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Abstract

Neutrino–matter interactions play an important role in core-collapse supernova (CCSN) explosions, as they
contribute to both lepton number and/or four-momentum exchange between neutrinos and matter and thus act as
the agent for neutrino-driven explosions. Due to the multiscale nature of neutrino transport in CCSN simulations,
an implicit treatment of neutrino–matter interactions is desired, which requires solutions of coupled nonlinear
systems in each step of the time integration scheme. In this paper, we design and compare nonlinear iterative
solvers for implicit systems with energy-coupling neutrino–matter interactions commonly used in CCSN
simulations. Specifically, we consider electron neutrinos and antineutrinos, which interact with static matter
configurations through the Bruenn 85 opacity set. The implicit systems arise from the discretization of a
nonrelativistic two-moment model for neutrino transport, which employs the discontinuous Galerkin (DG) method
for phase-space discretization and an implicit–explicit (IMEX) time integration scheme. In the context of this DG-
IMEX scheme, we propose two approaches to formulate the nonlinear systems: a coupled approach and a nested
approach. For each approach, the resulting systems are solved with Anderson-accelerated fixed-point iteration and
Newton’s method. The performance of these four iterative solvers has been compared on relaxation problems with
various degrees of collisionality, as well as proto–neutron star deleptonization problems with several matter
profiles adopted from spherically symmetric CCSN simulations. Numerical results suggest that the nested
Anderson-accelerated fixed-point solver is more efficient than other tested solvers for solving implicit nonlinear
systems with energy-coupling neutrino–matter interactions.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Core-collapse supernovae (304);
Radiative transfer simulations (1967); Supernova neutrinos (1666)

1. Introduction

Core-collapse supernovae (CCSNe), the explosive deaths of
massive stars, are to a large extent neutrino-driven. About 99%
of the gravitational potential energy released in a core-collapse
event (∼1053 erg) is radiated away by neutrinos, which also act
as a driver for the expulsion of matter. Near the end of a
massive star’s life (i.e., a star with mass exceeding about
10 M☉), its iron core, which does not produce energy by
nuclear burning, is held up against gravity by the pressure from
degenerate electrons. However, the mass of the iron core
continues to increase due to silicon burning on its surface.
Once the mass of the iron core reaches about 1.4 M☉ (the
Chandrasekhar limit), the electron degeneracy pressure
becomes insufficient in balancing gravity, and the core
collapses in on itself. The collapse proceeds until the central
rest mass density exceeds the nuclear matter densities
(>1014 g cm−3), when the matter equation of state (EoS)
stiffens to halt the collapse and a shock wave is launched into
the collapsing outer core. The outward-propagating shock wave

loses energy by dissociating iron nuclei into free nucleons.
Furthermore, electron capture on nucleons in the hot matter
behind the shock produces copious amounts of neutrinos and
antineutrinos, which can escape the system once the shock
reaches sufficiently low densities (about 1012 g cm−3). The
combination of neutrino emission and iron dissociation
weakens the shock, which eventually stalls at a radius of about
100–200 km from the center of the star. At this point, the
region below the shock can be divided into the cooling layer
and the gain layer, separated by the gain surface, where
neutrino heating and cooling balance. In the cooling layer,
extending from the surface of the proto–neutron star to the gain
surface, there is net energy loss by neutrino emission. At lower
densities, in the heating layer extending from the gain surface
to the shock surface, there is net heating by neutrinos
emanating from below; see the diagram in Figure 1. In the
neutrino reheating explosion mechanism (Bethe & Wilson
1985), energy deposition by neutrinos in the heating layer
revives the supernova shock wave to disrupt the massive star in
a CCSN explosion. This basic description is supported by
recent numerical simulations (e.g., Lentz et al. 2015; Melson
et al. 2015; Burrows et al. 2020), but the details are more
complicated. The CCSN explosion emerges from a complex
interplay between between neutrino transport and hydrody-
namic (or magnetohydrodynamic) processes playing out within
a curved spacetime (see, e.g., Janka 2012; Burrows 2013; Hix
et al. 2014; Müller 2016 for reviews).
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Multiple interaction processes contribute to lepton number
and/or four-momentum exchange between neutrinos and
matter in the CCSN explosion. Neutrino emission caused by
electron capture on nucleons and the inverse process of
neutrino capture (absorption) dominate and contribute to both
lepton number and four-momentum exchange. During stellar
core collapse, electron capture on nuclei is critical to the
collapse dynamics, e.g., Hix et al. (2003). Neutrino scattering
on electrons and nucleons (and nuclei during collapse) is also a
major contributor to the neutrino opacity. In the seminal work
of Bruenn (1985), neutrino–nucleon scattering is treated as
isoenergetic (the neutrino changes direction but not energy in
its encounter with the nucleon), while full four-momentum
exchange is considered for neutrino–electron scattering (NES).
In later works (e.g., Thompson et al. 2000; Lentz et al. 2012a;
Müller et al. 2012; Burrows et al. 2018), it was demonstrated
that neutrino–nucleon scattering contributes to neutrino–matter
thermalization in a nontrivial way. (Without modern nuclear
electron-capture rates, NES also helps shape conditions in
the core prior to the formation of the supernova shock;
Mezzacappa & Bruenn 1993; Lentz et al. 2012a.) Neutrino
pair creation and annihilation via electron–positron pairs
(Bruenn 1985) or nucleon–nucleon bremsstrahlung (Hannestad
& Raffelt 1998) is yet another significant process in CCSN
neutrino transport. In particular, nucleon–nucleon bremsstrah-
lung is a dominant source of μ and τ neutrinos. Several studies
(e.g., Lentz et al. 2012a; Burrows et al. 2018; Just et al. 2018)
have investigated the impact of various neutrino opacities on
the CCSN explosion mechanism. Although it is difficult to pin
down an exact set of necessary interactions, there is a
consensus view that processes that couple globally in neutrino
momentum space and/or across neutrino species (e.g., NES
and pair processes) must be included for a realistic description.

It is computationally expensive to include neutrino transport
with satisfactory realism in simulations of CCSNe. First of all,

neutrinos interact relatively weakly with matter in the gain
region, which demands a kinetic description. In addition, the
hydrodynamics must be modeled without imposed spatial
symmetries and with adequate resolution to capture processes
that shape the explosion (see, e.g., Müller 2020). The additional
requirement of including momentum space coupling neutrino–
matter interactions makes realistic, large-scale simulations a
computational challenge. For example, if momentum space is
discretized with Np points, a simple evaluation of the collision
operator at one spatial location requires ( ) Np

2 operations, as
opposed to ( ) Np operations for the emission, absorption, and
isoenergetic scattering operators. In current three-dimensional
supernova models, the dimensionality of the neutrino transport
problem is reduced by adopting one- or two-moment approaches
that retain the neutrino energy dimension of momentum space
(Just et al. 2015; Skinner et al. 2019; Bruenn et al. 2020), but this
does not completely alleviate the computational challenge of
including the critical energy-coupling interactions.
Because the neutrino mean free path can be much shorter

than the spatial resolution afforded in parts of the computa-
tional domain, an implicit treatment of neutrino–matter
interactions is desired. In spherically symmetric (Rampp &
Janka 2002; Liebendörfer et al. 2004) and multidimensional
models employing the so-called ray-by-ray approximation
(Bruenn et al. 2020), the full set of transport equations is
commonly solved with implicit time integration. So far, fully
implicit time integration has not been the method of choice for
truly multidimensional neutrino transport (but see Sumiyoshi &
Yamada 2012 for an exception). Instead, implicit–explicit
(IMEX) methods (Ascher et al. 1997; Pareschi & Russo 2005)
have received more attention (see, e.g., Just et al. 2015;
O’Connor 2015; Kuroda et al. 2016; Chu et al. 2019; Skinner
et al. 2019). In the IMEX approach, collisions are treated with
implicit methods, while phase-space advection is treated with
explicit methods (implicit integration for the momentum space
advection terms is also used; Kuroda et al. 2016). Explicit
integration for phase-space advection is advantageous because
it avoids solving a distributed, sparse system of nonlinear
equations, and, since neutrino–matter interactions are com-
pletely local in space, the implicit part is embarrassingly
parallel. Moreover, the characteristic wave speeds associated
with the transport and hydrodynamics equations are not too
dissimilar in relativistic systems, and it is not clear that the
expected additional cost of solving the full transport equation
with implicit time integration and a larger time step will
pay off.
Energy-coupling neutrino–matter interactions still dominate

the computational cost of IMEX-based neutrino transport
schemes employing a spectral two-moment approach, where
the neutrino energy domain is discretized with Nε points. The
cost per spatial point is expected to scale roughly as ( )e Np ,
where the power p is between 2 and 3. The lower bound (p= 2)
is motivated by the expected cost of simply evaluating the
energy-coupling operators, while the p= 3 scaling is due to the
cost of inverting the Jacobian matrix resulting from an implicit
solution algorithm based on Newton’s method. In addition, the
neutrino–matter interaction rates depend nonlinearly on the
local thermodynamic properties of the matter, so that in a fully
implicit approach (Kuroda et al. 2016), the local computational
cost scales linearly with the number of iterations needed to
reach convergence.

Figure 1. Schematic diagram of the neutrino reheating phase during a CCSN
explosion. (This figure is originally from Bruenn et al. 2009 and reproduced
here with permission from AIP Publishing.) Neutrinos emanate from the
neutrinosphere—a proxy for the surface of the proto–neutron star (gray shaded
region)—and the cooling layer above it. Neutrino heating mediated by
neutrino–matter interactions in the gain layer between the gain radius and the
shock provides energy to reinvigorate the stalled supernova shock. During
shock revival, the flow below the shock may be modulated by neutrino-driven
convection and the standing accretion shock instability (SASI).
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Several studies have investigated approximations that are
motivated by potential gains in computational expediency. To
alleviate the cost of including energy-coupling neutrino–matter
interactions, Just et al. (2015) investigated the effect of
evaluating the collision terms for energy-coupling interactions
with matter conditions taken from the known state at high
densities (above 1011 g cm−3) and using explicit integration at
lower densities and found results that were practically identical
to a run with a more implicit treatment. Another approach to
circumvent stiffness induced by neutrino–matter interactions
is to artificially reduce the rates at high densities and use
explicit time integration throughout the computational domain
(Thompson et al. 2003; O’Connor 2015; Burrows et al. 2018;
Just et al. 2018). We also note a simplifying approach to pair
processes involving approximating pair annihilation partners
by local equilibrium distributions, which essentially renders
this interaction local in momentum space (O’Connor 2015).
While some approximations have been shown to work well in a
limited set of comparisons, they do introduce uncertainties
and limit the applicability of the algorithm. Partially for these
reasons, we do not follow the approach of altering the kernel or
collision operator based on physical insight into the problem.
Instead, we seek to develop fully implicit solvers for energy-
coupling neutrino–matter interactions for CCSN simulations
and related applications.

This paper details the base neutrino transport algorithms
implemented in the toolkit for high-order neutrino radiation
hydrodynamics (thornado5), which is being developed for
simulations of CCSNe and related problems using the
discontinuous Galerkin (DG) method for phase discretization.
Specifically, the phase-space discretization in thornado is
based on the nodal DG method (see, e.g., Hesthaven &
Warburton 2008). The original DG method was developed by
Reed & Hill (1973) for solving neutron transport problems.
Since then, it has been extended to the Runge–Kutta DG
framework for solving more general hyperbolic partial
differential equations (see, e.g., Cockburn & Shu 1989, 1991,
1998, 2001; Cockburn et al. 1989, 1990 for early develop-
ments). For more recent developments of DG methods, see Shu
(2016) and references therein. The DG methods are particularly
attractive for transport problems, since they recover the correct
asymptotic behavior in the so-called diffusion limit (Larsen &
Morel 1989; Adams 2001). They can also be easily applied to
problems with curvilinear coordinates, necessary when solving
general relativistic problems (Teukolsky 2016). However, the
DG method has so far not been applied to neutrino transport in
CCSN models (but see Radice et al. 2013; Endeve et al. 2015;
Chu et al. 2019 for applications in simplified settings). The DG
method approximates solutions with piecewise local polyno-
mials and tracks the evolution of coefficients associated with
the polynomial expansion; thus, it is often referred to as a
modal DG method. The nodal DG method uses a particular
interpolating polynomial to construct the approximation,
which allows it to track the evolution of nodal values at the
interpolation points. This special polynomial approximation
results in a simple projection operator from the target function
to the polynomial space, which enables straightforward parallel
implementation of the nodal DG method (Klöckner et al.
2009). The nodal DG method has been used in various

applications, including solving kinetic equations (e.g., Xiong
et al. 2015; Juno et al. 2018).
In this paper, we design and evaluate nonlinear solvers for

neutrino–matter interactions in a two-moment model for
neutrino transport within the IMEX framework. This DG-
IMEX method is essentially the same as that described by Chu
et al. (2019) but extended to include curvilinear spatial
coordinates, multiple neutrino species, more realistic interac-
tions, and coupling to a material background governed by a
nuclear EoS. Specifically, we consider electron neutrinos and
antineutrinos and develop nonlinear solvers for the opacity set
of Bruenn (1985), which includes emission and absorption due
to electron and neutrino capture on nucleons and nuclei,
isoenergetic neutrino scattering off nucleons and nuclei,
inelastic NES, and neutrino–antineutrino pair production/
annihilation from electron–positron pairs. We use the SFHo
EoS (Steiner et al. 2013) in the numerical experiments. The
microphysics (neutrino opacities and EoS) has been tabulated
by the WEAKLIB library,6 which also provides routines for
access and manipulation (e.g., interpolation and differentiation)
of tabulated microphysics data.
Several nonlinear solver strategies are considered for the

neutrino–matter coupling problem. As a baseline for compar-
ison, we consider Newton’s method, which can offer rapid
convergence to the solution if the initial guess is sufficiently
close and the objective function sufficiently regular. However,
the necessity of using approximate derivatives due to tabulated
opacity kernels to form the Jacobian matrix can hamper the
convergence speed. In addition, the construction of the
Jacobian from tabulated data and the solution of a dense linear
system for each iteration is computationally expensive. We
consider fixed-point iteration as an alternative to Newton’s
method. With fixed-point iteration, Jacobian matrix construc-
tions and dense linear system solutions are not necessary, but
the rate of convergence can be slow. We employ Anderson
acceleration to improve the convergence rate of the fixed-point
method. This acceleration technique was first proposed by
Anderson (1965) for solving integral equations and has been
used to accelerate fixed-point solutions in several applications,
including solving radiation-diffusion equations (An et al.
2017), flow problems (Lott et al. 2012), nuclear reactor
simulations (Hamilton et al. 2016), and a variety of nonlinear
problems (Walker & Ni 2011). Anderson acceleration speeds
up the convergence of standard fixed-point iterations by taking
an extrapolation step based on the recent iterates that aims to
minimize the residual of the new iterate. The convergence
properties of Anderson acceleration were analyzed in Toth &
Kelley (2015), Kelley (2018), and Evans et al. (2020), which
include (i) global convergence on linear problems under the
standard contraction assumption, (ii) local convergence on
nonlinear problems under assumptions similar to the standard
ones for local convergence of Newton’s method, and (iii) an
improved local convergence rate when applied to linearly
converging fixed-point iterations.
Although the Anderson-accelerated fixed-point algorithm is

generally faster than Newton’s method in the cases investigated
in this paper, we find that the computational cost associated
with reevaluating the neutrino opacities in each iteration
remains relatively high. This observation motivates a nested
approach, where the matter quantities are updated in an outer

5 https://github.com/endeve/thornado, https://doi.org/10.13139/OLCF/
1735948

6 https://github.com/starkiller-astro/weaklib, https://doi.org/10.13139/
OLCF/1735948
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iteration loop, outside an inner iteration loop where the
radiation field is iterated to convergence while the matter state
is fixed. We consider two nested iteration schemes, both based
on Anderson-accelerated fixed-point iteration in the outer loop.
In the first case, the inner loop solve is based on Newton’s
method. In this nested approach, the Jacobian associated with
the inner solve can be computed analytically, since the
nonlinear functional is considered independent of the matter
state. However, the dense linear system to be solved is of
similar size as for the fully coupled Newton method. In the
second case, the inner loop solve is based on Anderson-
accelerated fixed-point iteration. We find that the nested
iteration schemes require fewer opacity evaluations and are
more efficient than the fully coupled schemes. We also find that
the nested scheme with inner Newton iterations requires fewer
iterations to converge for the highest mass densities than the
nested scheme with inner fixed-point iterations. However, the
cost per fixed-point iteration is lower than the cost of solving
the dense linear system associated with each iteration in
Newton’s method. As a result, the nested iteration scheme with
fixed-point iteration in both the inner and outer loops is the
most efficient of the solvers considered.

We note that the model considered in this paper lacks the
physical fidelity of current CCSN models in some key aspects.
First, we consider a static fluid and adopt a nonrelativistic
model. However, it is well established that both special and
general relativistic effects must be included in realistic models
(Bruenn et al. 2001; Lentz et al. 2012b; Müller et al. 2012).
Second, we only consider electron neutrinos and antineutrinos
and do not consider the nucleon–nucleon bremsstrahlung
opacity (Hannestad & Raffelt 1998). This process is a dominant
source for production of muon and tau neutrinos and
antineutrinos (Thompson et al. 2000), which contribute
significantly to the total neutrino luminosity from CCSNe.
Third, neutrino–nucleon scattering is treated as isoenergetic.
Still, since the work of Bruenn (1985), it has been demon-
strated that, despite a relatively small energy exchange per
neutrino–nucleon interaction, the relatively large cross section
(when compared with NES) implies that this scattering process
should be treated as inelastic (Reddy et al. 1998; Müller et al.
2012; Burrows et al. 2018). However, as the development of
thornado matures, we intend to account for this physics and
document the performance in future publications. To the best of
our knowledge, the present paper documents the most
advanced application of the DG method to neutrino transport.

This paper is organized as follows. In Section 2, we present
the mathematical model we adopt for neutrino transport; in
Section 3, we introduce the DG-IMEX scheme implemented in
thornado; the nonlinear solvers are detailed in Section 4; and
in Section 5, we present numerical results, where we compare
the performance of the solvers on (1) relaxation to equilibrium
and (2) proto–neutron star deleptonization. We summarize our
findings and draw conclusions in Section 6.

2. Neutrino/Antineutrino Transport Equations

2.1. Boltzmann Equation and Neutrino–Matter Interactions

In nuclear astrophysics applications, neutrino transport can
be modeled by the Boltzmann equation. In this paper, we

consider a nonrelativistic Boltzmann equation,

c
( ) ( ) ( )¶ + = f f f

1
, 1t

which governs the particle distribution function f (x, p, t)
that describes the density of particles at position =x
( ) Î x x x, ,1 2 3 3 with momentum ( )= Î p p p p, ,1 2 3 3 at
time Î +t , where c is the speed of light. Adopting curvilinear
phase-space coordinates, the advection operator  takes the
form (see, e.g., Endeve et al. 2015)

( ) ≔ ( ) ( ) ( )å åg
g

l
l¶ + ¶

= =

 f H f H f
1 1

, 2x p
i

x
i

i
p

i

1

3

1

3
i i

where H fx
i and H fp

i denote the position space flux and
momentum space flux in the corresponding ith direction,
respectively, and γ, λ are the determinants of the position space
and momentum space metric tensors, respectively. While the
form of the advection operator in Equation (2) holds for more
general (nonorthogonal) spacetime and momentum space bases
(see, e.g., Cardall et al. 2013a), we restrict ourselves to
orthogonal bases in this paper. The position space flux
considered in this paper takes the form ( ∣ ∣)= pH f p fx

i i ,
which is proportional to the particle propagation direction. We
will restrict ourselves to spherical polar momentum coordi-
nates, and in this case, H fp

i can be obtained from
Equations (A15) and (A16) in Endeve et al. (2015). The
collision operator  models the interactions between particles
and a material background and includes emission, absorption,
elastic scattering on nucleons and nuclei, NES, and thermal pair
processes from electron–positron creation and annihilation.
This is the neutrino opacity set described in Bruenn (1985; see
Table 1 therein).
In this work, we consider the transport of electron neutrinos

(νe) and antineutrinos (n̄e), which results in the coupled
equations

c
( ) ( ¯ ) ( )¶ + = f f f f

1
, , 3at

c
¯ ( ¯ ) ¯ ( ¯ ) ( )¶ + = f f f f

1
, , 3bt

where the neutrino and antineutrino distribution functions are
denoted with f and f̄ , respectively, and the collision terms 
and ̄ both depend on f and f̄ , since they include the thermal
pair production and annihilation processes of neutrino–
antineutrino pairs. Before giving a detail formulation of the
collision terms, we first change to spherical polar momentum
coordinates (ε, ω) and decompose the neutrino three-momen-
tum as p= ε ℓ(ω), where e Î + denotes neutrino energy and
the unit vector ( )w Î ℓ 3 only depends on the angular
direction w Î 2 relative to a local orthonormal basis. The
momentum space volume element is then decomposed into
dp= dVε dω, where dVε≔ ε2dε is the spherical shell energy
volume element and dω is the momentum space angular
element. With this notation, the particle distribution f (x, p, t)
can be written as f (x, ω, ε, t). At each x and t, the neutrino
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collision operator then takes the form (Bruenn 1985)
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with h the Planck constant, ĥ the emissivity, ĉ the absorption
opacity, RIS the elastic (isoenergetic) scattering kernel (due to
scattering with nucleons and nuclei), RIN and ROUT the NES
kernels, and RPR and RAN the thermal production and
annihilation kernels due to pair processes. The antineutrino
collision operator ̄ is defined analogously with ĥ, ĉ, and the
opacity kernels ROP, OP= IS, IN, OUT, PR, AN, replaced by
their antineutrino counterparts.

For thermal emission and absorption, we follow the
approach in, e.g., Burrows et al. (2006) and rewrite

( ) ˆ ˆ ( ) ( )h c c- - = -f f f f1 , 50

where the effective opacity and equilibrium distribution are
defined as

( )c h c
h

h c
= + =

+
f: and : , 60^ ^

^
^ ^

respectively. Similarly, the antineutrino emission and absorp-
tion term is written as ¯ ( ¯ ¯)c -f f0 , with c̄ and f̄0 defined
analogously. The equilibrium distributions f0 and f̄0 are given
by the Fermi–Dirac distribution, which is isotropic in angle ω.
Specifically,

k kB B
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,

7

T T
0 0

where kB is the Boltzmann constant, T is the matter
temperature, ≔ ( )m m m m+ --e p n is the neutrino chemical
potential, and ¯ ≔ ( )m m m m- -+e p n is the antineutrino chemi-
cal potential. Here ( )m - +e is the electron (positron) chemical
potential, μn is the neutron chemical potential, and μp is the
proton chemical potential, which are evaluated from an
appropriate EoS. Since m m= -+ -e e , we have m̄ m= - .

Following Bruenn (1985), the neutrino scattering and pair
process kernels are approximated with L-term Legendre
expansions in the cosine of the scattering angle ≔ ·a ¢ℓ ℓ ,

with expansion coefficients Φ depending on the neutrino
energy. Specifically,
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where OP= IN, OUT, PR, and AN; Pl denotes the Legendre
polynomial of degree l; and the expansion coefficients of
degree l are given by
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Here ≔ ( )ò a a
-

C P dl l1

1 2 , l= 0, K, L, are normalization
constants. In this work, we use P0(α)= 1 and P1(α)= α; thus,
the normalization constants are C0= 2 and =C1

2

3
. The

antineutrino opacity kernels are approximated analogously.
Due to particle conservation and detailed balance (e.g.,
Cernohorsky 1994), the NES and pair process kernels satisfy

k

k
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B
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Note that these symmetry properties are enforced in the energy
space; thus, they are preserved in the angular approximation for
the kernels in Equation (8).
In the following, as a first approximation, we will only

include the isotropic part of the kernels (i.e., L= 0). More
realistic treatments would include linear corrections (L= 1),
while further corrections (L> 1) have been shown to result in
only minor differences for NES (e.g., Smit & Cernohorsky
1996).

2.2. Angular Moment Equations

The need for high spatial resolution and unconstrained
spatial dimensionality, e.g., to capture fluid dynamics in our
target applications, renders direct solutions of the Boltzmann
equation too expensive. However, neutrino heating rates are
sensitive to the neutrino energy distribution, which demands
retention of the energy dimension of momentum space.
Therefore, to balance computational cost with physical fidelity,
we settle for solving for a finite number of angular moments of
the distribution function by adopting a two-moment model.
Two-moment models are widely used to model neutrino
transport in CCSNe (e.g., Just et al. 2015; O’Connor 2015;
Kuroda et al. 2016; Roberts et al. 2016; Skinner et al. 2019). In
the spectral two-moment model, we solve for the zeroth and
first moments of the neutrino distribution function, while the
second moments are obtained from a closure procedure. These
moments are defined respectively as

{ }( ) ( )

{ ( ) ( ) ( )}
( )ò w

w w w w

e
p

e=

´

  


x xt f t

ℓ ℓ ℓ d

, , , ,
1

4
, , ,
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11

i ij

i i j

2

5

The Astrophysical Journal Supplement Series, 253:52 (31pp), 2021 April Laiu et al.



with moments for antineutrinos (̄ , ̄i, and ̄ij) defined
analogously. Then, the zeroth moment  (̄ ) is the spectral
number density of neutrinos (antineutrinos), the first moment
i (̄i) is the spectral number flux density of neutrinos
(antineutrinos), and the second momentij (̄ij) is proportional
to the spectral pressure tensor of neutrinos (antineutrinos).
Since the neutrino distribution function is bounded between 0
and 1, it can be shown that the moments must satisfy the
bounds (Larecki & Banach 2011)

∣ ∣ ( ) ( )-    0 1 and 1 , 12

where ≔ ( )   , ,1 2 3 and ∣ ∣ = i i , with i asso-
ciated to k via the spatial metric γik, i.e., g= i ik

k. (For
notational convenience in this section, we sometimes use
Einstein’s summation convention where repeated Latin indices
imply summation from 1 to 3.) Bounds equivalent to those in
Equation (12) also hold for the antineutrino moments.

Taking the zeroth and first moments of Equation 3(a)
leads to

c
( ) ( ¯ ) ( )ò òw w

p p
¶ + =  

 
f d f f d

1 1

4

1
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, , 13at 2 2
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1 1

4

1

4
, , 13bt j j j2 2

which, after plugging in the definitions of  and  in
Equations (2) and (4), results in the moment equations for the
number density and number flux,

c
( ) ( )åg

g h c¶ + ¶ = -
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  
1 1

, 14at
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x
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T TOT OT
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T ISOT

i j

where we have used the facts that the position space flux p/|p|
f= ℓ(ω)f and that contributions from momentum space fluxes
vanish due to boundary conditions. (An analogous set of
moment equations is derived for antineutrinos.) Equation (14)
holds for general, time-independent curvilinear spatial coordi-
nates encoded in the spatial metric γij, including the commonly
used Cartesian, spherical polar, and cylindrical coordinates.
The metric tensor is used to raise and lower indices on vectors
and tensors; e.g., g= j jk

k, g= j
i

jk
ik.

Remark 1. We note that Equation (14) can also be obtained
from the nonrelativistic (i.e., zero fluid velocity and no
gravitational fields) limit of the moment equations in Shibata
et al. (2011) and Cardall et al. (2013b; see also the number
conservative two-moment model discussed by Mezzacappa
et al. 2020; their Equations (123) and (125)). Moreover, when
including relativistic effects, one is, among other things,
confronted with choosing appropriate momentum space
coordinates. The most common (and perhaps most natural)
choice is to use momentum space coordinates in the frame of
reference of the inertial observer instantaneously comoving
with the fluid (i.e., the comoving frame), as opposed to the so-
called laboratory frame (see, e.g., Mihalas & Mihalas 1999). (In
the absence of fluid motion and gravitational fields, which is
assumed here, there is no distinction between the comoving and

laboratory frames.) Specifically, the choice of comoving frame
momentum coordinates provides the most straightforward
framework for describing neutrino–matter interactions, and
this is the choice we intend to make when including relativistic
effects in the future. However, this choice complicates the
advection operator associated with the moment equations,
which then includes Doppler and/or gravitational frequency
shift terms. The inclusion of these terms is beyond the scope of
the present paper but will be considered in a future study.

On the right-hand side of Equation (14), the elastic scattering
opacity is given by

c hc
( )

( )
s e= Fpe

IS
4

0
IS2

3 , and we define the total
emissivity and total opacity as

( ¯ ) ( ) ( ¯ )
( ¯ ) ( ) ( ¯ )

( )
h c h h
c c c c

= + +

= + +
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, and
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where ò w= =
p

  f d f0
1

4 0 02 . Let ˜ ≔ pe eedV d4 2 denote the
scaled spherical shell energy volume element; then the opacity
terms in Equation (15) are defined, respectively, as the
scattering emissivity

c hc
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the scattering opacity
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the emissivity due to thermal pair processes

c hc
( ¯ )

( )
( )( ¯ ( )) ˜ ( )òh e e e= F ¢ - ¢ e¢+

 


dV
1

, 1 , 18T 3 0
P

P
R

and the opacity due to thermal pair processes
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We make the following remarks on Equation (14): (i) the
scattering and pair process opacities depend on  and ̄ ,
respectively, due to the Fermi blocking factors; (ii) since
F  00

OP and , ̄ are between 0 and 1, we have σIS, ηSC, χSC,
ηTP, and χTP� 0; and (iii) the emissivities and opacities depend
on the neutrino energy ε and local matter states (e.g., density ρ,
temperature T, and electron fraction Ye).
To close the two-moment model in Equation (14), we adopt

an algebraic closure of the form (Levermore 1984)

[( ) ( ) ] ( ) y d y= - + - h h
1

2
1 3 1 , 20j

i
j

i i
j

where ∣ ∣ = h
i i are components of a unit vector parallel to

, and the Eddington factor ( )y y=  h, with ∣ ∣=  h .
We use the maximum entropy Eddington factor of Cerno-
horsky & Bludman (1994),

⎛
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
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where the closure polynomial is given by

( ) ( ) ( )Q = - +x x x x
1

5
3 3 . 222 2

We point out that this closure is based on Fermi–Dirac statistics
and suitable for designing numerical methods for the two-
moment model satisfying the bounds in Equation (12) (e.g.,
Chu et al. 2019).

For the antineutrino transport (Equation 3(b)), a two-moment
model on the antineutrino number density ̄ and number flux
̄ can be derived following similar procedure as in
Equations (13)–(19). We then close the resulting two-moment
model using a closure analogous to Equation (20). To simplify
the notation, we denote the neutrino and antineutrino moments
as ≔ ( ¯ ¯ )   , , , and write the coupled two-moment
models in operator form as

c
( ( )) ( ) ( )
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g¶ + ¶ = +
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1 1

,

23
i

x
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where  , , and  are the position flux operator, geometry
source operator, and collision operator, respectively. In
particular,

( ) ≔ ( ( ) ¯
¯ ¯ ( ¯ ¯ ) ¯ )
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- +

- +
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2.3. Coupling to the Matter Equations

Neutrino–matter interactions mediate the exchange of lepton
number, momentum, and energy between matter and neutrinos.
As a first approximation, we assume that the fluid remains
static, and momentum exchange is ignored. Under these
assumptions, the matter is described by the mass density ρ(x)
(fixed in time), temperature T(x, t), and electron fraction Ye(x,
t), and neutrino–matter interactions result in changes to the
electron fraction,

c
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and specific internal energy,
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where mb is the average baryon mass. The specific internal
energy ò(x, t) is defined such that ρò is the internal energy
density. We note that, given any ρ and Ye, the specific internal
energy ò is a one-to-one (injective) function of the temperature
T; i.e., one can map a given T to a unique ò, and vice versa.
Specifically, ( )¶ ¶ >r T 0Y, e .

Together with the number density evolution equations (see
Equation (14a)) for neutrinos and antineutrinos, Equations (25)

and (26) lead to the conservation of lepton number
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respectively. Note that (ρ/mb)Ye= ne is the electron density
(technically the electron minus positron density), and that
neutrinos and electrons have lepton number 1, while antineu-
trinos and positrons have lepton number −1. Equation (27)
implies that the total lepton number in domain D (left-hand side
of Equation (27)) only changes due to fluxes through the
domain boundary ∂D (right-hand side of Equation (27)). A
similar conservation statement holds for the total energy in D as
given in Equation (28).

3. DG-IMEX Scheme for Solving the Moment Equations

3.1. Nodal DG Space and Energy Discretization

We apply the nodal DG discretization (see, e.g., Hesthaven
& Warburton 2008 for an overview) to Equation (23) in space
Î x 3 and energy e Î + , in which a logically Cartesian

mesh with coordinate aligned elements is considered. To derive
the discretized equation from the nodal DG method, we first
divide the computational domain = ´ Ì ´e

+ D D Dx
3

into a disjoint union of open elements K, where each element
takes the form

{( ) ≔ ( )
≔ ( )}

( )e
e e e

= Î
= Î e

K x x K x x
i K

, : , ,
1, 2, 3, , ,

29
i i i i

L H

L H

with D = -x x xi i i
H L and Δε= εH− εL denoting the side

lengths of K. For i= 1, 2, 3, the spatial surface elements in
direction x i are denoted as ˜ = ´¹K Ki

j i
j, with space variables

˜ ≔ { }Î ¹x xx j i:i j on K̃ i, where × is the Cartesian product
operator. We use VK to denote the proper volume of the
element

( )
ò g g e e= = =ex xV dV dV d dV d d, where .

30

K
K

2

We let the approximation space for the DG method, eN N,x ,
be constructed from the tensor product of one-dimensional
polynomials of maximal degrees Nx and Nε in space and
energy, respectively. Note that functions in eN N,x can be
discontinuous across element interfaces. The semidiscrete DG
problem is to find Î e N N

h
,x (which approximates  in
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Equation (23)) such that (see Cockburn & Shu 2001)

c

⎜ ⎟⎛
⎝

⎞
⎠

( ( ) ∣

( ) ∣ ) ˜

( ) ( )

( )

( )

˜




ò ò ò

ò ò

ò

å

å

g

g

¶ +

-

-
¶
¶

=

+

e

=

=

e
  

 

   

 

x

v dV v

v d dV

v

x
dV v dV

v dV

1

31

K K

K K

K

t
i K

i
x

i
x

i

i

i
i

h
1

3

h

h

1

3

h h

h

i
i

i

H

L

for all Î ev N N,x and all Î K . Here the numerical flux
approximating the flux on the spatial surface element K̃ i is

denoted as ( ) i
h . In this work, we consider the Lax–

Friedrichs (LF) flux,
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where ∣ ∣= d d  limx xh 0 hi i, are the evaluations ofh

at the immediate right/left of x i, which thus are functions of
( ˜ )ex t, ,i . The parameter ∣∣ ( )∣∣a = ¶ ¶ ¥ eigi i is the
largest eigenvalue of the flux Jacobian. For massless neutrinos,
which propagate at the speed of light, we can take α i= c (i.e.,
the global LF flux).

In each element K, we approximate the conserved variables
 by
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where { } =e e
eℓn n

N
1 is chosen to be a collection of Lagrange

polynomials in energy of degree Nε, nx≔ {n1, n2, n3} is a multi-
index that goes from 1= {1, 1, 1} to Nx= {Nx, Nx, Nx}, and
{ } =ℓn n

N
1x x

x is the collection of multidimensional polynomials

defined as ( ) ≔ ( ) =xℓ ℓ xn i n
i

1
3

x
i , with{ } =ℓn n

N
1

xi i one-dimensional
Lagrange polynomials in x i of degree Nx. It then follows from
these definitions that { ( ) ( )}e = =e e

exℓ ℓn n
N

n n
N

1, 1
,

x x
x forms a basis for

eN N,x on K. Motivated by the numerical experiments reported in
Bassi et al. (2013), we consider here the Lagrange polynomials
with Gauss–Legendre interpolation points (instead of Gauss–
Legendre–Lobatto points); e.g., eℓn on interval K ε is defined as
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The local variable ( ) ≔x e
e e

e
-
D

C with the center εC≔

(εL+ εH)/2, and interpolation points { }xe =
e

j j
N

1 are given by the
Nε-point Gauss–Legendre quadrature abscissas on I. On
interval Ki, ℓni is defined analogously as ( ) ( )x=ℓ x ℓn

i
N n,
loc

x
i i ,

with Gauss–Legendre interpolation points { }x =j
i

j
N

1
x on I. With

Figure 2. Example of nodal DG elements in a computational domain in ´ +  . Figure 2(a) shows the interpolation points { }x =j
i

j
N

1
x and { }xe =

e
j j

N
1 in a nodal DG

element K in the local coordinate. Figure 2(b) shows the union of all elements K and the space and energy nodes—the values of the interpolation points in the global
coordinate. Figure 2(b) also illustrates the collection of space nodes Sx and the collection energy nodes Sε, which are defined in Equations (40) and (41).
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this choice of basis, it follows that the expansion in
Equation (33) becomes a nodal representation of h, i.e.,

( ) ( )e =e e x t t, ,n nn nh ,x x , where { }=x x x x, ,n n n n
1 2 3

x 1 2 3 and
e en are the global space and energy variables corresponding to

the local interpolation points { }x =j
i

j
N

1
x and { }xe =

e
j j

N
1 on element

K, respectively. Figure 2 shows an example of nodal DG
elements in a reduced space Î x and energy e Î + with the
interpolation points in both local and global coordinates.

We then follow the standard practice and approximate
Equation (31) by a semidiscrete system consisting of ( ) eN Nx

3

equations, each on a nodal value en n,x , nx= 1, K, Nx,
nε= 1, K, Nε. To derive these equations, we approximate the
integrals in Equation (31) using the Nx and Nε point Gauss–
Legendre quadrature rules in space and energy, respectively,
with the associated weights { } =wn n
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where |K ε|=Δε, ∣ ˜ ∣ =  D¹K xi
j i

j, ( )˜ =  ¹e ew w wn n j i n n,i
j , ˜gni

is the evaluation of γ at ˜ ˜xn
i

i
, and ˜


e

 n n
i

,i and ˜ e
 n n

i
,i are the

evaluations of ( ) i
h and ( ) i

h at ( ˜ )˜ e ex ,n
i

ni
, respectively.

Here ˜gni
, ˜


e
 n n

i
,i , and ˜ e

 n n
i

,i are functions of x i.
Plugging the terms in Equations (35)–(38) into Equation (31)

and dividing through by ∣ ∣g ee e
Kwn nn n,

2
x x

leads to the
semidiscrete form of the moment equations when the test
function is = ev ℓ ℓn nx ,

c
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for nx= 1,K, Nx and nε= 1, K, Nε in all Î K . Equation (39)
defines the spatial and energy discretization of the moment
equations and provides the basis for implementation in
thornado. Before discussing the time discretization, we further
simplify Equation (39) utilizing the structure of the collision
operator . Here we introduce the collection of space and energy
nodes from all elements, denoted as

≔ {( ) }
( )

È e Î = ¼ = ¼e eÎ e x K n NS n N1, : , , , 1, , ,

40
K n x xnx

and we define the spatial component of S as Sx and the energy
component of S as Sε, i.e.,

( ) ( )e eÎ Î Îex xS S S, if and only if , . 41x

A simplified illustration of Sx and Sε is given in Figure 2(b), in
which Î x . At each xkä Sx, the nodal value ofh on all
εä Sε is then denoted as ( ) ≔ { ( ) }e e Î e  xt t S, , : .k k q qh

With these notations, we write Equation (39) in the operator
form in the remainder of this paper as

c
F G CM M M( ) ( ) ( ) ( )¶ = + +

" Î

   

k x

t

S

1
,

such that ,
42k k k k

k x

h h

where FM, GM, and CM denote, respectively, the discrete
position space flux operator, the discrete geometry source, and
the discrete collision operator. Here the collision term CM( )k

depends only on k instead of the full discretized solution
h, since the physical interactions modeled in the collision
operator (see Equation (4)) are independent of the position x
while coupled in the energy domain. Specifically, let

H HJ J( ¯ ¯ ), , ,k k k k denote the discretized moments k; then it
follows from Equation (24) that

H

H

C J

J
M( ) ≔ ( ( )

¯ ¯ ¯ ( ¯ ¯ ) ¯ )
( )

h c c s

h c c s

- +

- +

 , ,

, ,
43

k k k

k k

T T T IS

T T T IS

OT OT OT

OT OT OT

where σIS and s̄IS are the values of σIS and s̄IS on the energy
nodes Sε, respectively, and ηTOT, χTOT, h̄TOT, and c̄TOT are the
discrete counterparts of ηTOT, χTOT, h̄TOT, and c̄TOT. These
discrete opacities are given by replacing the energy integrals in
Equations (15)–(19) with the numerical integrals using Sε as
quadrature points, for example,

c hc

c hc
J J

( )
( )

( ) ( ) ˜

( )
( ) ≕ ( )

( )∣ ∣

ò

å

h e e e

e e h

= F ¢ ¢

» F

e

e

¢

=

e

+
 


dV

w

1
,

1
, ,

44

q

S

q q q

S 3 0
I

3
1

0
I

S

C
N

N
C

where ewq denotes the weight associated with energy node εq,
and |Sε| denotes the total number of energy nodes in Sε.
Specifically, for εqä Sε in some energy element Kε,

≔ ∣ ∣ ( )pee
eew w K4 , 45q q n

2

where ewn is the local Gauss–Legendre weight at εq in Kε

defined earlier in this section.
Finally, we apply this same nodal DG discretization on the

electron fraction and specific internal energy evolution
(Equations (25) and (26)). Augmenting Equation (42) to the
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resulting semidiscrete equations then gives

c
F G C( ) ( ) ( ) ( )¶ = + +

" Î

   

k x

t

S

1
,

such that ,
46k k k k

k x

h h

where ≔ ( ) Y , ,e , ≔ ( ) Y , ,eh ,h h h is the fully
discretized version of  , and k denotes the nodal value of
h at point xkä Sx. Here the operators F≔ (0, 0, FM), G≔ (0,
0, GM), and C is given by the discrete version of the right-hand
sides in Equations (25) and (26) and CM. Specifically, in C, the
energy integrals in Equations (25) and (26) are evaluated using
a quadrature with the energy nodes εqä Sε as abscissas and
weights defined in Equation (45).

Remark 2. In multidimensional CCSN simulations, the use of
curvilinear coordinates, e.g., spherical polar coordinates,
suffers from an excessively stringent Courant–Friedrichs–Lewy
(CFL) time-step restriction due to singularities at the origin and
poles (see, e.g., Müller 2020, Section 2.1.1 and references
therein). Although these singularities are not an issue in the
spherically symmetric CCSN models considered here, they will
become a problem when extending the nodal DG scheme to
multidimensional CCSN models. Several techniques have been
developed to address this issue, such as mesh coarsening
(Skinner et al. 2019), element averaging/merging (Asaithambi
& Mahesh 2017; Müller et al. 2019), and spectral filtering
(Müller et al. 2019). For future multidimensional simulations,
we will consider (i) adopting one of the aforementioned
techniques or (ii) using Cartesian coordinates in combination
with adaptive mesh refinement.

3.2. IMEX Time Integration Scheme

An IMEX time integration scheme (Ascher et al. 1997;
Pareschi & Russo 2005) is considered here for solving the two-
moment model in Equation (23). When applied to transport
equations with collision terms, IMEX schemes usually handle
the collision term with an implicit method while applying an
explicit method on the advection term (Hu et al. 2018; see also
Just et al. 2015; O’Connor 2015; Kuroda et al. 2016; Skinner
et al. 2019 for applications of IMEX-type schemes to neutrino
transport). This approach relaxes the excessive time-step
restriction from an explicit and stiff collision term and avoids
the spatially coupled nonlinear solves from an implicit
advection term. While the class of IMEX schemes considered
in this paper is detailed in Chu et al. (2019), we include it in the
following paragraph for completeness. We also stress that even
though the nonlinear solution strategies given in Section 4 are
motivated from the implicit part of this class of IMEX schemes,
they are general enough to be used with any IMEX scheme that
treats the collision term implicitly.

To perform time integration, we discretize the time interval
[t0, tf] into N time steps, t0= t0< t1< ...< t N= tf, and denote

( ) tk
n as  k

n, n= 1, K, N. At each spatial node xk and time t n,
the IMEX scheme integrates the semidiscrete Equation (46) in
time via

( )( ) =  , 47ak k
n0

c C( ) ( )( ) ( ) ( )å= + D = ¼
=

-

  c a t i s, 1, , , 47bk k k
i

j

i

ij
ij

ii
i

0

1

( )( )=+  , 47ck k
n s1

where s is the number of stages, the parameters cij� 0,
å ==

- c 1j
i

ij0
1 , aii> 0, and ( ) k

ij is given by an explicit update,

c F Gˆ ( ( ) ( ) ) ( )( ) ( ) ( ) ( )= + D +   c t , 48k k k k
ij j

ij
j j

h h

with parameters ˆ c 0ij . Thus, in each time step, the s-stage
IMEX scheme requires s evaluations of the discrete flux and
geometry operators F and G and s inversions of the discrete
collision operator C. Here the number of evaluations of F and
G is identical to the number of stages due to the fact that, by
reusing values of F and G from earlier stages, each stage only
requires one additional evaluation of F and G. In general, the
inversion of C is the dominant cost in the IMEX scheme. In the
remainder of this section, we present the details of the nonlinear
system arising from inverting C.
At each stage i of the IMEX scheme, Equation 47(b) can be

considered as the nonlinear system

C( ) ( )( ) ( ) ( )t= ++ +   , 49k k k*

where τ ≔ aii cΔt> 0 denotes the effective time step, ( ) k*

denotes the weighted sum of explicit updates ( ) k
ij , and ( )+ k

denotes the unknown nodal values to be solved.
Let (Ye,k, òk) denote the nodal value of (Ye, ò) at xk, and let
H HJ J( ¯ ¯ ), , ,k k k k denote the discrete moment k, which

collects the values of moments ( ¯ ¯ )  , , , at xk on all
energy nodes in Sε. Equation (49) can then be considered as a
nonlinear system on Y≔ (  ,k k ke, , H HJ J̄ ¯ ), , ,k k k k . For
notational simplicity, we suppress all k subscripts when
denoting the nodal values of electron fraction, specific internal
energy, and moments in the remainder of this paper. It follows
from the definition of C that, at each xk, the resulting nonlinear
system is given by

Y Y
m

J

J

b ( )

( ¯ ¯ ¯ )
( )

( ) ( )
∣ ∣

( ) ( )

( )

åt
r

h c

h c

= - -

- -

+

=

+

+

e

w

,

50a
e e

q

S

q q

q

1

2
T T

T T

OT OT

OT OT

*

J

J

( )

( ¯ ¯ ¯ )
( )

( ) ( )
∣ ∣

( ) ( )

( )

åt
r

h c

h c

= - -

+ -

+

=

+

+

e

  w
1

,

50bq

S

q q

q

1

3
T T

T T

OT OT

OT OT

*

J J J( ) ( )( ) ( ) ( )t h c= + -+ + , 50cT TOT OT*

J J J¯ ¯ ( ¯ ¯ ¯ ) ( )( ) ( ) ( )t h c= + -+ + , 50dT TOT OT*

H H H( ) ( )( ) ( ) ( )t c s= - ++ + , 50eT ISOT*

H H H¯ ¯ ( ¯ ¯ ) ¯ ( )( ) ( ) ( )t c s= - ++ + . 50fT ISOT
*

In Equations 50(a) and (b), a quadrature is used to evaluate the
energy integrals in Equations (25) and (26), as described when
defining C in Equation (46). Here J J( ¯ ),q q denotes the value of
J J( ¯), at energy node εqä Sε. The physical constants are
absorbed into the weights, i.e.,

hc hc( ) ( )
( )( ) ( ) e= =e ew w w w:

1
and :

1
, 51q q q q q

2
3

3
3

with ewq defined in Equation (45).
We take a two-step approach to solve Equation (50), which

first solves the fully coupled nonlinear system in
Equations 50(a)–(d); plug the solution Y J J( ¯ )( ) ( ) ( ) ( )+ + + +, , ,e
into Equations 50(e)–(f) to compute ( ¯ ¯ )c s c s, , ,T IS T ISOT OT ;
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and then update H H( ¯ )( ) ( )+ +, . We note that, once (c s, ,T ISOT

¯ ¯ )c s,T ISOT are known, solving Equations 50(e)–(f) is straight-
forward. Thus, we focus on the solution procedure of the
coupled system in Equations 50(a)–(d), where the opacities
( ¯ ¯ )h c h c, , ,T T T TOT OT OT OT are functions of Y J J( ¯), , ,e . Specifi-
cally, while the opacities are written explicitly as functions of
J J( ¯), in Equations (15)–(19), they also depend on the matter
state (Ye, ò) through the opacity kernels F0

IN, F0
OUT, F0

PR, and
F0

AN in Equations (16)–(19). In a fully implicit approach, these
opacities need to be updated in the solution procedure
of Equations 50(a)–(d) in order to remain consistent with
Y J J( ¯ )( ) ( ) ( ) ( )+ + + +, , ,e .
We proceed to investigate various approaches to solve the

coupled nonlinear system in Equations 50(a)–(d).

4. Nonlinear Solution Strategies

In this section, we discuss two approaches for solving the
system in Equations 50(a)–(d), which couple the evolution of
the matter states (Ye, ò) to the neutrino and antineutrino spectral
distributions J J( ¯), . To start, we first rewrite Equations 50(a)–
(d) as

Y Y
m

J J

m
J J

b

b

( ¯ )

( ¯ )
( )

( ) ( )
∣ ∣

( ) ( ) ( )

∣ ∣
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å
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r
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=

e

e
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52a
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=
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=

e

e
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1
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52b
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S
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S
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3
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* *

J J Y J J
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t h
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52ce

e
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OT

OT

*

J J Y J J

Y J J J
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¯ ( ¯ ) ¯

( )
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t h
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+ + + + +
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, , ,

, , , ,
52de

e

T

T

OT

OT

*

with unknowns Y( ) Î+ e , ( ) Î+ , J( ) ∣ ∣Î+ e S , and
J̄( ) ∣ ∣Î+ e S . Here Equations 52(a) and (b) are derived by
substituting Equations 50(c) and (d) into the right-hand sides of
Equations 50(a) and (b) to remove the explicit dependency on
opacities, and Equations 52(c) and (d) are identical to
Equations 50(c) and (d), with an explicit expression of the
dependency of opacities ( ¯ ¯ )h c h c, , ,T T T TOT OT OT OT on matter
states (through opacity kernels) and neutrino (antineutrino)
distributions. Specifically,

Y J J J J J

Y J J J J

( ¯) ( ) (¯)
( ¯) ( ) (¯)

( )
h c h h
c c c c

= + +

= + +





, , , and

, , , ,
53

e

e

TOT 0 SC TP

TOT SC TP

where the discrete opacities χ, χOP, and ηOP are computed as in
Equation (44), using opacity kernels ΦOP evaluated at (Ye, ò),
and the Fermi–Dirac distribution J0 evaluated at chemical
potential μ(Ye, ò) and matter temperature T(Ye, ò).

We propose two approaches for solving the nonlinear system
in Equation (52): a coupled approach and a nested approach.
The former directly considers Equation (52) as a fully coupled
system, while the latter formulates Equation (52) as a nested

system with Equations 52(a) and (b) in the outer layer and
Equations 52(c) and (d) in the inner. Opacity kernel
evaluations, i.e., evaluating ΦOP at given (Ye, ò), are needed
when solving Equations 52(a) and (b). Since the tabulated
opacity kernels are used, evaluating ΦOP requires opacity table
interpolations, which are the dominant cost in solving
Equation (52). The nested approach aims to reduce the number
of opacity kernel evaluations by giving a better prediction of
J J( ¯), through the inner solver on Equations 52(c) and (d).
We consider a fixed-point iteration method with Anderson

acceleration and Newton’s method as the nonlinear system
solvers in both the coupled and nested approach. When solving
the systems considered here, fixed-point methods are often
more attractive than Newton’s method because they (1) do not
require the Jacobian matrix, which can be difficult to compute
accurately with tabulated opacities, and (2) avoid inversion of
dense linear systems. However, the rate of convergence can be
slower for fixed-point methods than that of Newton-based
methods. The performance of these two types of solvers on
systems arising from each approach is compared in the
numerical results reported in Section 5. In the following
subsections, we state the coupled fixed-point algorithm
(Section 4.1), the coupled Newton’s method (Section 4.2),
the nested fixed-point algorithm (Section 4.3), and the nested
Newton’s method (Section 4.4).

4.1. Coupled Fixed-point Algorithm

To simplify the notation, we denote the matter states as
Y≔ ( ( )+u e , ò(+)), the discretized neutrino and antineutrino

distributions as J J≔ ( ¯ )( ) ( )+ + , , and the collection of all of the
unknowns as ≔ ( )U u, in the remainder of the paper. To
formulate the system in Equation (52) as a fixed-point problem,
we write it as

⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( )

( )
( )=


 

U G U
u

g
,
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*

Here is an equivalent form of Equations 52(c) and (d), which
ensures that G is a contraction map, i.e., the Lipschitz constant
of G is strictly less than 1.
The coupled fixed-point algorithm considers Equation (54)

as a fixed-point problem with unknowns U; e.g., applying the
Picard iteration on Equation (54) leads to

( ) ( )[ ] [ ]=+U G U , 57k k1
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where U[k] denotes the kth iterate of the unknowns U, starting
from an initial guess U[0]. When G is a contraction mapping,
the Picard iteration guarantees that, as k→∞, the iterate U[k]

converges to Y( ( )= +U e , J J̄ )( ) ( ) ( )+ + + , , , the solution to
Equation (52). Here the opacities ( ¯ ¯ )h c h c, , , in G are updated
at each iteration k using U[k] and thus are consistent with the
solution. While the Picard iteration guarantees convergence
when G is a contraction, the convergence could be slow.
To achieve faster convergence, we implement Anderson
acceleration (Anderson 1965; Walker & Ni 2011) to solve
Equation (54). Anderson acceleration utilizes information from
previous iterations to update the unknowns, which is expected
to give faster convergence than the Picard iteration but at a
cost of additional memory usage. Specifically, in iteration k,
Anderson acceleration on the coupled problem first computes
the residual

≔ ( ) ( )[ ] [ ] [ ]-r G U U , 58k k k

then solves a least-squares problem ≔a aÎ +argmin mk 1*
{ }[ ] a aå å ==

-
=r : 1i

m
i

k i
i
m

i0 2
2

0
k k with ≔ { }m m kmin ,k , and

finally updates

( ) ( )[ ] [ ]å a=+
=

-U G U . 59k
i

m
i

k i1
0

k *

Here the truncation parameter m� 0 is an integer that indicates
the “memory” of Anderson acceleration, i.e., the maximum
number of residuals kept in memory. When m= 0, the solver
reduces to Picard iteration. For m> 0, Anderson acceleration
updates U using a linear combination of the last mk iterates that
leads to the minimum residual. In the numerical tests in
Section 5, we use m= 2, which we have found to significantly
reduce the number of iterations when compared to Picard. For
m= 2, the additional memory required for Anderson accelera-
tion is small, since each implicit solve is local in space. In
addition, the least-squares problem for ai* is small and can be
written out explicitly or solved using LAPACK’s DGELS.

4.2. Coupled Newton’s Method

The other solver we considered for the nonlinear coupled
system in Equation (52) is Newton’s method, which formulates
Equation (52) as a root-finding problem,

⎛
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with constants YC e and Cò defined as in Equation (55), and
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Applying Newton’s method to solve Equation (60) leads to the
following update of U in iteration k,

( )[ ] [ ] [ ]d= ++U U U , 63k k k1

where the Newton step is given by

( ) ( ) ( ) ≔ ( )
( )

[ ] [ ] [ ] [ ] [ ]d = - ¢-U J U U J U UF F, with .
64

k k k k k1

Equation (64) shows that two key components are needed in
Newton’s method: evaluating the Jacobian J and solving the
linear system for the Newton step. For the coupled problem in
Equation (60), Jacobian evaluation at a given Û requires

computing
¶
¶

f
u
,

¶
¶

f
,
¶
¶

u
, and

¶
¶



at ( ˆ ˆ ) ≕ ˆu U, . From

Equation (61), it is clear that evaluating
¶
¶

f
u
and

¶
¶

f
at ( ˆ ˆ )u, is

straightforward with minimal cost. However, it follows from

Equation (62) that evaluating
¶
¶

u

and
¶
¶



at ( ˆ ˆ )u, requires

gradients of the opacities ( ¯ ¯ )h c h c, , ,T T T TOT OT OT OT with respect to
the matter state u and the neutrino and antineutrino number
densities  , respectively. In particular, Equations (15)–(19) and

(44) imply that
¶F
¶u

OP
, which is the gradient of opacity kernels

with respect to the matter state, is involved in the computation of

( ˆ ˆ )¶
¶
 
u

u, . As discussed earlier, tabulated opacity kernels are

considered in this paper. Thus, we can only obtain an

approximate
¶F
¶u

OP
from the tabulated quantities. Further, when

the opacity kernels are not tabulated in terms of u, the gradient
¶F
¶u

OP
has to be approximated using the chain rule. The detailed

calculations of these kernel derivatives are given in the Appendix.
Once the approximate Jacobian is obtained, the linear solve in
Equation (64) is performed via LAPACK’s DGESV.

4.3. Nested Fixed-point Algorithm

The next approach we consider is a nested algorithm, which
formulates Equation (54) as a nested fixed-point problem with
two layers,

( ˆ ( )) ( )= u ug , 65a

ˆ ( ) ( ˆ ( )) ( )=  u u u, , 65b

where the outer layer, Equation 65(a), is a fixed-point problem
on the matter states u, and the inner layer, Equation 65(b), is on
the distributions ̂ for fixed matter states u. These two
problems are nested in the sense that evaluating the right-hand
side of Equation 65(a) at a given u requires solving
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Equation 65(b). For example, applying the Picard iteration to
both Equations 65(a) and (b) gives the iterative scheme

( ˆ ( )) ( )[ ] [ ]=+ u ug , 66ak k1

where ˆ ( )[ ] [ ]= u k k,* , the limit point of the inner Picard
iteration

( ) ( )[ ] [ ] [ ]=+  u , . 66bk ℓ k k ℓ, 1 ,

In practice, we use Anderson acceleration with m= 2, as
described in Section 4.1, to accelerate both the outer and inner
solves separately.

The nested approach was considered in Laiu et al. (2020) for
relaxing the nonlinear coupling between the electric field and
electron concentration when solving implicit systems for
semiconductor models. Here the nested approach is motivated
by the fact that in solving Equation (54), the most costly part is
evaluating the opacity kernels Φ at a given matter state u,
which is performed in  whenever u is updated. Therefore,
while the coupled approach seems simple and straightforward,
the nested structure in Equation (65) justifies the additional
complexity by reducing the number of updates (on u) in
Equation 65(a) via a more accurate distribution update given by
solving Equation 65(b) at the current matter state. Note that the
matter state u is fixed in the solution procedure of the inner
problem in Equation 65(b), which does not require opacity
kernel evaluations and results in much cheaper inner iterations.

4.4. Nested Newton’s Method

The nested Newton’s method formulates the inner layer of
the nested system in Equation (65) as a root-finding problem,
resulting in

( ˆ ( )) ( )= u ug , 67a

( ˆ ( )) ( )= u u 0, , 67b

where the outer layer in Equation 67(a) is still a fixed-point
problem on u, and the inner layer in Equation 67(b) is a root-
finding problem on ̂ for fixed u, with  defined in
Equation (62). Here Equation 67(a) is solved using Anderson
acceleration, and, whenever the right-hand side of
Equation 67(a) is evaluated at some given u, the inner problem
in Equation 67(b) is solved via Newton’s method to obtain
ˆ ( ) u that is used to evaluate ( ˆ ( )) ug . This nested solver is
identical to the nested fixed-point algorithm in Section 4.3,
except that the inner problem is solved via Newton’s method
instead of Anderson acceleration. Specifically, let u[k] be the
kth iterate in the outer layer, then ˆ ( )[ ] [ ]= u k k,* , which is the
limit point of the Newton iterate

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

d

d

= +

= -
¶
¶

+

-

  

 


  u u

, with

, , .
68

k ℓ k ℓ k ℓ

k ℓ k k ℓ k k ℓ

, 1 , ,

, ,
1

,

Since the matter state u is fixed in the inner iterations,

Equations (15)–(19) and (44) imply that the Jacobian
¶
¶



can

be calculated with no additional opacity kernel evaluation,
which justifies this nested approach. The reason we choose not
to formulate the outer layer as a root-finding problem and solve

it with Newton’s method is to avoid the costly opacity kernel
gradient approximation discussed in Section 4.2.

5. Numerical Experiments

The four iterative solvers introduced in Section 4 are
compared in this section. First, to investigate the iterative
solvers in isolation, we report on results obtained on relaxation
problems under conditions expected in CCSNe. Then we
compare the iterative solvers in the context of the IMEX
scheme in Equations (47) and (48) on proto–neutron star
deleptonization problems using matter conditions from spheri-
cally symmetric CCSN simulations at various times after core
bounce.

5.1. Implementation Details

In the numerical tests discussed in this section, the DG-
IMEX scheme and the nonlinear solvers are implemented
following the specifics below, unless otherwise noted.

1. DG scheme—We consider problems with one spatial
dimension (imposing spherical symmetry). For the
relaxation problems in Section 5.2, we solve the space-
homogeneous problem in Equation (49) for a single
spatial element. For the proto–neutron star deleptoniza-
tion problems in Section 5.3, the spatial domain r ä [0,
300] km is divided into 128 geometrically progressing
elements, with the first element of size Δx= 1 km and
the last element of size Δx≈ 4.54 km. In both tests, the
energy domain covering ε ä [0, 300] MeV is divided into
16 geometrically progressing elements, where the first
element has Δε= 4 MeV and the last element has
Δε≈ 50 MeV. The spatial and energy DG elements
considered here are linear (k= 1).

2. IMEX scheme—In the proto–neutron star deleptonization
problem in Section 5.3, we use the IMEX scheme in
Equations (47) and (48) with two stages (s= 2). When
written in the so-called Shu–Osher form (as in
Equations (47) and (48)), the coefficients are given by
Chu et al. (2019):

⎡
⎣⎢

⎤
⎦⎥

⎡
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⎤
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⎡
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1
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1
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.
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This scheme consists of two evaluations of the explicit
part and two implicit solves. We use the realizability-
enforcing limiter in Chu et al. (2019) to enforce realizable
moments (see Equation (12)) after each stage.

3. The EoS and neutrino opacity tables—In all tests, we use
a tabulated version of the SFHo EoS (Steiner et al. 2013).
Thermodynamic (dependent) variables are tabulated as a
function of mass density, temperature, and electron
fraction (ρ, T, and Ye). The EoS table covers the ranges
ρ ä [1.66× 103, 3.16× 1015] g cm−3 using Nρ= 185
points (logarithmically spaced to achieve about 15 points
per decade), T ä [1.16× 109, 1.84× 1012] K using
NT= 81 points (logarithmically spaced to achieve about
25 points per decade), and Ye ä [0.01, 0.6] using

=N 30Ye points (linearly spaced). The neutrino opacities
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are taken from Bruenn (1985), with all input thermo-
dynamic quantities computed with the SFHo EoS. The
absorption and scattering opacities (χ and σIS) are
tabulated in terms of the neutrino energy ε in addition
to ρ, T, and Ye (using the same resolution as the EoS
table). The neutrino energy range covers ε ä [0.1, 300]
MeV using Nε= 40 logarithmically spaced points. The
NES and pair creation and annihilation kernels are
tabulated in terms of neutrino energy pairs ε and e¢
(using the same points as for χ and σIS), T (using the
same points as in the EoS table), and the degeneracy
parameter η= μe/(kBT) ä [1× 10−3, 2.5× 103] using
Nη= 60 logarithmically spaced points. To evaluate
dependent variables from the table following, e.g.,
Mezzacappa & Messer (1999), we use bilinear interpola-
tion (or the higher-dimensional equivalent), while
derivatives with respect to any of the independent
variables are computed by taking the derivative of the
interpolation formula. When interpolating the opacity
kernels, we enforce the symmetries in Equation (10).

4. Nonlinear solvers—The four nonlinear solvers are imple-
mented following the description in Section 4, with one
exception that, in the implementation, the effective emission
and absorption opacity χ in Equation (15) is lagged. In other
words, when solving Equation (52), χ is evaluated at the
starting matter state Y( )( ) ( ),e* * and is not being updated in
the solution procedure. We choose to lag χ in the nonlinear
solvers to simplify the Jacobian calculation in Newton’s
method. Since χ is usually varying slowly in time, lagging χ
has minimal impact on the solution accuracy. For the fixed-
point solvers, χ can be updated at each iteration at a minor
additional cost. As mentioned in Section 4, we choose the
truncation parameter in Anderson acceleration to be m= 2,
unless otherwise specified. In this case, the least-squares
problem for determining α* in Equation (59) becomes an
inversion of a 3× 3 matrix and is thus solved analytically. A
numerical justification of this choice of m is given in
Section 5.2. In Newton’s method, the Jacobian matrix is
constructed using the derivatives given in the Appendix.

We also note that Jacobian-free Newton–Krylov
(JFNK) methods, where the Newton step is computed by
solving an approximate Newton system with a Krylov
solver, are not well suited for this problem (see, e.g., Knoll &
Keyes 2004 for a comprehensive survey of these methods).
The reason is that, in the JFNK methods, one evaluation of
the opacity kernels is needed in every Krylov iteration to
approximate the Jacobian matrix. Thus, the JFNK methods
require several opacity evaluations per Newton iteration,
while the standard Newton’s method only requires one,
which makes the JFNK methods more expensive for solving
these problems, where the opacity evaluation is a dominant
computational cost.

5. Nonlinear solver initial guess—When solving the coupled
nonlinear system in Equation (52), a natural choice of initial
guess for the unknowns Y J J( ¯ )( ) ( ) ( ) ( )+ + + +, , ,e is
Y J J( ¯ )( ) ( ) ( ) ( ), , ,e* * * * , the weighted sum from explicit steps
defined in Equation (49). In this work, we add a “presolve”
step that aims to provide a better starting point for the
iterative solvers and speed up the computation. Specifically,
for a given Y J J( ¯ )( ) ( ) ( ) ( ), , ,e* * * * , the presolve step solves a

subsystem of Equation (52), which is obtained by setting the
opacities ηSC, ηTP, χSC, and χTP in Equation (53) to be zero,
i.e., with only emission, absorption, and isoenergetic
scattering. The solution of this simplified system then serves
as the initial guess for Y J J( ¯ )( ) ( ) ( ) ( )+ + + +, , ,e in the
nonlinear solvers for the system in Equation (52). This
presolve step is computationally inexpensive (no opacity
table interpolations are needed, since the emission and
absorption opacity χ is lagged as discussed in the previous
paragraph) while giving a reasonable initial guess for the full
system. We observe that, without the presolve step, the
coupled and nested Newton’s methods in Sections 4.2 and
4.4 could diverge if the initial guess Y J J( ¯ )( ) ( ) ( ) ( ), , ,e* * * * is
too far away from the solution.

6. Nonlinear solver convergence criteria—We set the
convergence criteria for the iterative solvers based on
the relative residual of the system in Equation (52) at the
current iterate. Specifically, for the coupled solvers in
Sections 4.1 and 4.2, the convergence criteria are

tol

tol

YY∣ ( )∣ ∣ ∣
∣ ( )∣ ∣ ∣
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[ ] [ ] [ ]
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where tol> 0 is a constant relative tolerance, and
JY J( )¯ f f, , ,

e
are the residuals as defined in

Equations (61) and (62). As for the nested solvers in
Sections 4.3 and 4.4, the outer layer (Equations 65(a) and
67(a)) uses the convergence criteria in Equation 70(a),
while the convergence criteria in the inner layer
(Equations 65(b) and 67(b)) are given by

tol
tol

J

J
J

J

( )
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When all convergence criteria are satisfied, the solvers
return the current iterate as the solution. In all numerical
experiments, we choose the norm to be the discrete L2

norm on the energy domain, i.e., J J≔ ( )∣ ∣ ( )  å =
e wq

S
q q1

2 2 1 2,
and we set the relative tolerance to be tol= 10−8.

Remark 3. In the coupled fixed-point and the two nested
solvers, the basic version of Anderson acceleration outlined in
Section 4.1 is implemented. It is known (see, e.g., Walker &
Ni 2011 and references therein) that the iterations in Anderson
acceleration may suffer from “stagnation” when the least-
squares problem is ill conditioned. Due to the choice of small
truncation parameter (e.g., m= 2) and the contractive property
of the collision operator, we do not encounter the stagnation
issue in any of the numerical tests presented in this section.
Stagnation may potentially become a practical concern when
applying Anderson acceleration to solve more complicated
systems, e.g., fully coupled neutrino radiation hydrodynamics.
A common approach to mitigate the stagnation issue is to
control the condition number of the least-squares problems.
This can be achieved by (i) solving a proper reformulation of
the least-squares problems using QR factorization (Ni &
Walker 2010), (ii) modifying the truncation parameter m
adaptively (Yang et al. 2009), and/or (iii) regularizing the
least-squares problems (Scieur et al. 2020). Alternatively, one
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may consider the recently proposed globally convergent variant
of Anderson acceleration (Zhang et al. 2020), in which ill
conditioning is handled via regularization and global conv-
ergence is guaranteed using safeguarding steps.

5.2. Relaxation Problem

The first class of test problems we consider here is the
relaxation problem, where the neutrino and antineutrino
transport Equations 3(a) and (b) are solved with only the
collision terms considered, i.e., the space-homogeneous case
where the advection terms ( ) f and ( ¯) f are zero. In these
relaxation problems, the collision operator relaxes the distribu-
tions f and f̄ to the equilibrium Fermi–Dirac distributions f0
and f̄0 in Equation (7), respectively, as time evolves. Due to the
lack of advection terms, there is no spatial coupling. Thus,
these problems can be solved independently in space, which
makes them ideal test cases for the nonlinear collision system
solvers considered in this paper. In this setup, the semidiscrete
moment and matter equations reduce from Equation (46) to

c
C( ) ( )¶ = " Î  k xt S

1
, such that . 72k k k x

For the relaxation problems, we discretize Equation (72) in
time with the backward Euler method. At each time step, this
time discretization results in a coupled system that takes the
form of Equation (50) with the effective time step τ=Δt. To
solve this system, we apply the nonlinear solvers in Section 4

to the subsystem in Equation (52) (with τ=Δt) to obtain
Y J J( ¯ )( ) ( ) ( ) ( )+ + + +, , ,e , which are then used to compute

H H( ¯ )( ) ( )+ +, . We start with trivial initial states for H and H̄,
which remain unchanged with time.
We test the nonlinear solvers on the relaxation problem in

Equation (72) with two initial matter states that present
problems with different degrees of collisionality. The first
state, which represents the high-density, strongly collisional
region inside a proto–neutron star, is sampled at radius
r(1)= 9.756 km from the center of a collapsed stellar core,
and the second state, which represents the lower-density
regions around the surface of a proto–neutron star with
relatively weaker collisionality, is sampled at radius
r(2)= 39.52 km. We obtained the matter states at these two
locations from a spherically symmetric CCSN simulation 50 ms
after core bounce (Liebendörfer et al. 2005; results from the
VERTEX code using a 15Me progenitor). Specifically, the
matter state at r(1) is given by ρ(1)= 1.084× 1014 g cm−3,
T(1)= 1.845× 1011 K, and ( ) =Y 0.2728;e

1 and the matter state
at r(2) is ρ(2)= 1.032× 1012 g cm−3, T(2)= 8.806× 1010 K,
and ( ) =Y 0.1347e

2 . The inverse mean free paths associated with
the neutrino opacities for these matter states are plotted versus
neutrino energy in Figure 3. Considering the isoenergetic
scattering opacity (which is equal for neutrinos and antineu-
trinos and increases with neutrino energy as ε2), the mean free
path l s= -

IS IS
1 varies from about 10 to about 10−4 km in the

high collisional state (left panel) in the energy range ε ä [1,

Figure 3. Neutrino opacities for high (left panel) and moderate (right panel) mass density. In each panel, for neutrinos (solid lines) and antineutrinos (dashed lines), we
plot, vs. neutrino energy ε, the absorption opacity (χ and c̄; red lines), the elastic (isoenergetic) scattering opacity (σIS and s̄ ;IS blue lines), the NES opacity (χSC and
c̄ ;SC green lines), and the opacity due to pair creation and annihilation (χTP and c̄ ;TP black lines). The NES and pair creation and annihilation opacities were computed
with the neutrino and antineutrino number densities set to zero; see Equations (17) and (19).
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300] MeV. In the low collisional state, the scattering mean free
path varies from λIS≈ 103 to 10−2 km. Correspondingly, the
collision time τIS= λIS/c varies from about 3× 10−2 to
3× 10−7 ms in the high collisional state case and from about
3 to 3× 10−5 ms in the low collisional state case.

We run the simulations from initial time t0= 0 to final time
tf= 0.5 ms for the high-collision case and from t0= 0 to final
time tf= 30 ms for the low-collision case. This is to guarantee
that the distributions have relaxed to the equilibrium distribu-
tions by the end of the simulations. Each simulation is solved
on a single spatial element (the relaxation problem is space-
homogeneous) with 16 geometrically progressing energy
elements that divide the energy domain [0, 300] MeV, where
the first element has Δε= 4 MeV and the last element has
Δε≈ 50 MeV. In the simulations, the initial matter states take
the electron fraction ( )=Y Ye e

i
,0 and specific internal energy ò0

calculated at ( )( ) ( ) ( )r T Y, ,i i
e

i from the EoS with i= 1 and 2. The
initial neutrino and antineutrino moments are given by
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for i= 1 and 2, which were chosen such that the initial
moments are away from the expected final equilibrium
distributions while making sure the initial moments are
realizable, i.e., satisfy Equation (12).

Figure 4 illustrates the initial and final equilibrium electron
neutrino and antineutrino number densities for the two relaxation
problems. Here the initial number densities are given in
Equation (73), and the final number densities were generated
by solving Equation (72) using the nodal DG and backward Euler
discretization, together with the proposed nonlinear solvers. We
validated these results by comparing them to number densities
from simulations on finer energy-temporal meshes, in which no

noticeable differences were observed. The number densities for
the high-collision case are shown in Figure 4(a), and the ones for
the low-collision case are shown in Figure 4(b). For the high-
collision case, the temperature is 1.845× 1011 K at t0= 0 and
increases by 7.3% to 1.979× 1011 K at tf= 0.5 ms, while the
electron fraction drops by 14.0% from 0.2728 to 0.2347. For the
low-collision case, the temperature rises by 18.8% from
8.806× 1010 K at t0= 0 to 1.046× 1011 K at tf= 30 ms;
meanwhile, the electron fraction increases by 2.2% from 0.1347
to 0.1376. From these plots, we observe that, in the high-collision
case, the neutrino number density  is at least 2 orders of
magnitude higher than the antineutrino number density ̄ at the
final equilibrium; thus, they are further away from the initial
densities than the ones in the low-collision case. This is one of the
reasons that the high collision rate problems are more challenging
than the low collision rate problems in the earlier stage, as
discussed in the following paragraphs.
The conservation of lepton number and energy (see

Equations (27) and (28), respectively) in the relaxation tests is
shown in Figure 5. Since the relaxation problem is space-
homogeneous, the right-hand sides of Equations (27) and (28) are
both zero. It then follows from the nonlinear system formulation
in Equation (52) that the lepton number and energy are conserved
if and only if Equations 52(a) and (b) are satisfied. Thus, the
lepton number and energy are expected to be conserved up to the
nonlinear solver tolerance at each point on the spacetime grid,
which is confirmed in the results reported in Figure 5. In addition,
we also observe from Figure 5 that, in both the high and low
collision rate cases, tightening the nonlinear solver tolerance from
10−8 to 10−12 indeed improves the conservation results.
Figure 6 shows iteration counts versus time for each

nonlinear solver on the two relaxation problems using various
time-step sizes: Δt= 10−4, 10−3, and 10−2 ms. These time-
step sizes are motivated by the fact that in the context of the
IMEX scheme in Equations (47) and (48), the maximum stable
time step is C ( )/D = ´ ´ D-t x3 10 1 kmCFL

3 ms, where

Figure 4. Initial and final number densities vs. neutrino energy for relaxation problems with high (left panel) and low (right panel) collision rates. Each plot shows the
initial number density given in Equation (73) for both neutrinos and antineutrinos (black dashed line), the final neutrino number density (blue solid line), and the final
antineutrino number density (red solid line).
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CCFL 1 is the CFL number. For a spatial resolution
( )D = x 1 km , our chosen time steps bracket what is typically

used in CCSN simulations. The results for the high-collision
problem are shown in Figure 6(a), while the ones for the low-
collision problem are shown in Figure 6(b). In these figures, the
top plot shows the “outer” iteration counts for each solver,
while the bottom plot shows the averaged “inner” iteration
counts for the two nested solvers. Here the outer iteration
counts represent the number of iterations needed for solving
Equations (54), (60), 65(a), and 67(a) in the coupled AA
(Anderson acceleration), coupled Newton, nested AA, and
Nested newton solvers, respectively; the inner iteration counts
are the number of iterations needed for solving Equations 65(b)
and 67(b) in the nested AA and nested Newton solvers,
respectively. Since the inner Equations 65(b) and 67(b) are
solved in every outer iteration, the reported inner iteration
counts in Figures 6(a) and (b) are averaged over the number of
times that Equations 65(b) and 67(b) were solved; i.e., the total
number of inner iterations taken in the solver is the product of
the outer iteration count and the averaged inner iteration count.

Before comparing the solvers, we first observe from the
results that the implicit system in Equation (52) in the high
collision rate case indeed requires more iterations to reach
convergence than the same system does in the low collision
rate case. Also, the overall iteration count grows as Δt
increases. These observations agree with our expectation, since
increasing Δt effectively increases the collision rates, and
higher collision rates result in stronger coupling of the number
densities, which makes the system in Equation (52) harder to
solve.

For the nonlinear solver performance, we observe that the
coupled Newton solver requires more iterations than the
coupled AA solver on harder problems, e.g., problems with
higher collision rates, larger time steps, or at an earlier stage
(further away from equilibrium); on easier problems, the

coupled Newton solver converges in fewer iterations than the
coupled AA solver. As expected, the nested solvers indeed
reduce the number of outer iterations when compared to the
coupled solvers, presumably by providing a more accurate
update of the neutrino and antineutrino number densities from
the inner iteration. The nested AA and nested Newton solvers
share nearly identical outer iteration counts. This is due to the
fact that both nested solvers use Anderson acceleration in the
outer layer (Equations 65(a) and 67(a)), which takes number
densities ˆ ( ) u from the inner layers (Equations 65(b) and
67(b)) of the two solvers. Since the problems in the inner layers
are equivalent, the solutions ˆ ( ) u are identical up to the
residual tolerance. The nested AA solver generally requires
more (inner) iterations to converge than the nested Newton
solver does, especially on harder problems. We also note that
the comparison of iteration counts here does not fully reflect the
performance of the solvers in terms of computational time. In
particular, as discussed in Section 4.3, opacity kernel
evaluations make outer iterations much more computationally
expensive than inner iterations. In addition, the iterations in
Anderson acceleration are computationally cheaper than the
ones in Newton’s method, since they do not require
constructing and inverting the Jacobian matrix. We defer the
comparison of computational times to Section 5.3, where a
more realistic test problem is considered.
Next, we explore the effect of the truncation parameter m on

the convergence of Anderson acceleration by comparing the
iteration count for the coupled AA solver with different values
of m on both the high and low collision rate relaxation
problems considered in the previous test. In this comparison,
the time-step size is fixed to Δt= 10−3 ms, and m varies from
zero to 4, where m= 0 resembles the simple Picard iteration.
From the results reported in Figure 7, we observe that, in these
problems, Anderson acceleration does converge faster as the
value of m increases, while the marginal benefit becomes

Figure 5. Lepton number and energy conservation (see Equations (27) and (28), respectively) in relaxation problems with high (left column) and low (right column)
collision rates. Each plot shows the relative changes in lepton number and energy in the relaxation simulations with the nonlinear solver tolerance tol set to 10−8

(black solid line) and 10−12 (black dashed line). Tightening the tolerance from 10−8 to 10−12 leads to approximately 4 orders of magnitude smaller relative changes in
both lepton number and energy.
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Figure 6. Iteration counts of the nonlinear solvers on relaxation problems. The iteration counts of the coupled AA, coupled Newton, nested AA, and nested Newton
solvers on relaxation problems in the high (left column) and low (right column) collision rate regimes with time-step sizes varying from 10−4 to 10−2 ms.
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insignificant for m� 2. This result justifies our choice of m= 2
in the numerical tests throughout the paper, since higher values
of m lead to larger memory footprints and more expensive
least-squares solves in Anderson acceleration with minimal
improvement in the iteration counts.

We next investigate how early termination of the iterative
solvers affects solution accuracy. We choose to test the
nested AA solver with early termination of the outer loop and
compare the resulting solution to a converged reference solution
at the final time. Here the solution process is terminated either
when the convergence criteria (Equation 70(a)) are satisfied or
when the outer iteration count for solving Equation 65(a) reaches
a preset maximum (MaxIter). We test the solver on the
relaxation problem with a low collision rate and time step
Δt= 10−1 ms, which is much larger than the usual time step for
a stable explicit scheme. The choice of a large time step makes
the effect of early termination more pronounced. Figure 8 reports
the iteration counts for MaxIter= 1 and 2 on the test problem,
along with the electron neutrino and antineutrino (energy-
integrated) number densities, temperatures, and electron frac-
tions at the final time. These results are compared to a fully
converged reference solution (MaxIter= 100), where the nested
fixed-point solver converges well before the nominal maximal
outer iteration is reached, as shown in Figure 8(a). Here the
presolve step discussed in Section 5.1 is turned off. We note that
when setting MaxIter= 1, the nested AA solver (without
presolve) resembles an approach used in earlier works such as
Just et al. (2015), where the radiation quantities are updated
using opacities computed from the lagged matter states; i.e.,
matter states at time t n are used to update the radiation quantities
at t n+1. The results in Figure 8 show that when MaxIter= 1,
while the relative differences in the earlier time steps are rather
significant (from 30% to 0.5%), the solution still converges to an
identical (up to the solver tolerance) equilibrium at the final time.
However, when MaxIter= 2, it is clear that the solution
converges to a different equilibrium. Indeed, it can be seen from
Figure 8(e) that the lepton number and energy are not conserved
in the solution with MaxIter= 2, while they are conserved

up to the solver tolerance in the fully converged solution
(MaxIter= 100). When MaxIter= 2, the changes in lepton
number and energy lead to a different equilibrium. As for the
solution with MaxIter= 1, despite the fact that the solution
process of the nonlinear system (Equation (52)) is terminated
early, the lepton number and energy are actually conserved in
exact arithmetic. This is because, when MaxIter= 1, the early
terminated nested iterates satisfy Equations 52(a) and (b) exactly,
which enforces lepton number and energy convergences and
leads to the correct equilibrium. However, the early terminated
solutions generally do not satisfy Equations 52(c) and (d) and
result in rather inaccurate solutions in the transient state. In
Figure 9, we repeat the test but with the presolve step turned on.
Here we also include the option MaxIter= 0 in the comparison,
in which the radiation and matter quantities are only updated in
the presolve step, i.e., with the NES and pair processes ignored.
From Figure 9, it can be observed that even with MaxIter= 0,
the presolve step gives a fairly accurate solution at the final time,
as the lepton number and energy are conserved up to the solver
tolerance in the presolve step. When the maximum iteration is
allowed to be higher, the presolve step improves the solution
accuracy, at least in the earlier stage. We observe that while the
solution is still inaccurate when MaxIter= 2, it is much closer to
the reference solution when the presolve is turned on.

5.3. Deleptonization Problem

We further investigate and compare the performance of the
nonlinear solvers in a more realistic setting with a proto–neutron
star deleptonization problem, using initial matter profiles from
spherically symmetric CCSN simulations. In this test, we solve
the full moment equations presented in Section 2.2 using the DG
phase-space discretization in Section 3.1 and the IMEX time
integration scheme in Section 3.2.
For this test, we adopt matter profiles from Liebendörfer et al.

(2005). Specifically, we use profiles for mass density, temper-
ature, and electron fraction obtained with the VERTEX code
using a 15Me progenitor from Woosley & Weaver (1995;
model G15 in Liebendörfer et al. 2005). Other thermodynamics

Figure 7. Iteration counts of the coupled AA solver with truncation parameter m = 0, K, 4 on relaxation problems.
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quantities (e.g., internal energy and electron, proton, and neutron
chemical potentials) are obtained from the tabulated SFHo EoS
(Steiner et al. 2013). To investigate the sensitivity to conditions
encountered over an extended period covering the neutrino
heating phase, we run the comparison on profiles taken at t= 50,
100, 150, and 250ms after core bounce. The initial matter
profiles are plotted in Figure 10.

Since we do not have the radiation quantities from
Liebendörfer et al. (2005), to initialize the radiation field, we
adopt the analytical distribution function from the homoge-
neous sphere test, fHS (e.g., Smit et al. 1997), which is a
solution to the steady-state transport problem of radiation
emanating from a sphere whose constant absorption opacity
and emissivity inside a radius R0 are χ0 and χ0 f0, respectively,
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To adopt the homogeneous sphere distribution to the current
setting, we first estimate the energy-dependent neutrinosphere
radius Rν(ε),
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where χ is the absorption opacity. (Neutrinosphere radii for the
various initial profiles used here are plotted versus neutrino
energy in the lower right panel of Figure 10.) The neutrino
distribution function is then set to
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where f0(r, ε) is taken to be the Fermi–Dirac distribution in
Equation (7). Finally, the initial moments are computed as
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(The same procedure is adopted to initialize the antineutrinos.)
The evolution of the electron fraction in the deleptonization

problem is illustrated in Figure 11, where we plot the electron

Figure 8. Iteration counts, energy-integrated number densities, temperature, electron fraction, and lepton number and energy conservation results for the nested AA
solver on the relaxation problem with low collision rate ρ = 1.032 × 1012 g cm−3, T = 8.806 × 1010 K, Ye = 0.1347. The solver is applied without the presolve step
and run to various maximum outer iterations (MaxIter) with time step Δt = 10−1 ms.
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fraction versus mass density over 10 ms of evolution starting
from the 100 ms profile in Figure 10 (dashed lines). Here the
evolution of the electron fraction was generated from the DG-
IMEX scheme with the proposed nonlinear solvers as described
in Section 5.1. We validated the result by comparing it against
solutions from simulations on finer spatial energy–temporal
meshes, in which no noticeable differences were observed. For
higher densities (ρ 3× 1012 g cm−3), neutrinos are effec-
tively trapped, and the electron fraction remains largely
unchanged. For lower densities, neutrinos (created by electron
capture on protons) are not trapped and escape the computa-
tional domain, which results in a lowering of the electron
fraction (deleptonization). Figure 12 shows conservation of
lepton number and energy over 5 ms of evolution in the
deleptonization problem starting from the 100 ms postbounce
matter profile. Here the lepton number and energy both
comprise two parts: (i) the interior lepton number and energy in
the computation domain, i.e., the time integrals of the left-hand
sides in Equations (27) and (28), respectively, and (ii) the
accumulated outflow lepton number and energy at the
boundary, which are, respectively, the negations of the right-
hand sides in Equations (27) and (28), integrated in time. The
conservation results of the lepton number/energy, as well as
the evolution of the interior lepton number/energy and the
accumulated outflow lepton number/energy, are illustrated in

Figure 12(a). The evolution of the individual components of
the interior lepton number/energy, including matter lepton
number (electron number), neutrino lepton number, internal
energy, and neutrino energy, are shown in Figure 12(b).
For each profile, the deleptonization problems are simulated

from the profile time (50, 100, 150, and 250 ms after core
bounce) to 5 ms after the profile time, which are referred to as
the initial time t0= 0 and the final time tf= 5 ms in the
remainder of the paper. The IMEX time integration scheme
discussed in Section 5.1 is used in the simulations, where the
time step Δt is determined by the stability requirement for the
explicit advection part. These problems are solved in the spatial
domain r ä [0, 300] km and energy domain [0, 300] MeV,
which are divided into 128 and 16 geometrically progressing
elements, respectively. Here the first spatial element has
Δx= 1 km, the last spatial element has Δx≈ 4.54 km, the
first energy element has Δε= 4 MeV, and the last energy
element has Δε≈ 50 MeV.
Figure 13 shows the iteration counts of the nonlinear solvers

on the deleptonization problem for various profiles. The results
for profiles taken at 50, 100, 150, and 250 ms after core bounce
are illustrated in Figures 13(a)–(d), respectively. As in Figure 6,
the top plot in these figures shows the “outer” iteration counts
of each solver, while the bottom plot shows the averaged
“inner” iteration counts of the nested solvers, where the inner

Figure 9. Iteration counts, energy-integrated number densities, temperature, electron fraction, and lepton number and energy conservation results for the nested AA
solver on the relaxation problem with low collision rate ρ = 1.032 × 1012 g cm−3, T = 8.806 × 1010 K, Ye = 0.1347. The solver is applied with the presolve step and
run to various maximum outer iterations (MaxIter) with time step Δt = 10−1 ms.
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iteration counts are averaged over the number of times that the
inner Equations 65(b) or 67(b) were solved. In addition, here
both the outer and inner iteration counts are averaged over time
(from t0 to tf), and the averaged iteration counts are plotted
against the mass density, which corresponds to spatial locations
for each profile. (We have found that the number of iterations at
a given location varies little from t0 to tf.)

From Figure 13, we observe that the simulations with all four
profiles give consistent results; the nested solvers require fewer
outer iterations than the coupled ones do, and the nested AA
solver requires more inner iteration to converge than the nested
Newton solver does, especially for harder problems (at higher
mass density). This observation also agrees with the results
reported in Section 5.2 on the relaxation problems. Computa-
tional times for these simulations are reported in Table 1, where
tests 1, 5, 9, and 13 correspond to simulations shown in
Figure 13(a), tests 2, 6, 10, and 14 correspond to simulations
shown in Figure 13(b), and so on. In Tables 1 and 2, we report

the total computation time tTot as well as the detailed timing
measurements in each simulation, such as the computational
time spent on (i) solving the nonlinear system in Equation (52)
in the implicit step (tIm); (ii) the opacity evaluations/
interpolations when solving Equation (52) (tOp); (iii) linear
algebra operations, such as the least-squares solve in Anderson
acceleration or the assembly and inversion of Jacobian matrices
in Newton’s method (tLA); (iv) the presolve step (tPs); (v) the
explicit update of the advection term (tEx); and (vi) the
positivity limiter (tPL).

7 The reported timing results in Tables 1
and 2 are all linearly scaled such that the highest reported
computational time (16,085 s from test 2) is scaled to 100,

Figure 10. Initial matter profiles used in the deleptonization problem, taken from Liebendörfer et al. (2005). Plotted vs. radius are mass density (upper left panel),
temperature (upper right panel), and electron fraction (lower left panel) for various postbounce times: 50 (solid), 100 (dashed), 150 (dotted), and 250 (dashed–dotted)
ms. The neutrinosphere radii, defined in Equation (76), for the respective profiles—for electron neutrinos (black) and electron antineutrinos (gray)—are also plotted vs.
neutrino energy (lower right panel).

7 Here the positivity limiters are applied after each explicit and implicit
update to enforce the realizability of the moments. The computation time for
the positivity limiter (tPL) reported in Tables 1 and 2 is relatively large
(compared to tEx), and we expect that tPL could be further reduced by a more
sophisticated implementation. In any case, it does not affect the observations
we made in this paper.
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which corresponds to the total computation time when the
coupled Newton solver is used to solve the deleptonization
problem with the 100 ms profile. For each simulation, we also
record the solver configurations, such as the value of the
truncation parameter m in Anderson acceleration, the maximum
allowed iteration (MaxIter), and whether the presolve step
is performed or not. We also note that these reported data
are not mutually exclusive, e.g., » + +t t t tTot Im Ex PL and

» + +t t t tIm Op LA Ps. Figure 14 provides a column chart that
visualizes the results with the 100 ms profile reported in
Table 1. There is no qualitative difference between the results
from problems with different profiles. The column chart in

Figure 14 confirms that the majority of the computational time
in these simulations is spent on opacity evaluation/interpola-
tion, which is proportional to the outer iteration counts. It also
shows that the nested solvers indeed speed up the computations
by taking inner iterations to reduce the number of outer
iterations. Further, we observe that the lower computational
cost on the linear algebra operations (tLA) makes the nested AA
solver outperform the nested Newton solver in terms of the
total computation time by about 8%, despite the higher inner
iteration counts. These results indicate that the nested AA
solver leads to the least computation time for the deleptoniza-
tion problems among all of the tested solvers.

Figure 11. Electron fraction vs. mass density over 10 ms of evolution from the initial state given by the 100 ms postbounce matter profile in Figure 10. The time
evolution is indicated by the gray scale, which goes from lightest (initial state) to darkest (final state).

Figure 12. Conservation in the deleptonization problem. The left panel shows the lepton number and energy (see Equations (27) and (28)) over 5 ms of evolution
starting from the 100 ms postbounce matter profile. Here the interior lepton number/energy in the computational domain are plotted with black dashed lines, and the
accumulated outflow lepton number/energy are plotted with black dotted lines. Note that the accumulated outflows (black dotted lines) are shifted up by the value of
the initial lepton number/energy for better illustration. The conserved lepton number and energy are plotted with black solid lines. The right panels show the evolution
of the components of the interior lepton number and energy, including matter lepton number (electron number), neutrino lepton number, internal energy, and neutrino
energy.
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To further analyze the performance of the nested AA
solver, we experiment with different solver parameters on the
deleptonization problem using the 100 ms profile. Specifi-
cally, we tested the nested AA solver with the Anderson
acceleration truncation parameter set to m= 0, 1, and 2 for
solving the outer system in Equation 65(a). This experiment
is to verify the benefit of Anderson acceleration on solving
the smaller outer system in Equation 65(a), which has only
two unknowns. In addition, for each choice of m, we initialize
the solver with and without the presolve step introduced in
Section 5.1, which helps us assess the effect of that step in a
more realistic setting. The resulting iteration counts are
shown in Figure 15, which are averaged over the time from t0
to tf as in Figure 13. The computation times are reported in
Table 2 (tests 17–21). From these results, we observe that
moving from Picard iteration (m= 0) to Anderson accelera-
tion (m> 0) does reduce the outer iteration count and thus

improves the computation time by around 18%, especially for
harder problems (at higher mass density). However, unlike
the results for the coupled AA solver reported in Figure 7,
increasing the truncation parameter from m= 1 to 2 does not
lead to any observable reduction in either the iteration counts
or computation time. This result is not unexpected, since
Anderson acceleration is applied here to solve the outer
system in Equation 65(a) with only two unknowns, while the
results reported in Figure 7 are from solving the fully coupled
system in Equation (54). Another observation from Figure 15
is that there is no clear benefit in applying the presolve step
on this problem. The presolve step does slightly reduce the
iteration counts; however, the additional cost of the presolve
step wipes out the gains from fewer iterations. We suspect
that the diminished benefit of the presolve step is due to the
fact that in the deleptonization problem, the explicit time-step
restriction from the advection term limits the stiffness of the

Figure 13. Time-averaged iteration counts of the nonlinear solvers on deleptonization problems. Shown are the time-averaged iteration counts of the coupled AA,
coupled Newton, nested AA, and nested Newton solvers on deleptonization problems with various profiles.
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implicit problem and forces the implicit update to be small,
which makes the effect of presolve insignificant. For
deleptonization problems, larger implicit time steps could
potentially be achieved by techniques such as subcycling the

explicit steps or by adopting the general multirate framework
proposed by Sandu (2019). We expect to see a greater impact
of the presolve step on these problems with larger time steps,
as is observed in the relaxation tests.

Table 1
Overview of Nonlinear Solver Timing Results for the Deleptonization Problem

No. Solver Profile tTot tIm tOp tLA tPs tEx tPL m Presolve MaxIter

1 Coupled Newton 50 ms 98.8 96.8 78.6 11.7 2.7 0.8 1.0 L Yes 100
2 Coupled Newton 100 ms 100 97.9 79.5 11.9 2.7 0.8 1.0 L Yes 100
3 Coupled Newton 150 ms 97.5 95.4 77.5 11.5 2.7 0.8 1.0 L Yes 100
4 Coupled Newton 250 ms 92.9 90.8 73.8 10.8 2.7 0.8 1.0 L Yes 100

5 Coupled AA 50 ms 65.2 63.2 57.6 0.9 2.7 0.8 1.0 2 Yes 100
6 Coupled AA 100 ms 67.8 65.8 60.0 1.0 2.7 0.8 1.0 2 Yes 100
7 Coupled AA 150 ms 69.0 67.0 61.1 1.0 2.7 0.8 1.0 2 Yes 100
8 Coupled AA 250 ms 67.5 65.4 59.7 1.0 2.6 0.8 1.0 2 Yes 100

9 Nested Newton 50 ms 36.6 34.5 26.0 4.8 2.7 0.8 1.0 2 Yes 100
10 Nested Newton 100 ms 36.9 34.9 26.4 4.7 2.7 0.8 1.0 2 Yes 100
11 Nested Newton 150 ms 36.4 34.3 26.1 4.5 2.7 0.8 1.0 2 Yes 100
12 Nested Newton 250 ms 35.7 33.7 25.8 4.3 2.6 0.8 1.0 2 Yes 100

13 Nested AA 50 ms 33.7 31.6 26.0 0.9 2.7 0.8 1.0 2 Yes 100
14 Nested AA 100 ms 34.3 32.2 26.5 0.9 2.7 0.8 1.0 2 Yes 100
15 Nested AA 150 ms 33.8 31.7 26.0 0.9 2.7 0.8 1.0 2 Yes 100
16 Nested AA 250 ms 33.1 31.0 25.5 0.8 2.6 0.8 1.0 2 Yes 100

Notes. The detailed computational time is reported for the results shown in Figure 13. Here the four iterative solvers are compared on four initial matter profiles with
identical solver parameters. The results are linearly scaled so that the highest measurement (boxed; 16,085 s) is scaled to 100.
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: total simulation time; : implicit solution time; : opacity interpolation time;

: dense linear algebra time; : initial presolve time; : explicit update time;
: positivity limiter time; : Anderson acceleration truncation parameter;

Presolve: whether the presolve step is performed in solver initialization;
MaxIter: maximum allowed outer iteration for nested iterative solvers;
Relations: , .
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Figure 14. Computation time breakdown for the nonlinear solvers on the deleptonization problem with a 100 ms profile. The opacity interpolation time (tOp in
Tables 1 and 2) and the dense linear algebra operation time (tLA in Tables 1 and 2) are the blue and yellow sections of the columns, respectively. The green sections
represent the time spent on all other computations.
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Finally, we investigate the effect of early termination for the
nested AA solver on the deleptonization problems. In these
tests, the solver configurations are identical to the ones reported
in Figures 8 and 9 for the relaxation problems; e.g., the outer
loop of the nested AA solver is terminated early by restricting
the maximum number of outer iterations (MaxIter). Here we
test the solver on the deleptonization problem with the 100 ms
initial matter profile for MaxIter= 1, 2, and 100 and the
presolve step discussed in Section 5.1 turned off. We then
repeat the test for MaxIter= 0, 1, 2, and 100 with the presolve
step turned on. The results without and with the presolve step
are shown in Figures 16 and 17, respectively, where the
iteration counts are reported along with the electron neutrino
and antineutrino (energy-integrated) number densities, tem-
peratures, and electron fractions at the final time t= 5 ms. Here
the fully converged solutions (MaxIter= 100) are considered
as reference solutions, where the nested solver converges well
before the nominal maximal outer iteration is reached, as
shown in Figures 16(a) and 17(a). As mentioned in the earlier
subsection, the nested AA solver with MaxIter= 1 and the
presolve step turned off is effectively lagging the opacities by
computing them from the matter states at the previous time step
while updating the radiation quantities at the current time step

(see, e.g., Just et al. 2015). From Figure 16, we observe that the
early terminated solutions are in good agreement with the
reference solution. However, allowing two outer iterations does
not give a better solution than the one with only a single outer
iteration, which is possibly due to the issue of lepton number
and energy conservation for early terminated solutions, as
discussed in Section 5.2. Another potential reason is that
Anderson acceleration does not guarantee monotone decreasing
of the residuals (see Toth & Kelley 2015; Kelley 2018; Pollock
& Rebholz 2019; Evans et al. 2020 for convergence analysis of
AA). The behavior of the residuals from Anderson acceleration
alternately increasing and decreasing was observed in Pollock
& Rebholz (2019), and a potential explanation is given from
Pollock & Rebholz (2019), Theorem 4.5. Similar results can be
observed in Figure 17, where the presolve step is in effect. Here
the comparison includes the case that MaxIter= 0, where both
the radiation and matter quantities are solely updated in the
presolve step, with the NES and pair processes omitted. The
relative difference in the solution with MaxIter= 0 is mostly
around 10−2

–10−3; however, the difference could go up to 101

for the energy-integrated antineutrino number density in the
high mass density region. We also note that the presolve step
reduces the difference in the solution with MaxIter= 2 by a

Figure 15. Time-averaged iteration counts for the nested AA algorithm with various solver configurations on the deleptonization problem with a 100 ms profile.
Results for the nested AA algorithm without/with presolve and with truncation parameter values m = 0, 1, and 2 in the outer loop are reported. Here the iteration
counts for m = 2 overlap with the corresponding results for m = 1, which implies that there is no benefit in moving from m = 1 to 2 when solving the outer loop
problem.
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few orders of magnitude in the low mass density region. The
reason is that, in the low-density region, the nonlinear solve
usually converges within two iterations with the presolve step.
The results in Figures 16 and 17 suggest that, for problems
requiring few iterations, limiting MaxIter to 1 can give
sufficiently accurate solutions while reducing the computation
time by roughly a factor of 2 from the fully converged case, as
shown in the results for tests 22–27 in Table 2.

6. Summary and Discussion

We have investigated several iterative solvers for nonlinear
systems arising from the discretization of a nonrelativistic two-
moment model for neutrino transport with opacities from
Bruenn (1985), coupled with static matter configurations.
Specifically, we have incorporated the nonlinear solvers in a
DG-IMEX scheme, as implemented in the toolkit for high-
order neutrino radiation hydrodynamics (thornado). Within
the IMEX time integration scheme currently adopted in
thornado, updating the neutrino transport and matter
equations requires solving a coupled nonlinear system on the
radiation moments and matter states (internal energy and
electron fraction). We have considered two approaches to solve
the nonlinear system: a coupled approach that directly solves
the fully coupled system and a nested approach that formulates
the nonlinear system as a nested system with the outer system
governing the matter states and the inner system governing the
neutrino number densities. The nested approach is introduced
to reduce the number of opacity evaluations/interpolations
required in the solution procedure and thus becomes more
efficient than the coupled approach. Two iterative solvers—the

Anderson-accelerated fixed-point solver and Newton’s method
—are implemented for both the coupled and nested approaches.
We have tested the four solvers on relaxation problems with
various collision rates and time steps, as well as on proto–
neutron star deleptonization problems with postbounce matter
profiles from spherically symmetric CCSN simulations.
The numerical results confirm that both nested solvers

indeed require fewer iterations to converge (and thus less
computational time) than the coupled solvers, due to the lower
number of opacity interpolations performed in the solution
procedure. The nested Anderson acceleration solver requires
more inner iterations to converge but, due to the low cost per
iteration, less computation time than the nested Newton’s
method, which is a consequence of the heavier dense linear
algebra operations in Newton’s method. In addition to the
advantage in computation time, another benefit for using
solvers based on Anderson acceleration over Newton’s method
is the simplicity of implementation, particularly for solving
problems in which the derivatives are not readily available,
such as the coupled nonlinear systems in CCSN simulations
considered in this paper. For the test problems considered in
this paper, we also observe that forcing the nested Anderson
acceleration solver to terminate after the first outer iteration
could lead to reasonably accurate results. This observation
confirms that, on these problems, solving the nonlinear coupled
system in the implicit step using lagged opacity kernels from
the previous time step could give a sufficiently accurate
solution, which has also been observed by others (e.g., Just
et al. 2015).
Moving forward, we will continue to expand on the

capabilities in thornado and incorporate the more

Table 2
Overview of Nonlinear Solver Timing Results for the Deleptonization Problem

# Solver Profile tTot tIm tOp tLA tPs tEx tPL m Presolve MaxIter

14 Nested AA 100 ms 100 94.0 77.1 2.6 7.8 2.4 2.9 2 Yes 100

17 Nested AA 100 ms 117.8 111.9 96.1 2.0 L 2.4 2.9 0 No 100
18 Nested AA 100 ms 99.9 94.0 81.5 1.5 L 2.4 2.9 1 No 100
19 Nested AA 100 ms 99.7 93.8 81.3 1.5 L 2.4 2.9 2 No 100

20 Nested AA 100 ms 118.2 112.3 91.4 3.3 7.7 2.4 2.9 0 Yes 100
21 Nested AA 100 ms 99.3 93.4 76.7 2.6 7.7 2.4 2.9 1 Yes 100

22 Nested AA 100 ms 47.2 41.2 34.0 0.8 L 2.4 2.9 2 No 1
23 Nested AA 100 ms 83.9 77.9 67.2 1.2 L 2.5 2.9 2 No 2
24 Nested AA 100 ms 100.9 94.9 82.3 1.5 L 2.4 2.9 2 No 100

25 Nested AA 100 ms 16.9 10.8 3.7 1.2 7.6 2.5 2.9 2 Yes 0
26 Nested AA 100 ms 54.2 48.2 36.2 1.9 7.7 2.4 2.9 2 Yes 1
27 Nested AA 100 ms 89.1 83.0 68.2 2.2 7.8 2.4 2.9 2 Yes 2

Notes. The detailed computational time is reported for the results shown in Figures 15–17. Here the nested AA solver is tested on the 100 ms profile with various
solver parameters. The results are linearly scaled so that the total time in test 14 (boxed; 5518 s) is scaled to 100.

( ) ( )
» + + » + +

t t t

t t t
t m

t t t t t t t t

: total simulation time; : implicit solution time; : opacity interpolation time;

: dense linear algebra time; : initial presolve time; : explicit update time;
: positivity limiter time; : Anderson acceleration truncation parameter;

Presolve: whether the presolve step is performed in solver initialization;
MaxIter: maximum allowed outer iteration for nested iterative solvers;
Relations: , .

Tot Im Op

LA Ps Ex

PL

Tot Im Ex PL Im Op LA Ps
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comprehensive physics needed for realistic CCSN models.
Next steps toward this goal include (i) incorporating special
and general relativistic effects into the neutrino transport
model; (ii) including muon and tau neutrinos; (iii) updating the
opacity set to include, e.g., modern electron-capture rates,
bremsstrahlung, and inelastic scattering on nucleons; (iv)
coupling the neutrino transport equations with fluid equations
to self-consistently model neutrino radiation hydrodynamics;

(v) porting the nonlinear solvers to modern hardware
architectures (e.g., GPUs) and further analyzing implementa-
tion performance; and (vi) comparing thornado to other
well-established CCSN simulation codes, such as AGILE-
BOLTZTRAN (Liebendörfer et al. 2004), following the
approaches in Just et al. (2015) and O’Connor et al. (2018).
We are making progress in these directions and plan to report
on the results in future publications.

Figure 16. Time-averaged iteration counts and final-time (tf = 5 ms) solutions for the nested AA solver without the presolve step, running to various maximum outer
iterations (MaxIter). The blue line (MaxIter = 100) is considered as a reference.
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Appendix
Kernel Derivatives

The NES and pair kernels in Equations (16)–(19) are
tabulated in terms of temperature T and degeneracy parameter
η= μe/kT; i.e., for given ε and e¢, they are functions of the
form

( ) ( )hF = F T , . A1

However, for the coupled Newton’s method in Section 4.2, we
need kernel derivatives with respect to internal energy ò and

Figure 17. Time-averaged iteration counts and final-time (tf = 5 ms) solutions for the nested AA solver with the presolve step, running to various maximum outer
iterations (MaxIter). The blue line (MaxIter = 100) is considered as a reference.
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electron fraction Ye. The electron chemical potential, along with
all other quantities given by the EoS, is tabulated in terms of ρ,
T, and Ye. On the one hand, the variation of the kernel in
Equation (A1) is
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On the other hand, by considering the kernel as a function of ò
and Ye, the variation is
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Comparing Equations (A2) and (A4), we have
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Solving for ( )¶F ¶ Ye and ( )¶F ¶ Ye , we obtain the
derivatives we need for Newton’s method in terms of
derivatives that can be computed directly from the opacity

and EoS tables,
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As discussed in Section 5.1 (and following, e.g., Mezzacappa
& Messer 1999), tabulated quantities are evaluated using
bilinear or trilinear interpolation, while derivatives are
estimated by direct differentiation of the respective interpola-
tion formulae.
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