
Appendix:  
 
Proof of Proposition 1: 
Bidder i’s (linear) expected utility from biding ib  is: 
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where  p  represents the probability that she wins the auction with   0 ibp and b̂  represents 

the expected price conditional on ib  being one of the winning bids. Rewrite expression (A1) as 

follows: 
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Note that the second term of expression (A2) is independent of ib . Therefore choosing ib  to 

maximize (A2) is identical to choosing ib  to maximize the following expression: 
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 1* . Expression (A3) is of the same form of the problem faced by a bidder 

in a second-price auction; with probability  ibp  bidder i wins a unit of the good, worth *iv , 

and pays a price equal to b̂ . In this more familiar setting, the Nash equilibrium bidding strategy 
has each bidder bidding her value. Here, the result follows: 
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Proof of Proposition 3: 
Assume that bidder i believes all other bidders are using the increasing bid function  lvb  for 

il   where the other subscripts have been suppressed. Choosing ib  to maximize 
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Substituting  ivb'

1
 for  ib'  and iv  for  ib , the expression reduces to 
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Rearranging expression (A6) yields: 
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Note that expressions (A5), (A6), and (A7) characterize the first order condition for the 
equilibrium bid function under the discriminative hybrid regardless of the bidder’s risk 
preferences. Now, assuming risk neutrality and rearranging terms, we have 
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because   00 U .  Rewrite (A8) as 
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Because   00, NDHb , the solution to the above is given by 
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In order to confirm that the solution to (A10) is the Nash equilibrium we must confirm that the 
bid function is indeed increasing in v. Solving expression (A8) for  iNDH vb ,  yields: 
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which is positive provided          
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A comparison of the equilibrium bid functions for the discriminative hybrid and the 
discriminative auction when the lottery is absent (Harris and Raviv’s [1981] equation (11)) 
confirms this inequality. Following Harris and Raviv [1981], the equilibrium bid function 
(assuming risk neutrality) for bidder i facing a discriminative auction, denoted  iND vb , , is equal 

to 
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Substituting  iND vb ,  into the expression for  iNDH vb ,  yields 
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which suggests that the presence of the lottery in the hybrid mechanism causes risk neutral 

bidders to shade their bids by the probability of losing the lottery,   
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and Raviv [1981] show that   iiND vvb , . Combining the results, we have the following 

inequality: 
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Proof of Proposition 5: 
The first part of the proof proceeds by showing    vbvb NDHADH ˆˆ ,,   where 

    00minˆ ,,  vbvbvv NDHADH . 



For the remainder of the proof, all subscripts are suppressed. By strict concavity of U, 
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Multiplying the inequality by -1 and adding and subtracting v from the right hand side yields: 
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Rearranging, we have: 
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By concavity of U and   00 U , we know that 
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equal to zero at some b *. For b b * , 
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Suppose 0ˆ v , where v̂  is defined above, is such that      bbvbvb NDHADH ˆˆ0 ,, ,  then 
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With 1p , the following holds:   
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Therefore, 
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On the other hand, suppose 0ˆ v  is such that      bbvbvb NDHADH ˆˆ ,, , then 
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Rearranging terms implies 
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By properties of density and distribution functions, 
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So for     00minˆ ,,  vbvbvv NDHADH , we have    vbvb NDHADH ˆˆ ,,  . 

Now we show that    vbvb NDHADH ,,   for all 0v . Suppose not. Then there exists one 0v  

such that    vbvb NDHADH ,,  . By continuity, there exists 0v  such that    vbvb NDHADH ,,  .  

Recall the definition of v̂ ,     00minˆ ,,  vbvbvv NDHADH . From above we have 

   vbvb NDHADH ˆˆ ,,   so that    vbvb NDHADH ,,   for vv ˆ  in a neighborhood of v̂  but then 
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which contradicts the definition of v̂ . Therefore, for all vv ˆ ,    vbvb NDHADH ,,   but 



   00 ,, NDHADH bb   so    vbvb NDHADH ,,   in a neighborhood of zero. This contradicts 

   vbvb NDHADH ,,   for all vv ˆ  and proves    vbvb NDHADH ,,   for all 0v . 

 
Proof of Proposition 6: 

The equality follows directly from Propositions 1 and 3 and from Harris and Raviv’s [1981] 
Theorem 6 (pp. 1492-1493). To prove the inequality, consider the expected revenue for the 
discriminative hybrid with risk-averse bidders: 
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Because     000 ,,  NDHADH bb and by Proposition 2     0,,  jjNDHjADH vvbvb , we have  
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Additional revenue hypothesis: 
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Proof: 
Expected revenue in the uniform price hybrid with risk neutral bidders is given by: 
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where    QNU vEQRE   by equation 2.2 of Cox, Smith, and Walker [1985]. The inequality 

follows from   11  


QN
QS . 

 
Proposition A2:        NDNDQN
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Proof: 
Expected revenue in the discriminative hybrid with risk neutral bidders is given by: 
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where jh  is the density function of the jth order statistic in a sample size of N. 

Substituting for  jNDH vb ,  using equation (9) in the text yields 
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where the last equality follows from equation (14) of Harris and Raviv [1981].   
 
Proposition A3:      UAUHNUH RERERE  ,,  

Proof: 
Prove the second inequality first. Expected revenue in the uniform price hybrid with risk averse 
bidders is given by 
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or the  thQN   bid. Expected revenue in the uniform price auction is given by 
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 which implies    UAUH RERE , . 

A similar logic proves the first inequality. 
 
Example with heterogeneous risk preferences: CRRA utility and the uniform price hybrid 
mechanism 
The equilibrium bid function for the uniform price hybrid with CRRA utility and heterogeneous 

risk preferences is given by i
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1  where iv  and ir  denote bidder i’s value and 

coefficient of relative risk aversion respectively. Consider two bidders with vv 1 ,  rr1 , 

 vv2 , and rr 2 . Assume 10  r  and 0  so that both bidders are risk averse but 
bidder 1 is relatively more so. An efficient mechanism would guarantee that in equilibrium 
bidder 2 (bidder 1) outbids bidder 1 (bidder 2) provided 0  ( 0 ). We proceed by solving 

for the value of   for which 21 bb  . Let   0
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Consider the following three ranges of possible values for  : 0 ,  0 , and   . For 
values of   less than zero or greater than  , the bidder with the higher value submits the higher 

bid and the uniform price hybrid is efficient. However, when  0 , 12 vv   but 12 bb  ; 
under the uniform price hybrid, bidder 1 is more likely to win a unit of the good even though 
bidder 2 has a higher value for the good. Therefore, the uniform price hybrid is not in general 
efficient under heterogeneous CRRA risk preferences. 
 
  
 
 


