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ABSTRACT 
 
 The study of dislocation nucleation has gained increasing attentions recently primarily due 
to the advancement of small scale mechanical testing methods. Based on the classic Rice model 
of dislocation nucleation from a crack tip in which the dislocation core is modeled by a 
continuous slip field, a nonlinear finite element method can be formulated with the interplanar 
potential as the input, and the development of interplanar slip field can be solved from the 
resulting boundary value problems. The effects of geometric boundary conditions, loading 
patterns, etc. can be conveniently determined, as opposed to the time consuming molecular 
simulations. To validate the method, we compare the simulations results of homogeneous 
dislocation nucleation and heterogeneous dislocation nucleation from a two-dimensional crack 
tip to the literature results. As proposed by Rice and Beltz (J. Mech. Phys. Solids, 1994), the 
activation energy for dislocation nucleation from a three-dimensional crack tip depends on the 
finite thickness in the direction parallel to the crack tip, which has been successfully reproduced 
in the finite element simulation results reported here. 
 
INTRODUCTION 
 
 With the rapid development of micro- and nano-scale material structures and small scale 
mechanical testing methods, the study of dislocation nucleation has gained increasing attentions 
recently. Examples include the homogeneous dislocation nucleation under indentation (thus 
leading to the pop-in behavior on the load-displacement curves) [1-5] and heterogeneous 
dislocation nucleation from sharp features in strained nano-electronics [6-10]. A dislocation is 
usually modeled either by the Volterra model [11-13], which treats the dislocation as a 
mathematical discontinuity, or by the Peierls-Nabarro model, which treats the dislocation core as 
a continuous slip field [14-18]. Based on the diffused-core model, dislocation nucleation from 
stress concentration sites such as a crack tip is viewed as a gradual development of the 
interplanar slip field until an instability is reached [14,15].  
 The relative slip between two adjacent layers of the slip plane, αΔ , and the shear stress on 
the slip plane, ατ , are related through α ατ = ∂Φ ∂Δ , where ( )αΦ Δ  is a periodic interplanar 
potential and is also denoted as the γ  surface, and 1,2α =  are the two slip directions on the slip 
plane [14,15]. The total potential energy Π  is  
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where n  denotes the slip plane normal, σ  is the self stress due to a non-uniform Δ  when the 
applied load is zero, and elasticσ is the elastic stress fields when 0=Δ  (i.e., when there is no slip 
field). The dislocation will be nucleated when the total potential energy reaches a stationary 
point. The resulting boundary value problem from the Rice-Peierls model can be numerically 
solved by ad hoc methods such as collocation method to solve the Cauchy integral equation [15] 
or the variational boundary integral method [16-18]. In analogy to the cohesive interface model 
[19], the above formulation has been implemented into a commercial finite element package, 
ABAQUS, via a User-defined ELement (UEL) subroutine [20]. The surrounding continuum 
elements are either eight-node brick element (C3D8) in 3D model or four-node plane strain 
element (CPE4) in 2D model, so that the interface elements are made of either eight or four 
nodes. We find the relative slip field on the slip plane by balancing the force introduced from our 
cohesive interface model and the applied force. The advantage of using finite element method is 
that it can solve more complex problems, and it costs less computation time when compared to 
molecular simulations [21,22], although important atomistic aspects such as nonlocal interaction 
may not be well captured.  
 Dislocation nucleation is a stress-assisted, thermally activated process. When the applied 
load is less than but close to the critical load, the dislocation nucleation may still occur due to the 
thermal energy that overcomes the nucleation energy barrier. Under this condition, there are two 
solutions of the slip field for the same applied load – one corresponding to the minimum 
potential energy, ( )min ,x yαΔ , and the other being a saddle point configuration, ( ),saddle x yαΔ . The 
activation energy can be calculated from  
  ( ) ( )min, ,saddle x y x yα α⎡ ⎤ ⎡ ⎤ΔΠ = Π Δ − Π Δ⎣ ⎦ ⎣ ⎦ . (2) 

To obtain the saddle point solution, an initial trial function of ( ),saddle x yαΔ is prescribed on the 
slip plane. If this guess is near the saddle point solution, the Newton-Raphson iteration, in this 
case, will quickly converge to the saddle point solution 
 
HOMOGENEOUS DISLOCATION NUCLEATION 
  
 Consider an infinite solid under pure shear stress. Our three-dimensional finite element 
model is shown in Fig. 1(a) where a half model is used because of symmetry about the x-z plane. 
The shear stress on the slip plane is taken to be a Frenkel sinusoidal function of the relative slip 
across the slip plane, 
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where maxτ  the interface theoretical strength in shear, and b  is the magnitude of Burgers vector. 
The relationship in Eq. (4) is introduced so that the initial slope of ~α ατ Δ  is infinite, thus 
denoted as slanted model. The saddle point solutions of the slip field, saddle

xΔ , on the slip plane are 



 

given in Figs. 1(b) and 1(c). The inhomogeneous slip field in Fig. 1(b) at lower stress has a larger 
size than that in Fig. 1(c). 
 

 
Figure 1. (a) The three-dimensional finite element model for the study of homogeneous 
dislocation nucleation under pure shear stress. (b) and (c) The saddle point solutions of the 
relative slip distribution along the shear direction with respect to two stress levels.  
 
 Fig. 2(a) presents the 3D activation energy (i.e., 3DΔΠ ) for the homogeneous dislocation 
nucleation calculations in Fig. 1, where μ  and ν  are shear modulus and Poisson’s ratio, 
respectively. The smaller the applied stress is, the larger the activation energy of dislocation 
nucleation will be. Predictions in Fig. 2(a) agree favorably with molecular simulations [23] in 
terms of the dependence on 3bμ  and crystal structure.  

 
(a)  (b) 

Figure 2. (a) The activation energy for homogeneous dislocation nucleation, 3DΔΠ  normalized 
by ( )3 / 1bμ ν− , as a function of various applied pure-shear stress levels. (b) The activation 

energy per unit length, 2DΔΠ , for dislocation nucleation from a two-dimensional crack tip using 
the slanted and simple sinusoidal models. 
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HETEROGENEOUS DISLOCATION NUCLEATION FROM A CRACK TIP 
 
 Consider a half infinite crack with dislocation emitted onto a coplanar slip plane under the 
applied K field in Fig. 3(a). We focus on the edge dislocation nucleation under Mode II load. 
According to Rice and Beltz [15], the dislocation is nucleated from the crack tip when the 
applied energy release rate applG  reaches crtG  (e.g., maxcrtG bτ π=  in Frenkel model). We first 

conduct simulations under 2D condition. In this case, the activation energy 2DΔΠ  is given in 
terms of unit length in the third direction. We compare our results that use slanted model in the 
cohesive plane to those using the simple sinusoidal model. It is seen that the simple sinusoidal 
model has larger activation energy than the slanted model at the same applied load level due to 
the additional compliance in the simple sinusoidal model. Our 3D finite element model is shown 
in Fig. 3(b) with a finite thickness of H. The slip direction is along the x direction. Symmetry is 
used on the surface 0Z = and the normal displacements on the outside surface (i.e. Z H= − ) are 
fixed to ensure a plane strain condition. 
 

 
Figure 3. (a) A planar crack under the mixed-mode k-field. The relative slip occurs on the x-z 
plane. (b) Dislocation nucleation from the planar crack tip under mode II load.  
 
 The saddle point configurations are shown in Fig. 4 for / 0.9appl critG G =  and 0.7, 
respectively, which resemble half dislocation loops. Similar to the homogeneous dislocation 
nucleation, a large applied load corresponds to a large size of the saddle point distribution. We 
also examine another prediction by Rice and Beltz [15]. In their work, they use the asymptotic 
method to obtain an approximate saddle point solution, consisting of a local protrusion of a 
dislocation loop. They argued that the activation energy, 3DΔΠ , for three-dimensional 
dislocation nucleation varies with the model thickness H in Fig. 3b and is close to the product of 

2DΔΠ  and H (i.e. 3 2D DHΔΠ ≈ ΔΠ ) when H is small, because the small thickness does not allow 
the development of the local protrusion in the thickness direction and thus force the saddle-point 
solution to be independent of z. And 3DΔΠ  should reach a plateau as H increases. They 
calculated a case when the applied energy release rate is close to the critical value (i.e., 

/ 0.9appl critG G = ) where their asymptotic approximation is most reliable, and found out that 
2DH UΔ  agrees with the actual 3DΔΠ  up to H about 17b. We verify their prediction in Fig. 4(c). 
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Three-dimensional activation energies at / 0.9appl critG G =  and 0.7 are given as a function of 

thickness H/b. 2DHΔΠ  is plotted as solid lines to compare with the 3D results. Our results 
exhibit the same trend as that predicted by Rice and Beltz. In our simulations, 2DHΔΠ  is close to 

3DΔΠ  until H reaches about 13b. 
 

 
Figure 4. The saddle point solutions of the slip field when the applied energy release rate is (a) 

/ 0.9appl crtG G =  (b) / 0.7appl crtG G = . (c) The normalized activation energy 3DΔΠ  under applied 
stress levels / 0.9applied crtG G =  (i.e., solid line marked with circles) and / 0.7applied crtG G =  (i.e., 
solid line marked with squares) as a function of the normalized H/b. The product of normalized 

2DΔΠ  (in Fig. 3(b)) and thickness H  is also shown for comparison. 
 
SUMMARY 
 
 Several applications of a finite element formulation of the Rice-Peierls framework have 
been demonstrated in homogeneous dislocation nucleation and heterogeneous dislocation 
nucleation from a crack tip. Geometric boundary effects can be conveniently studied in this 
methodology. We have verified the proposed relationship in [15] between the activation energy 
and the calculation size. These results may help design appropriate sizes in molecular 
simulations.  
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