 = 𝜎4
𝑚2

𝑚2+𝑚3
+ 𝜎5

𝑚3

𝑚2+𝑚3
0.9701

𝜙𝐴𝜎4 = 𝜙4𝜎4
𝑚2

𝑚2+𝑚3
+ 𝜙5𝜎5

𝑚3

𝑚2+𝑚3
0.1147

Table 13
Bounds for harvested population (Soassararou) harvest model rates and unharvested
population (Nipuni) ℎ𝑁 rate in parameter estimation process.

Rate estimated Bounds Explanation

𝜎5𝜎1 = 𝜎𝑁 [0.4,0.6] Based on rates from Nipuni and
Barabon.

𝛾12 [0.01,0.04] Based on rates from Nipuni and
Barabon.

𝜎4 [0.9701,1] Constraints of 𝜎8 ≤ 1 and 𝜎𝐴 = 0.9701.
𝑆0 [1,50] Based on size of other classes in 2004.
ℎ𝑁 (Soas) [0.001,1] Wide range, effect ≤ 1 so entry

(1,1) of matrix (18) is non-negative.
ℎ𝑁 (Nipuni) [0.001,1] Wide range, effect ≤ 1 so entry

(1,1) of matrix (18) is non-negative.

The values of the rates for Soassararou for the compressed matrix,
𝑐 , are recorded in Table 12.

We can check the accuracy of the compression according to [43] by
omparing 𝑀5

𝑢𝑐
(i.e. compressing the original matrix and then perform-

ing matrix exponentiation for 5 time steps) and (𝑀𝑢)5𝑐 (i.e. performing
matrix exponentiation of the original matrix for 5 times steps and then
compressing the resulting matrix). Here,

𝑀5
𝑢𝑐

=
(

0.7787 0.0890
0 0.8592

)

and

𝑀5
𝑢 =

⎛

⎜

⎜

⎝

0.7787 0.0733 0.0142
0 0.5247 0.3048
0 0.0393 0.8561

⎞

⎟

⎟

⎠

.

ompressing this matrix using Spears’ algorithm results in

𝑀𝑢)5𝑐 =
(

0.7787 0.0875
0 0.8722

)

.

The upper right hand entry of the matrix has a 1.7% error
0.0890−0.0875

0.0875 = 0.0171) and the lower right hand entry of the matrix
as a 1.5% error ( 0.8722−0.85920.8722 = 0.0149).

Parameter estimation

We assume the form of the reproduction function is the same for our
unharvested population (Nipuni) as our harvested population (Soas-
sararou) from equation (19) since these populations are in a similar
ecological zone and a similar function relying on harvest cannot be
built for Nipuni (as it is not a harvested population). We need to
know the value of 𝜎4 for both populations since it is multiplied by
the reproduction function in entry (1,4) of matrix (18). Since 𝜎𝐴 =
𝜎8𝜎4 = 0.9701 for the Soassararou population and each rate in this term
is between 0 and 1, we know that each rate cannot be below 0.9701 (or
the other would have to be above 1). Therefore, we set a lower bound
of 0.9701 for 𝜎4 for estimation as shown in Table 13 in Appendix.
For the Nipuni population, 𝜎8𝜎4 = 0.9999 and therefore we make the
simplifying assumption that 𝜎4 = 0.9999 and 𝜎8 = 1, and therefore do
not need to estimate 𝜎 for this population.
4

12
To have an idea of realistic bounds for 𝜎𝑁 and 𝛾12 for the Soas-
sararou fitting process, we use information from unharvested popula-
tions in a similar ecological zone. The Nipuni and Barabon populations
(both unharvested populations in a similar ecological zone) have values
of 𝜎𝑁 = 0.4354 and 0.5795, respectively, and therefore we set the
bounds of 𝜎𝑁 to be 0.4 and 0.6. Moreover, these populations have rates
of 𝛾12 = 0.028 and 0.0309, respectively, and therefore, we set the range
of 𝛾12 to be 0.01 to 0.04. The bounds used for the estimation process
are listed in Table 13.
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