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Can we take a set of settlements in a region and express the shape of
its population distribution via some statistic? This exercise came up as
I was working on a paper dealing with the analysis of settlement pat‑
terns, and I wanted to find some concise way to summarize the overall
shape of a rank‑size distribution of sites through a few parameters.

Examining the rank‑size relationship in human settlement is of
long‑standing interest, going back to observed distributions of the
sizes of cities as described by Zipf’s law. Current work in urban scal‑ Zipf’s law also has well‑known appli‑

cations in linguistics: see for example
S.T. Piantadosi (2014), ”Zipf’s word
frequency law in natural language: A
critical review and future directions,”
Psychonomic Bulletin & Review 21:1112‑
30.

ing is frequently interested in these patterns, and typically proceeds
by performing linear regression on a log‑log plot of the rank and size
(or frequency of any feature) of sites. Yet, the Zipf‑Mandelbrot distri‑
bution, a probability distribution which is a generalization of Zipf’s
law, provides for greater nuance in modeling the relationship between
the features of interest, and can be employed in situations where a
power‑law relationship appears to hold. The Zipf‑Mandelbrot distri‑ See Mandelbrot, N. (1983) The Fractal

Geometry of Nature, Updated ed., New
York: W.H. Freeman and Company, p.
344.

bution has a probability mass function,

f(κ; q, z, n) =
C

(κ+ q)z
.

where C is a normalizing constant since
∑

f(κ) = 1:

C−1 =

n∑
i=1

1

(i+ q)
z

The variable κ is the rank of the object (here, a settlement), and n is the
total number of objects (i.e., the number of sites in a gazetteer G). The
parameters q and z are defined for q ≥ 0 and z > 1. Zipf’s law is the
specific case when q = 0.

As mentioned above, the goal is to fit the ranked settlements into a
Zipf‑Mandelbrot distribution, in order to arrive at some parameters
that can provide some concise information on the overall shape of that
ranking. Not every region will have the same number of settlements,
and not every region will have the same absolute size of settlements.
But, taking a region in its entirety and fitting the ranked settlements
to a probability mass function will provide a succinct summary of the
data in the form of the variables q and z.

To start, we can define a gazetteer of sites in a region as a set G,
with each site gi described by a population size ki, with n total num‑
ber of sites. Ordering all gi from largest to smallest, let each site be
assigned a rank κ from 1 to n.
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Fitting observations to a Zipf‑Mandelbrot distribution, abbrevi‑
ated ZM(q, z), we are interested in a method of finding q and z that
provide a good fit for the observed rank‑size of the settlements. We
can take a set of sites which are ranked according to size in an R data
frame. This particular example of a settlement distribution was sim‑
ulated for a region according to certain rules of Human Behavioral
Ecology, which is the larger subject of the aforementioned paper.

Taking a data frame dat.kappa, the column kappa contains the
rank (1, 2, 3, and so on) and the column size contains the size of the
settlement, printed here below, with the graphical display of the rank‑
size relationship to right (Fig. 1):
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Figure 1: The rank‑size relationship of a
sample set of settlements.

## [1] 360 160 128 128 128 128 106 72 64 64
## [11] 64 64 32 32 32 32 32 32 32 32
## [21] 27 16 16 16 16 16 16 16 16 16
## [31] 8 8 8 8 8 8 8 8 4 4
## [41] 4 4 4 4 4 4 4 2 2 2
## [51] 2 2 2 2 2 2 2 2 2 2
## [61] 2 2 2 2 2 2 2 2 1 1
## [71] 1 1 1 1 1 1 1 1 1

In order to find parameter values of q and z, the first step involves
log‑transforming both the rank and the size, which is a conventional
step for Zipf and Zipf‑Mandelbrot distributions, toward finding a lin‑
ear relationship between ln(f(κ)), the log of the size of the settlement,
and ln(κ), the log of its rank. Taking the logarithm of the ranks and
sizes of our settlements results in the following scatterplot of values:
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The results are not great for a linear regression (i.e., when q = 0),
given the obvious curve in the data. However, when we experiment
with the variable q and take the log of (κ + q), we can note that the
shape of the distribution varies with q:
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Figure 2: Changes in the log‑log rela‑
tionship of κ and (κ + q) given changes
in the variable q.The question then is how to choose q so that it reduces the total

residuals when doing a linear regression, ln f(κ) = β ln(κ+q)+α. The
resulting relationship will then be of the form f(κ) = eα(κ+ q)β , such
that β = −z in the above notation of the Zipf‑Mandelbrot distribution
(eα is canceled in the normalization, since

∑
f(κ) = 1 as a p.m.f.).
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Figure 3: Linear regression of the log‑
log relationship of (κ+ q) and the size of
the settlement of rank κ given changes
in the variable q.

Looking at the four previous plots, where q = 0.5, 5, 10, and
100, least squares will result in the following coefficients and sum
of squared residuals:

q β α
∑

ϵ2

0.50 7.966661 7.966661 15.084148
5.00 10.384040 10.384040 6.780267
10.0 12.545587 12.545587 4.655050
100.0 47.826847 47.826847 6.924706

Table 1: Summary information of the
least squares regression of q, including
the sum of the squared residuals.

SIMULATION CAN BE USED to generate repeated random values of
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q (e.g., from 0 to 100) for b number of iterations. Each time, q̂b can be
used to perform a linear regression using least squares, which will
have a corresponding sum of squared residuals

∑
ϵ̂2b . Plotting the

relationship for each random value q̂b with their corresponding sum
of squared residuals reveals that there is a local minimum for a value
of q which will have the lowest sum of squared residuals:
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Figure 4: Simulated values of q plotted
against the sum of squared residuals.

Thus, we can choose the value of q̂ which has the smallest sum of
squared residuals as

argminq

(∑
ϵ̂2b

)
= q̂

and accordingly the value of β̂ derived from the least squares regres‑
sion of ln(κ+ q̂). See above on omitting the parameter α.

Plotting the joint distribution of values of q̂ and β̂ reveals the mean
Monte Carlo estimate:
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And plotting the linear regression for the distribution of settlements
with q = 19.88, such that z = 3.618:
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Adj R2 =  0.9799 alpha = 16.47  beta = −3.618

In sum, the parameter of q̂ is calculated by finding a minimum
which reduces the sum of squared residuals, while the value of ẑ =

−β̂ is that which arises when performing least squares on the log‑log
plot of (κ + q̂) and the settlement size. Hence, in undertaking more
complex analysis of landscapes, human settlement patterns can be
parameterized by values of q and z in a Zipf‑Mandelbrot distribution,
enabling a more concise representation of the shape of the rank‑size
phenomenon.

Code

The R code used for generating Monte Carlo estimates of q̂ and ẑ is
as follows, and depends on the data frame dat.kappa (whose ranked
sizes were given above):

1 set.seed(8)
2 q.hats <- c()
3 beta.hats <- c()
4 ss.hats <- c()
5

6 for (bx in 1:1000) {
7

8 q.mc <- c()
9 res.sq.mc <- c()
10

11 for (b in 1:300) {
12 q.b <- runif(1, 0, 100)
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13 q.mc <- append(q.mc, q.b)
14 res.sq.b <- sum( lm(log(dat.kappa$size) ~ log(dat.kappa$kappa +

q.b))$residuals^2)
15 res.sq.mc <- append(res.sq.mc, res.sq.b)
16 }
17

18 res.q.mc.dat <- data.frame(q.mc,res.sq.mc)
19 q.hat <- res.q.mc.dat[which(res.q.mc.dat$res.sq.mc == min(res.q.

mc.dat$res.sq.mc) ),]$q.mc
20 beta.hat <- lm(log(dat.kappa$size) ~ log(dat.kappa$kappa + q.hat

))$coefficients[2]
21 ss.hat <- sum( lm(log(dat.kappa$size) ~ log(dat.kappa$kappa + q.

hat))$residuals^2)
22

23 q.hats <- append(q.hats, q.hat)
24 beta.hats <- append(beta.hats, beta.hat)
25 ss.hats <- append(ss.hats, ss.hat)
26

27 qbeta.dat <- data.frame(q.hats,beta.hats)
28

29 }
30

31 fit <- lm( log(dat.kappa$size) ~ log(dat.kappa$kappa + mean(q.
hats) ) )

32

33 q <- signif(mean(q.hats), 4)
34 z <- signif(fit$coef[[2]], 4) * (-1)

Homepage: http://volweb.utk.edu/~scolli46
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