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Abstract. Algorithms for neutrino-matter coupling in core-collapse supernovae (CCSNe) are
investigated in the context of a spectral two-moment model, which is discretized in space with
the discontinuous Galerkin method, integrated in time with implicit-explicit (IMEX) methods,
and implemented in the toolkit for high-order neutrino-radiation hydrodynamics (thornado).
The model considers electron neutrinos and antineutrinos and tabulated opacities from Bruenn
(1985), which includes neutrino-electron scattering and pair processes. The nonlinear system
arising from implicit time discretization of the equations governing neutrino-matter coupling is
iterated to convergence using Anderson-accelerated fixed-point methods, which avoid formation
of Jacobians and inversion of dense linear systems. Numerical experiments show that, for a
given tolerance, a nested iteration scheme which aims to reduce opacity evaluations can lower
the computational cost. Our initial port to GPUs, using both OpenMP and OpenACC, shows an
overall speedup of up to ∼ 100x when compared to results using a single CPU core. These results
indicate that the algorithms implemented in thornado are well-suited to GPU acceleration.

1. Introduction
Neutrinos play a critical role in the core-collapse supernova (CCSN) explosion mechanism
[34, 27, 9, 37]. In a CCSN event, most (∼ 99%) of the gravitational binding energy liberated
during iron core collapse (∼ 1046 J) is released as neutrino radiation, and it is thought that
a fraction of this energy is deposited back into the stellar fluid to help drive the explosion.
Although much remains to be elucidated, this basic picture is supported by simulations (e.g.,
[33, 31, 10]).

The ‘supernova problem’ has been with us since the 1960s [20, 4], and any perceived slow
progress in understanding the explosion mechanism(s) is in part due to the complexity of the
physical processes known to play a role, combined with a lacking availability of computational
resources and robust and efficient algorithms needed to include these processes in models. The

1 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
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inclusion of neutrino transport is a major reason for the high computational cost of CCSN
models. Since neutrinos interact weakly with matter in the neutrino heating region, a kinetic
description based on the phase space distribution function is warranted. The need for sufficient
phase space resolution to faithfully capture the physics quickly adds to the computational
cost. For example, it has been demonstrated (e.g., [30, 36]) that the inclusion of neutrino-
matter interactions that couple across momentum space and/or across neutrino species (e.g.,
scattering and pair processes) can have a decisive impact on the global dynamics. However,
the computational cost of including these interactions in simulations typically grows with the
number of momentum space degrees of freedom to a power of 2-3 (depending on the algorithm),
which can render them prohibitively expensive. The delivery of exascale computing systems
(capable of 1018 double-precision floating-point operations per second) is expected to enable
unprecedented realism in CCSN simulations. However, the path to the exascale — through
heterogeneous computer architectures — has opened up unchartered territory for exploration of
suitable algorithms, implementations, and programming models.

The toolkit for high-order neutrino-radiation hydrodynamics2 (thornado) [13, 23] is being
developed for modeling CCSNe. Current capabilities in thornado include hydrodynamics
(approximated by the Euler equations with ideal and tabulated equations of state) and
spectral neutrino transport (approximated by a two-moment model with algebraic closures).
A distinguishing feature of thornado, when compared to mature supernova codes (e.g.,
[35, 8, 41]), is the use of high-order discontinuous Galerkin (DG) methods [17] for both
hydrodynamics and neutrino transport. DG methods combine elements of spectral and finite
volume methods, achieve high-order accuracy on a compact stencil, and favorable parallel
scalability on heterogeneous architectures has been demonstrated [28]. They can be used in
combination with hp-adaptivity [39], where, in addition to mesh refinement, the local polynomial
degree can be chosen differently in different cells. DG methods can easily be adapted to problems
using curvilinear coordinates (e.g., beneficial in numerical relativity [42]). Important for neutrino
transport, DG methods recover without modification the correct asymptotic behavior in the
diffusion limit, characterized by frequent collisions (e.g., [29, 1]). thornado is not developed as a
supernova simulation code with all the utilities needed to run on large scale, distributed-memory
systems, but rather as a collection of modules that can be incorporated into such simulation
codes (e.g., FLASH [24] and CASTRO [2]). For this reason, a primary focus of the thornado

development is node-level performance on heterogeneous computing systems.
In this paper we provide an initial overview of algorithms and implementations for neutrino-

matter coupling in thornado. We discuss two iterative, nonlinear solvers embedded in our
DG framework with implicit-explicit (IMEX) time integration: (1) a coupled algorithm, which
iterates matter and neutrinos on an equal footing; and (2) a nested algorithm, which iterates
matter and neutrinos in a hierarchical fashion with the aim of reducing expensive opacity
evaluations. Both algorithms are based on Anderson-accelerated fixed-point iteration [3].
Numerical experiments using a single CPU core indicate that the nested algorithm can reduce
the computational cost. Moreover, initial results from porting the coupled algorithm to GPUs
show that a substantial reduction in time to solution can be achieved for all components of the
neutrino transport scheme. Importantly, the implicit part of the DG-IMEX scheme achieves
a ∼ 100x GPU speedup when compared to results obtained with a single CPU core. In
the results presented, we considered electron neutrinos and antineutrinos, and used opacities
from Bruenn (1985; [7]), which include emission/absorption, iso-energetic scattering, neutrino-
electron scattering, and electron-positron pair processes. Tabulated equations of state and
neutrino opacities, with associated subroutines, are provided by the WeakLib3 library.

2 github.com/endeve/thornado
3 github.com/starkiller-astro/weaklib
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2. Mathematical model
Here we present a model for electron neutrinos and antineutrinos interacting with a (fluid)
background. Notable assumptions in our model are: (1) the fluid velocity is zero everywhere,
(2) the rest mass density does not change with time, and (3) only the isotropic part of the
scattering and pair process kernels are included. We consider a non-relativistic two-moment
model for neutrino transport, where the spectral neutrino density J , flux density H, and stress
K are defined as angular moments

{
J ,H,K}

(ε,x, t) =
1

4π

∫
S2

f(ω, ε,x, t)
{
1, �, �⊗ �

}
dω, (1)

where the distribution function f : (ω, ε,x, t) ∈ S
2 × R

+ × R
3 × R

+ → R
+ gives the number

of particles propagating in the direction ω ∈ S
2, with energy ε ∈ R

+, at position x ∈ R
3 and

time t ∈ R
+, and �(ω) ∈ R

3 is a unit vector parallel to the particle propagation direction.
(We employ units where the speed of light is c = 1.) Angular moments of the antineutrino
distribution f̄(ω, ε,x, t) are defined analogously and annotated with a bar; i.e., J̄ , H̄, and K̄.

For electron neutrinos, the evolution equations for the spectral density and flux are given by

∂tJ +∇ ·H = η(J , J̄ )− χ(J , J̄ )J , (2)

∂tH+∇ ·K = −κ(J , J̄ )H, (3)

where, following [32], we write the stress tensor in terms of the lower order moments as

K =
1

2

[ (
1− ψ

)
I +

(
3ψ − 1

)
ĥ⊗ ĥ

]
J , (4)

where I is the identity matrix, ĥ = H/|H|, and ψ(J , h), with h = |H|/J , is the Eddington
factor. Here we use the maximum entropy Eddington factor from Cernohorsky & Bludman [11].

The collision terms on the right-hand side of Eqs. (2) and (3) model neutrino-matter
interactions due to electron capture and iso-energetic scattering on nucleons and nuclei, inelastic
neutrino-electron scattering (NES), and electron-positron pair production and annihilation. The
total emissivity is given by

η(J , J̄ ) = χEc J0 +

∫
R+

ΦIn
Nes(ε, ε

′)J (ε′) dVε′ +
∫
R+

ΦPr
Pair(ε, ε

′)
(
1− J̄ (ε′)

)
dVε′ , (5)

where χEc is the electron capture opacity, J0 is the equilibrium (Fermi-Dirac) spectral
distribution, ΦIn

Nes is the NES in-scattering kernel, and ΦPr
Pair is the pair production kernel. The

infinitesimal energy volume element is dVε = ε2dε. The total opacity is given by

χ(J , J̄ ) = χEc +

∫
R+

[
ΦIn

Nes(ε, ε
′)J (ε′) + ΦOut

Nes (ε, ε
′)
(
1− J (ε′)

) ]
dVε′

+

∫
R+

[
ΦPr

Pair(ε, ε
′)
(
1− J̄ (ε′)

)
+ΦAn

Pair(ε, ε
′) J̄ (ε′)

]
dVε′ , (6)

where ΦOut
Nes is the NES out-scattering kernel, and ΦAn

Pair is the pair annihilation kernel. In Eq. (3),
κ = χ+ σ, where σ — independent of J and J̄ — is the scattering opacity due to iso-energetic
scattering on nucleons and nuclei. (For brevity we omit listing of analogous equations for
antineutrinos.) Here we represent the iso-energetic and NES scattering, and the pair kernels
by their isotropic approximations (zeroth order Legendre expansion of the full kernels; cf. [7]).
The opacities χEc and σ, the equilibrium distribution J0, and the kernels ΦIn

Nes, Φ
Out
Nes , Φ

Pr
Pair, and

ΦAn
Pair depend nonlinearly on the neutrino energy ε and local matter conditions; e.g., rest mass
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density ρ, temperature T , and electron fraction Ye. The integral operators in Eqs. (5) and (6)
couple neutrinos of all energies. In addition, pair production and annihilation couple neutrinos
and antineutrinos.

We denote the evolved quantities and fluxes for neutrinos and antineutrinos compactly as

M =
(
J ,H, J̄ , H̄ )

and F(M) =
(H,K, H̄, K̄ )

, (7)

respectively, and the collision term as

C(M) =
(
η − χJ ,−κH, η̄ − χ̄ J̄ ,−κ̄ H̄ )

, (8)

and write the full system of moment equations as

∂tM+∇ ·F(M) = C(M). (9)

Neutrino-matter interactions result in lepton and four-momentum exchange between
neutrinos and matter. The resulting change in the electron fraction is given by

∂tYe = −
( mB

ρ

)( 4π

h3

) ∫
R+

[ (
η − χJ

)
−

(
η̄ − χ̄ J̄

) ]
dVε, (10)

where mB is the average baryon mass and h is the Planck constant. The change in the specific
internal energy ε is given by

∂tε = −
( 1

ρ

)( 4π

h3

) ∫
R+

[ (
η − χJ

)
+

(
η̄ − χ̄ J̄

) ]
ε dVε. (11)

Combining evolution equations for neutrinos and antineutrinos (cf. Eq. (2)) with Eq. (10),
lepton number conservation is expressed as∫

D

[ ( ρ

mB

)
∂tYe +

4π

h3

∫
R+

(
∂tJ − ∂tJ̄

)
dVε

]
dx = −

∮
∂D

[ 4π

h3

∫
R+

(H− H̄)
dVε

]
· dS, (12)

where the change in the total lepton number in the domain D (left-hand side of Eq. (12)) is
only due to fluxes through the boundary ∂D. Similarly, the change in the total energy is∫

D

[
ρ∂tε+

4π

h3

∫
R+

(
∂tJ + ∂tJ̄

)
ε dVε

]
dx = −

∮
∂D

[ 4π

h3

∫
R+

(H+ H̄)
ε dVε

]
· dS. (13)

(Our model imposes a static background, therefore the three-momentum is not conserved.)

3. DG-IMEX scheme
We use the DG method [14, 15, 16, 17, 18, 19] to discretize Eq. (9) in z = (ε,x) combined with
IMEX time discretization [5, 38]. Here we summarize the main components of this DG-IMEX
scheme. While we defer the full exposition of the current scheme to a future publication, details
on our scheme for a single energy, single particle system, using a simplified collision term can
be found in [12],

We divide the dz-dimensional4 phase-space domain D into a disjoint union T of open
elements Kg = Kx ⊗ Kε

g , so that D = ∪Kg∈TKg. The spatial elements are denoted

Kx =
{
x : xi ∈ Ki := (xil, x

i
h)|i = 1, . . . , dx

}
, while the finite energy space Dε is divided

into Ng elements (groups) denoted Kε
g := (εg−1/2, εg+1/2), g = 1, . . . , Ng, so that Dε = ∪Ng

g=1K
ε
g .

4 We let dz = dx + 1 denote the dimension of energy-position space and dx the dimension of position space.
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We denote the approximation space for the DG method as V
k
h, which is consist of functions

that, on each element in Kg, take values from tensor products of one-dimensional polynomials
of maximal degree k. The semi-discrete DG problem is then to find Mh ∈ V

k
h such that

∂t

∫
Kg

Mh v dV = −
∮
∂Kg

v F̂(Mh) · n dA+

∫
Kg

F(Mh) · ∇v dV +

∫
Kg

C(Mh) v dV, (14)

for all v ∈ V
k
h and all Kg ∈ T . Here the subscript h denotes that Mh is a discretized

approximation of M, since functions in V
k
h are allowed to be discontinuous at edges of the

elements. In Eq. (14), n is the outward normal on the boundary ∂Kg (area element dA) of

element Kg (volume element dV ), and F̂ is the numerical flux. We use the global Lax-Friedrichs
flux with unit wave speed in the numerical experiments presented in Section 5.

In Eq. (14), we use Lagrange polynomials (i.e., nodal DG [25]) based on the tensor product
of one-dimensional Legendre-Gauss (LG) quadrature points to represent Mh and v in Kg. We
denote the N -point one-dimensional LG point set by Si

N = {ηiq}Nq=1 so that the point set for the

Lagrange polynomial basis is SN = ⊗dz
i=1S

i
N . We define the point set on the element face with

normal in the ith dimension as S̃i
N = ⊗dz

j �=iS
j
N . When evaluating volume and surface integrals in

Eq. (14) we use the LG quadrature rule with the SN and S̃i
N points (and associated weights),

respectively; i.e., similar to the spectral-type nodal collocation DG method in [6].
The semi-discretization of the moment equations in Eq. (14) results in a system of ordinary

differential equations (ODEs) of the form

dtM = TM(M) + CM(M), (15)

where M =
{
MKg

}
Kg∈T represent all the degrees of freedom evolved with the DG method,

and MKg are the unknowns in element Kg (i.e., Mh evaluated in the point set SN ). On the
right-hand side of Eq. (15), the transport operator TM corresponds to the first two terms on
the right-hand side of Eq. (14), while the collision operator CM corresponds to the last term.
Coupling Eq. (15) with the electron fraction and internal energy equations, Eqs. (10) and (11),
gives

dtU = T(U) + C(U), (16)

where U = (u,M), with u denoting (Ye, ε) in Eqs. (10)–(11). Here the transport operator
T(U) = (0,TM(M)), and the collision operator C is given by the right-hand sides of Eqs. (10)–
(11) and CM.

Since neutrino-matter interactions are frequent and introduce stiffness in the dense regions
of the computational domain, we use IMEX time integration to stably integrate with time steps
that can greatly exceed the shortest time scales associated with the collision operator using
implicit methods, while we integrate the transport operator using explicit methods. s-stage
IMEX schemes can be written in the following general form [38]

U(i) = Un +Δt

i−1∑
j=1

ãij T(U
(j)) + Δt

i∑
j=1

aij C(U
(j)), i = 1, . . . , s, (17)

Un+1 = Un +Δt
s∑

i=1

w̃iT(U
(i)) + Δt

s∑
i=1

wi C(U
(i)), (18)

where the matrices (ãij), (aij) ∈ R
s×s and vectors (w̃i), (wi) ∈ R

s must satisfy certain order
conditions for accuracy. The explicit matrix (ãij) is strictly lower triangular, while the implicit
matrix (aij) is lower triangular, i.e., the diagonal entries aii can be nonzero. We use the PD-
ARS scheme from [12] (their Appendix A with ε = 0), which combines two evaluations of T
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and C (i.e., two implicit solves) per time step. The scheme is formally only first-order accurate
in time, but reduces to the optimal second-order accurate explicit Runge-Kutta scheme of [40]
in the streaming limit (C = 0), performs well in the diffusion limit, and is convex-invariant.
Since neutrinos obey Fermi-Dirac statistics, their distribution function is governed by lower and
upper bounds (e.g., f, f̄ ∈ [0, 1]; a convex set). As a consequence, the moments of the neutrino
distribution function must satisfy certain algebraic constraints, which also form a convex set.
Given sufficient conditions, a convex-invariant time integration scheme preserves the constraints
of a model if the set of admissible states satisfying the constraints forms a convex set. When
applying the PD-ARS scheme from [12] to the two-moment model, sufficient conditions to ensure
the cell-averaged moments satisfy the constraints at tn+1 are: (1) a restriction on the time step,
which comes from the explicit part; (2) that the moments satisfy the constraints in a discrete
set of points in each element; and (3) that the moment closure is consistent with Fermi-Dirac
statistics. The realizability-enforcing limiter described in [12] is applied in the stages of the IMEX
scheme to enforce the constraints point-wise in each element (see [12] for complete details).

Note that each stage of the IMEX scheme in Eq. (17) can be written as

U(i) = U(∗) + aiiΔtC(U
(i)), where U(∗) = Un +Δt

i−1∑
j=1

(
ãij T(U

(j)) + aij C(U
(j))

)
, (19)

which is equivalent to a backward Euler solve with time step aiiΔt (aii ≥ 0). We proceed to
discuss approaches to the implicit solve in Eq. (19), and the coupling to the matter equations.

4. Nonlinear solvers
In this section, considering two neutrino species (electron neutrinos and antineutrinos), we write
the implicit solve in Eq. (19) as

U(+) = U(∗) + τ C(U(+)) , (20)

where U(∗) is given by the explicit part in Eq. (19), τ denotes the effective time step, and

U(+) represents the new state from the implicit update. In Eq. (20), U(∗) is considered a

known constant vector, while U(∗) is the unknown to be solved. Since the collision operator
C does not introduce coupling in position x, Eq. (20) can be split into (N × Nx)

dx decoupled
systems of equations, each of which governs 2 + 2×N ×Ng unknowns in a given spatial node.
Let (Ye, ε, J,H, J̄, H̄) denote the states U at one spatial node, i.e., (Ye, ε) ∈ R

2 denotes the
values of (Ye, ε) at the given spatial node, and (J,H, J̄, H̄) ∈ R

2NNg collects values of moments
(J ,H, J̄ , H̄) on all energy nodes at the given spatial node. Then, at each spatial node, Eq. (20)
can be explicitly written as

Y(+)
e = Y(∗)

e − τ
(
mB
ρ

) (
4π
h3

)∑
qW

(2)
q

(
(η− χ J(+)q )− (η̄− χ̄ J̄(+)q )

)
, (21a)

ε(+) = ε(∗) − τ
(
1
ρ

) (
4π
h3

)∑
qW

(3)
q

(
(η− χ J(+)q ) + (η̄− χ̄ J̄(+)q )

)
, (21b)

J(+) = J(∗) + τ
(
η− χ J(+)

)
, (21c)

J̄(+) = J̄(∗) + τ
(
η̄− χ̄ J̄(+)

)
, (21d)

H(+) = H(∗) − τ κH(+) , (21e)

H̄
(+)

= H̄
(∗) − τ κ̄ H̄

(+)
, (21f)

where (Jq, J̄q) denotes the number densities at energy node εq ∈ Dε, given by the N -point LG

quadrature on each energy element (group) Kε
g as defined in section 3. The weights W

(2)
q and
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W
(3)
q correspond to the quadrature weights used to evaluate the energy integrals in Eqs. (10)–

(11). Here the discrete opacities η and χ are computed by evaluating the energy integrals in
Eqs. (5) and (6) using the energy quadrature, and κ := χ + σ, with σ evaluated in the same
quadrature points as χ. The antineutrino opacities η̄, χ̄, and κ̄ are defined analogously.

We take a two-step approach to solving Eq. (21), which first solves the fully coupled nonlinear

system (21a)–(21d), plug the solution (Y
(+)
e , ε(+), J(+), J̄(+)) into (21e)–(21f) to compute κ, κ̄, and

then update (H(+), H̄
(+)

). Since solving (21e)–(21f) is straightforward once κ and κ̄ are known,
the main difficulty in solving (21) is to solve (21a)–(21d), where the opacities (η,χ, η̄, χ̄) are
functions of (Ye, ε, J, J̄) (see Eqs. (5), (6)) and these opacities need to be updated in the solution

procedure in order to remain consistent with (Y
(+)
e , ε(+), J(+), J̄(+)).

In the following subsections, we investigate two approaches for solving the coupled nonlinear

system (21a)–(21d). To simplify the notation, we denote the matter states by u := (Y
(+)
e , ε(+)),

the discretized neutrino (antineutrino) distributions by U := (J(+), J̄(+)), and the total variables
by U := (u,U). We then write (21a)–(21d) as

U = G(U) =

(
g(U)

G(u,U)

)
, (22)

where

g(U) :=

(
−
(
mB
ρ

) (
4π
h3

)∑
qW

(2)
q

(
J
(+)
q − J̄

(+)
q

)
+ CYe

−
(
1
ρ

) (
4π
h3

)∑
qW

(3)
q

(
J
(+)
q + J̄

(+)
q

)
+ Cε

)
, (23)

and

G(u,U) :=

( (
J(∗) + τ η(u,U)

)
/
(
1 + τ χ(u,U)

)(
J̄(∗) + τ η̄(u,U)

)
/
(
1 + τ χ̄(u,U)

) )
. (24)

Here g is derived by substituting Eqs. (21c) and (21d) into the right-hand sides of Eqs. (21a)

and (21b), and CYe and Cε collect the known constants from the explicit state U(∗). Specifically,
CYe = Y

(∗)
e +

(
mB
ρ

) (
4π
h3

)∑
qW

(2)
q

(
J
(∗)
q − J̄

(∗)
q

)
and Cε = ε(∗)+

(
1
ρ

) (
4π
h3

)∑
qW

(3)
q (J

(∗)
q + J̄

(∗)
q

)
. This

substitution simplifies the exposition since the resulting g only depends on U . On the other
hand, G comes from reorganizing (21c)–(21d), which ensures that G is a contraction map, i.e.,
the Lipschitz constant of G is strictly less than one. In addition, for the sake of clarity, the

fact that the opacities (η,χ, η̄, χ̄) depend on u = (Y
(+)
e , ε(+)) (through opacity kernels Φ) and

U = (J(+), J̄(+)) is expressed explicitly.
We consider two fixed-point approaches for solving (22) – the coupled approach and the nested

approach. When solving the nonlinear system (22), fixed-point methods are more attractive than
Newton’s method because they (1) do not require the Jacobian matrix, which can be difficult
to compute accurately with tabulated opacities; and (2) avoid inversion of dense linear systems.
On the other hand, the rate of convergence can be slower for fixed-point methods than that of
Newton-based methods. We intend to investigate this further in a future study.

4.1. Coupled fixed-point algorithm
The coupled approach considers Eq. (22) as a fixed-point problem with unknowns U, e.g.,
applying Picard iteration on Eq. (22) leads to

U(k+1) = G(U(k)) . (25)

Here the opacities (η,χ, η̄, χ̄) in G are updated at each iteration k using U(k) and thus
are consistent with the solution. The Picard iteration guarantees convergence when G is
a contraction map, however, the convergence could be slow. To achieve faster convergence,



14th Int. Conf. on Numerical Modeling of Space Plasma Flows: ASTRONUM-2019

Journal of Physics: Conference Series 1623 (2020) 012013

IOP Publishing

doi:10.1088/1742-6596/1623/1/012013

8

we implement Anderson acceleration [3, 44] to solve Eq. (22). Anderson acceleration utilizes
information from previous iterations to update the unknowns, which is expected to give faster
convergence than Picard iteration, but at a cost of additional memory usage. Specifically, in
iteration k + 1, Anderson acceleration on the coupled problem first computes the residual

r(k) := G(U(k))−U(k) , (26)

then solves a least-squares problem α∗ := argmin
α∈Rmk+1

{∥∥∑mk
i=0 αi r

(k−i)∥∥2
2
:

∑mk
i=0 αi = 1

}
with

mk := min{m, k}, and finally updates

U(k+1) =
∑mk

i=0
α∗i G(U(k−i)) . (27)

Here the truncation parameter m ≥ 0 is an integer that indicates the “memory” of Anderson
acceleration, i.e., the maximum number of residuals kept in memory. When m = 0, the solver
reduces to Picard iteration. For m > 0, Anderson acceleration updates U using a linear
combination of the last mk iterates that leads to the minimum residual. The convergence
properties of Anderson acceleration were shown in [43], which include (i) global convergence
on linear problems under the standard contraction assumption, and (ii) local convergence on
nonlinear problems under assumptions similar to the standard assumptions for local convergence
of Newton’s method. In the numerical examples in Section 5, we use m = 2, which we have
found to significantly reduce the number of iterations when compared to Picard. For m = 2,
the additional memory required for Anderson acceleration is small since each implicit solve is
local in space. In addition, the least squares problem for α∗i is small, and can be written out
explicitly or solved using an optimized linear algebra library (e.g., LAPACK).

4.2. Nested fixed-point algorithm
The second approach we consider is a nested algorithm, which formulates Eq. (22) as a nested
fixed-point problem with two layers

u = g(Û(u)) , (28a)

Û(u) = G(u, Û(u)) , (28b)

where the outer layer, Eq. (28a), is a fixed-point problem on the matter states u, and the inner,

Eq. (28b), is on the distributions Û for fixed matter states u. These two problems are nested in
the sense that evaluating the right-hand side of Eq. (28a) at a given u requires solving Eq. (28b).
For example, applying Picard iteration on both Eqs. (28a) and (28b) gives the following iterative
scheme

u(k+1) = g(Û(u(k))) , (29a)

where Û(u(k)) = U (k,∗), the limit point of the inner Picard iteration

U (k,�+1) = G(u(k),U (k,�)) . (29b)

In practice, we use Anderson acceleration with m = 2, as described in Section 4.1, to accelerate
both the inner and outer solves separately.

The nested approach is motivated by the fact that in solving Eq. (22), the most costly part is
evaluating the opacity kernels Φ at a given matter state u, which is performed in G whenever u
is updated. Therefore, while the coupled approach seems simple and straightforward, the nested
structure in Eq. (28) justifies the additional complexity by reducing the number of updates (on
u) in Eq. (28a) via a more accurate distribution update given by solving Eq. (28b) at the current
matter state. Note that the matter state u is fixed in the solution procedure of the inner problem
in Eq. (28b) and does not require opacity kernel reevaluations.
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4.3. Fixed-point convergence criteria
Here we introduce the convergence criteria applied on the two fixed-point algorithms. For fixed-
point problems of the form U = G(U), commonly used convergence criteria are either on the
error ‖U(k) −U(k−1)‖ or the residual ‖U(k) −G(U(k))‖. These criteria do not directly apply to
the problems considered here, since the unknownsU = (Ye, ε, J, J̄) in these problems are physical
quantities of different scales. To address this, we impose a separate convergence criterion on
each physical quantity of interest, i.e., the convergence criteria take the form

|Y(k+1)
e − Y(k)

e | ≤ tol |Y(0)
e | , |ε(k+1) − ε(k)| ≤ tol |ε(0)| , (30a)

‖J(k+1) − J(k)‖ ≤ tol ‖J(0)‖ , ‖J̄(k+1) − J̄(k)‖ ≤ tol ‖J̄(0)‖ , (30b)

where tol > 0 is a constant relative tolerance. In the coupled algorithm in Section 4.1, all
four criteria in (30) are applied. On the other hand, in the nested algorithm in Section 4.2, the
outer layer (Eq. (28a)) and inner layer (Eq. (28b)) use the convergence criteria (30a) and (30b),
respectively. In the numerical experiments, we set tol to be identical in each criterion in (30).

5. Numerical experiments
We compare the performance of the nonlinear solvers discussed in Section 4 using a benchmark
problem, Deleptonization Wave, that mimics the conditions in a collapsed stellar core. The
initial matter profiles (for ρ, T , and Ye) are given by the analytic expressions

ρ(r) = 0.5×
{
Dmax ×

[
1− tanh

(
(r −RD)/HD

)]
+Dmin ×

[
1− tanh

(
(RD − r)/HD

)]}
, (31)

T (r) = 0.5×
{
Tmax ×

[
1− tanh

(
(r −RT )/HT

)]
+ Tmin ×

[
1− tanh

(
(RT − r)/HT

)]}
, (32)

Ye(r) = 0.5×
{
Ymin ×

[
1− tanh

(
(r −RY )/HY

)]
+ Ymax ×

[
1− tanh

(
(RY − r)/HY

)]}
, (33)

where, for the density profile we set Dmin = 108 g cm−3, Dmax = 4× 1014 g cm−3, RD = 20 km,
and HD = 10 km. Thus, in the inner core the maximum density is consistent with nuclear
matter, and neutrinos are trapped. As the density decreases with radius, the neutrino mean
free path increases, allowing neutrinos to escape the computational domain (deleptonization).

Figure 1. Initial matter profiles versus
radius for the Deleptonization Wave prob-
lem: rest mass density (solid), temperature
(dashed), and electron fraction (dash-dot).

For the temperature profile we set Tmin = 5×109 K,
Tmax = 2.6 × 1011 K, RT = 25 km, and HT =
20 km, while for the electron fraction profile we
set Ymin = 0.3, Ymax = 0.46, RY = 45 km, and
HY = 10 km. The initial density, temperature, and
electron fraction profiles are plotted in Figure 1.
The radiation field is initialized by setting the
distribution function equal to the local Fermi-Dirac
distribution; i.e., J = J0 and J̄ = J̄0, and
H = H̄ = 0.

We first solve this problem in one spatial
dimension (imposing spherical symmetry) with
linear elements (k = 1) on a spatial domain
r ∈ [0, 100] km divided into 64 uniform elements,
and an energy domain covering ε ∈ [0, 300] MeV
covered by 16 geometrically progressing elements
where the first element has Δε = 4 MeV and the
last element has Δε ≈ 50 MeV. We evolve until
t = 5 ms using a fixed time step Δt ≈ 10−3 ms.

Figure 2 provides an overview of the results from
the coupled algorithm in Section 4.1 (see caption for additional details). In the top panel we
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plot the electron fraction versus radius for select times. Neutrinos are trapped in the central
core (r � 30 km) and the electron fraction remains relatively unchanged. For larger radii, as the
density decreases with radius, neutrinos decouple from matter and electron capture on protons
(e−+p→ n+νe) produce neutrinos that are transported radially to decrease the electron fraction
around the middle of the domain (30 km � r � 60 km). Some reabsorption (n+ νe → e− + p)
results in an increase in the electron fraction in the outer part of the domain (r � 60 km), but
overall the matter is deleptonized. In the lower left panel of Figure 2 we plot the flux factor h
(solid) and the mean energy 〈ε〉 (dashed) versus radius at t = 5 ms, defined respectively as

{
h, 〈ε〉

}
= J−1

∫
R+

{
H,J ε

}
dVε, where J =

∫
R+

J dVε. (34)

In the inner regions, the neutrino distribution is essentially isotropic (h ≈ 0). As neutrinos
decouple from matter and transition to free-streaming, the flux factor increases monotonically
with radius towards its maximum value of unity. The mean energy is largest in the center
(around 150 MeV for r = 0), decreases to about 12 MeV at r = 60 km, and then remains fairly
constant with radius. We plot the neutrino number density J (black lines) and the equilibrium
distribution J0 (blue lines) versus energy ε at t = 5 ms for various radii in the lower right panel
of Figure 2. For r = 20 km (solid lines), neutrinos are strongly coupled to matter and J ≈ J0.
At a larger radius, when r = 50 km (dashed lines), the neutrino-matter coupling weakens and
J ≈ J0 for ε � 15 MeV (note that the neutrino opacity increases roughly as ε2). Neutrinos are
further decoupled from matter at r = 80 km (dash-dot lines), and the spectral density deviates
substantially from the equilibrium distribution for all energies.

In Figure 3 we compare the coupled (Section 4.1) and nested (Section 4.2) algorithms in
terms of iteration counts needed to reach a specified tolerance tol = 10−8 with convergence
criteria (30) as discussed in Section 4.3. (At t = 5 ms, the relative difference in temperature
and electron fraction obtained with the two algorithms is less than 10−3). We plot the total
number of iterations versus radius and time. The coupled algorithm (left panel in Figure 3)
requires more iterations involving opacity evaluations to converge. Most iterations (up to ten)
are needed in the high density (> 1014 g cm−3; cf. vertical dashed lines) part of the domain.
Overall, the number of iterations decreases with increasing radius, varying between four and six
for ρ ∈ [1011, 1014] g cm−3. Only two iterations are needed at lower densities (< 1011 g cm−3).
The total number of iterations at a given radius is not very sensitive to time. For the nested
algorithm we plot both the inner and outer iteration counts (middle and right panels in Figure 3,
respectively), where the inner iteration count is averaged over the number of outer iterations
per solve. The nested algorithm requires fewer (at most four) outer iterations, and hence fewer
opacity evaluations, than the coupled algorithm. Between one and three outer iterations are
needed in the high density regions (> 1014 g cm−3), three to four are needed in the regions with
ρ ∈ [1011, 1014] g cm−3, while two are needed at lower densities. The number of inner iterations
is highest (at most eight) at high density, and decreases with increasing radius, almost in a
monotonic fashion, to one iteration outside r = 60 km. At t = 5 ms, the total number of
iterations for the coupled algorithm is 169500, versus 88770 for the nested algorithm.

We compare the performance of the nonlinear solvers in the DG-IMEX scheme in terms of
elapsed wall-time per time step in Figure 4. For this purpose we ran the Deleptonization Wave
problem in 3D for four time steps (with Δt ≈ 3× 10−3 ms) using Cartesian coordinates, a cubic
spatial domain with xi ∈ [0, 100] km, covered by 123 linear (k = 1) elements. The energy domain
is the same as for the spherically symmetric problem described above.

In Figure 4 we plot the time consumed by the primary components of the scheme for the
coupled (left columns) and nested (right columns) solvers. The total time per step tTot is
represented by the blue columns, while the time spent by the explicit updates (tEx), implicit
updates (tIm), and the positivity limiter (tPL) are represented by the red, purple, and orange
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Figure 2. Results from the spherically symmetric Deleptonization Wave problem. In the upper
panel we plot the electron fraction versus radius for various times: t = 0 ms (cyan), t = 1 ms
(magenta), t = 2 ms (blue), and t = 5 ms (black). In the lower left panel we plot the flux factor
h (solid) and the mean energy 〈ε〉 (dashed) versus radius for electron neutrinos at t = 5 ms. In
the lower right panel we plot the electron neutrino number density J versus energy at t = 5 ms
for various radii: r = 20 km (solid black), r = 50 km (dashed black), and r = 80 km (dash-dot
black). We also plot the local equilibrium number density J0 for the same radii (blue lines with
matching line style). Note that J ≈ J0 for r = 20 km.

columns, respectively (tTot ≈ tEx + tIm + tPL). We also plot the time spent doing opacity
interpolations (tOp; green columns), which is part of the implicit update. For both solvers,
the implicit solve dominates the overall computational cost of the DG-IMEX scheme, with
tIm/tTot ≈ 0.88 and tIm/tTot ≈ 0.86 for the coupled and nested algorithms, respectively. We
also find that opacity interpolations dominate the cost of the implicit solve, with tOp/tIm ≈ 0.91
and tOp/tIm ≈ 0.84 for the coupled and nested algorithms, respectively. The nested algorithm
spends less time doing opacity interpolations (tOp = 9.3 s, versus tOp = 12.3 s for the coupled
algorithm), and as a result it is about 15 percent faster than the coupled algorithm.
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Figure 3. Plot of iteration count versus radius and time for the coupled algorithm (left panel)
and the nested algorithm (middle and right panels). Vertical white dashed lines (starting from
the left) indicate where the rest mass density equals 1014, 1013, 1012, and 1011 g cm−3.

Figure 4. Elapsed wall-time per step
for the 3D Deleptonization Wave problem
using the coupled (Section 4.1) and nested
(Section 4.2) solvers. The total execution
of the DG-IMEX scheme is further divided
into its primary components: explicit update,
implicit update, positivity limiter (PL), and
opacity interpolations, which are part of the
implicit update. Runs were performed on a
single core of an IBM POWER9 CPU and
used the PGI Fortran compiler (version 19.4).

Figure 5. Comparison of different program-
ming models’ elapsed wall-time per step for
the 3D Deleptonization Wave problem using
the coupled nonlinear solver. The total ex-
ecution of the DG-IMEX scheme is further
divided into its primary components: explicit
update, implicit update, and positivity limiter
(PL). OpenMP offload results used the IBM XL
Fortran compiler (version 16.1.1-3). CPU and
OpenACC results used the PGI Fortran com-
piler (version 19.4).

6. Performance Portability
High-performance computing has entered an era of increased heterogeneity and diversity in
computer architectures. As part of the Exascale Computing Project, thornado will be
incorporated into large scale simulations of CCSN with a parallel adaptive-mesh refinement
(AMR) code like FLASH [24]. Effectively utilizing the variety of architectures these codes may
run on will be critical to our ability to incorporate new physics capabilities in these types of
simulations on realistic timescales and with limited computational resources. In this context,
we are mainly concerned with the performance of thornado at the scale of a single MPI rank
since optimizations at larger scales will be managed by the encompassing AMR framework [45].
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In this section, we demonstrate our approach to performance portability in thornado, which we
define simply as the ability of the code to take full advantage of a target architecture. For the
purpose of this paper, we constrain the scope of our discussion to only include GPUs, but the
approach could apply to other novel architectures.

Programming models based on abstractions for parallel execution and data management
across a variety of architectures have been very successful for C++ (e.g., Kokkos [22] or RAJA
[26]). However, these types of abstractions do not conform to thornado as a Fortran code.
Instead, we rely on a combination of preprocessor macros, GPU compiler directives (OpenMP
or OpenACC), and generic interfaces to optimized linear algebra libraries (e.g., MAGMA [21]) to
fully accelerate all components of the DG-IMEX scheme. For example, consider the code in
Listing 1 that performs an array permutation and the subsequent interpolation to a cell faces in
Listing 2, needed in the implicit part of the scheme described in Section 3. With this approach,
depending on the available hardware and programming environment, we are able to choose at
compile time whether to use OpenMP with GPU offload, OpenACC, or more traditional OpenMP for
CPU multi-core to execute the nested loop in parallel.

#i f de f ined (THORNADOOMPOL)
!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD COLLAPSE(7)
#e l i f d e f i n ed (THORNADOOACC)
!$ACC PARALLEL LOOP GANG VECTOR COLLAPSE(7)
#e l i f d e f i n ed (THORNADOOMP)
!$OMP PARALLEL DO SIMD COLLAPSE(7)
#end i f
DO iZ4 = iZB4−1, iZE4+1 ; . . . ; DO iNode = 1 , nDOF

uCR K( iNode , iZ1 , iZ2 , iZ3 , iM , iS , iZ4 ) = U( iNode , iZ1 , iZ2 , iZ3 , iZ4 , iM , iS )
END DO ; . . . ; END DO

Listing 1. Example of array permutation using tightly nested loops that are common
throughout thornado.

SUBROUTINE MatrixMatrixMult iply ( . . . )
. . .
#i f de f i ned (THORNADOOMPOL)
!$OMP TARGET DATA USE DEVICE PTR( pa , pb , pc )
#e l i f d e f i n ed (THORNADOOACC)
!$ACC HOSTDATA USE DEVICE( pa , pb , pc )
#end i f
da = C LOC( pa ) ; db = C LOC( pb ) ; dc = C LOC( pc )
#i f de f i ned (THORNADOOMPOL)
!$OMP END TARGET DATA
#e l i f de f i n ed (THORNADOOACC)
!$ACC END HOSTDATA
#end i f
#i f de f i ned (THORNADO LACUBLAS)
i e r r = cublasDgemm v2 ( . . . , da , lda , . . . )
#e l i f d e f i n ed (THORNADOLAMAGMA)
CALL magma dgemm( . . . , da , lda , . . . )
#e l s e
CALL DGEMM( . . . , a , lda , . . . )
#end i f
END SUBROUTINE
INTERFACE

SUBROUTINE MatrixMatrixMult iply &
( transa , transb , m, n , k , alpha , a , lda , b , ldb , beta , c , l dc )

CHARACTER : : transa , t ransb
INTEGER : : m, n , k , lda , ldb , ldc
REAL(DP) : : alpha , beta
REAL(DP) , DIMENSION( lda , ∗ ) , TARGET : : a
REAL(DP) , DIMENSION( ldb , ∗ ) , TARGET : : b
REAL(DP) , DIMENSION( ldc , ∗ ) , TARGET : : c
END SUBROUTINE

END INTERFACE
. . .
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CALL MatrixMatrixMult iply &
( ’N ’ , ’N ’ , nDOF X3, nF , nDOF, One , L X3 Up , nDOF X3, &

uCR K(1 , iZB1 , iZB2 , iZB3 , 1 , 1 , iZB4−1) , nDOF, Zero , &
uCR L(1 , iZB1 , iZB2 , iZB3 , 1 , 1 , iZB4 ) , nDOF X3 )

Listing 2. Example of interface for matrix-matrix multiplication to be performed by an
optimized linear algebra library. The TARGET attribute is added to the dummy arguments so the
C address can be ascertained and passed to C routines with the ISO C BINDING interface.

At this time, we only show results using the coupled algorithm described in Section 4.1
and defer discussion detailing comparisons among the different GPU implementations of the
nonlinear solvers to a future paper. In Figure 5, we show some preliminary profiling results for
the deleptonization wave described in Section 5 in a three-dimensional (3D) setting, where we
have adapted the benchmark to be more representative of workloads that one might encounter in
a large scale simulation with FLASH. Specifically, we solve the problem in a 3D box on a Cartesian
mesh with 12 elements in each dimension but otherwise retain the previously described problem
setup; this is a fairly good representation of a single AMR “block” in a FLASH simulation that
would be local to one MPI rank. This benchmark was run on a single node of the Summit
computer at the Oak Ridge Leadership Computing Facility (OLCF). Each node is comprised
of 2 IBM POWER9 CPUs and 6 NVIDIA Volta GPUs, but for the reasons described earlier in
this section we limit our tests to a single CPU core and one GPU.

The most notable result from this benchmark is a ∼100x overall speedup of OpenACC relative
to using only the CPU, bringing the time per time step down from tTot ≈ 15.3 s to tTot ≈ 0.16 s.
Furthermore, we find that the implementation of OpenMP offloading by the IBM XL compiler
was about three times slower than the OpenACC implementation by PGI. Preliminary analysis
suggests this may be accounted for by different choices for the GPU kernel launch configurations
(i.e. fewer thread blocks and more registers), but this warrants more study before we can
draw any definitive conclusions. Overall, these results show that thornado is well-suited to
GPU acceleration. We suspect this is due to a high-degree of SIMD-like parallelism and high
arithmetic intensity, particularly in operations such as neutrino opacity interpolations, but more
analysis (e.g., roofline model) is left for the subject of future study.

7. Summary
We have described algorithms for neutrino-matter coupling as implemented in thornado.
The transport of electron neutrinos and antineutrinos in conditions expected in core-collapse
supernovae is modeled with a two-moment model using the algebraic fermion closure from [11].
We use tabulated neutrino-matter interactions from [7], which include emission and absorption,
iso-energetic scattering, neutrino-electron scattering, and pair processes. The two-moment
model is discretized in position-energy space using the discontinuous Galerkin method, and
we use implicit-explicit time integration, where the neutrino-matter interactions are treated
implicitly. The nonlinear system governing the neutrino-matter coupling is solved iteratively
using Anderson-accelerated fixed-point iteration, and we have investigated two approaches:
(1) a fully coupled approach, and (2) a nested approach, where the nested approach aims to
reduce expensive opacity evaluations. We have found that the nested approach can reduce
the computational cost of the implicit solve. Furthermore, we have discussed our approach to
porting the neutrino transport in thornado to GPUs. Results obtained with the fully coupled
algorithms on GPUs, using OpenACC and OpenMP offloading, show speedups of ∼100x can be
achieved when compared to running with a single CPU core. These results indicate that the
algorithms implemented in thornado are well-suited for GPU acceleration. This is certainly
true for the benchmarking experiments performed here with linear DG, but in lieu of further
experimentation, we speculate only modest quantitative implications for the performance at
higher orders. Future investigations will include comparison of the algorithms presented here
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with algorithms based on Newton’s method, and comparison of the relative performance of these
algorithms on GPUs.
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