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A B S T R A C T

Ecosystem fragmentation is one of the main threats to species persistence via habitat reduction and isolation
which often lead to species extinctions. A question that has long been of interest is the minimum habitat
size that can sustain viable populations in fragmented landscape. Despite numerous empirical and theoretical
efforts on this topic, most studies fail to address this central question, and our mechanistic understanding of
and capacity to predict the effects and outcomes associated with fragmentation stressor is still illusive. We
develop an ordinary differential equation (ODE) based framework that incorporates the effect of the patch
area on the net population growth rate for a plant species in fragmented ecosystem via a general net growth
function. We investigate the minimum patch area needed to sustain a given plant species. We use data from the
Amazonian herb Heliconia acuminata to test our model. Furthermore, we compare the performance ODE model
and a linear matrix model to predict the observed data. We provide a general formula for a threshold value
for the fragment area, below which a plant population is not viable. For Heliconia acuminata, our ODE-based
model predicts a value for the minimum fragment area of ≈ 0.7 ℎ𝑎, which reflects the observed data and is
smaller than the value obtained using the matrix projection model. Our findings suggest that the Heliconia’s
mortality rate responds more negatively to fragmentation. Furthermore, we found that the ODE-based model
can serve as an alternative to the linear demographic model.
1. Introduction

The rate of species extinction and ecosystems degradation is increas-
ing worldwide due to increasing chronic anthropogenic disturbances
and of human population growth. Forest fragmentation and associated
habitat loss and isolation are important causes of known species ex-
tinctions and one of the main threats to species persistence (Andreazzi
et al., 2012; Broadhurst et al., 2008; Bruna, 2003; Brudvig et al., 2015;
Flaspohler et al., 2010; Gagnon et al., 2011; Jacquemyn et al., 2012;
Kolb et al., 2010; Laurance et al., 2011; Tang et al., 2011; Vaughn
et al., 2014; Zambrano and Salguero-Gómez, 2014). Habitat patchiness,
including fragmentation, has been an important concept in ecology for
over 80 years. For example, early work on the importance of habitat
heterogeneity by Gause (1934) suggests that persistence of predator–
prey systems depends on the availability of separate refuges for prey.
Also, there is empirical evidence that reduction in habitat size has long
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lasting effect on population dynamics as well as community assembly
and associated dynamics (Bruna, 2003; Gagnon et al., 2011; Kolb et al.,
2010; Zambrano and Salguero-Gómez, 2014; Bruna and Kress, 2002;
Fahrig, 2017; Matesanz et al., 2017; Rybicki et al., 2020; Lucas, 2020).
Most of these studies used linear matrix models (Bolker et al., 2009;
Caswell, 2001; Cushing, 1998; Morris and Doak, 2003) based on field
data to project population dynamics response to habitat reduction.

Quoting (Bruna, 2003), ‘‘Matrix-based demographic models have
become increasingly common in ecology because of their application
from life-history evolution to conservation and there is a broad body
of literature describing their construction, interpretation, assumptions,
and limitations’’. Linear matrix models can consider the dependence of
the birth or death rate on the population density but studies including
such dependence are not found often in the literature (Silva Matos
et al., 1999). However, several works demonstrate the existence of such
vailable online 4 August 2021
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density dependent processes as well as its role in determining plant
population persistence in fragmented landscapes (Broadhurst et al.,
2008; Jacquemyn et al., 2012; Bruna and Kress, 2002; Jacquemyn
et al., 2003; Pachepsky and Levine, 2011; Lienert, 2004). Furthermore,
fragmentation studies that used these linear matrix models failed to
predict the system responses beyond observed degree of fragmentation
and often neglect the role of path isolation. Consequently, predicting
how fragmentation stressor impacts the plant population viability is
still illusive (Andreazzi et al., 2012; Rybicki et al., 2020; Lucas, 2020;
Didham et al., 2012).

Mathematical modeling with data integration is an important tool
to obtain insights to many aspects of ecosystem sustainability and
management. There exists a substantial body of theoretical studies
focusing on modeling the spread of one population in fragmented
ecosystems (Brudvig et al., 2015; Cantrell et al., 2011; Cantrell and
Cosner, 2003; Ferrari et al., 2014; Hastings et al., 2004; Musgrave and
Lutscher, 2014; Murray, 2002; Neubert and Parker, 2004; Williamson,
1989). These range from ordinary differential equations based models
of meta-populations in patches to network models to models based
on reaction diffusion equations to structural equation models (SEM).
These theoretical models aid to understand the influence of forest
fragmentation beyond the limits of observed fragmentation examples.
This is critical given that replicated cases of forest fragmentation are
often scarce, and in some cases experimentally manipulated (Laurance
et al., 2011) due to lack of study examples. However, most of these
theoretical studies often do not provide practical answers to the key
question of the minimum or optimal fragment size that is needed to
protect the populations in fragmented ecosystem.

To further our mechanistic understanding of theoretical and prac-
tical conservation implications of forest fragmentation on species ex-
tinction, it is critical to develop a modeling framework that addresses
these issues. We propose a model that uses the flexibility of existing
theoretical models on fragmentation by the practical use of linear
matrix models to illustrate how to investigate the minimum fragment
size necessary to maintain viable population. The model consists of a
single ordinary differential equation (ODE) and explicitly incorporates
a density dependency on the net growth rate (recruitment rate minus
death rate) of the species population. The multiple mechanisms by
which fragmentation affects the recruitment rate is a complex topic to
disentangle. It has been largely investigated by a couple of researchers
(see Bruna, 2003; Brudvig et al., 2015; Jacquemyn et al., 2012; Lienert,
2004; Bruna et al., 2004; Cramer et al., 2007, references there in) but it
remains elusive. Although it is critical to understand such mechanisms,
we do not address it in this paper. Instead we assume that plant
growth is dependent on population density (or biomass density) and
is modeled by a logistic type function. This particular form was chosen
because a logistic growth rate is one of the most common and simplest
assumption in population models (see Allen, 2007.).

Furthermore, we assume that population net growth rate is affected
by the reduction of patch area through a general net growth function.
This assumption reflects the knowledge in the field that patch size
affects some vital rates via edge effects. How these interact to influence
the asymptotic growth rate of a population is poorly understood. For
instance, Bruna and Oli (Bruna and Oli, 2005) found at least one year
where the asymptotic growth rate of the Heliconia population was very
similar in the fragmented patches and the continuous forest.

The model is used to broadly address the question: What is the min-
imum patch area needed to sustain any plant population? To provide
a practical example, we specifically use the model to determine the
minimum patch size necessary to sustain the populations of Heliconia
acuminata (Heliconiaceae) in a fragmented landscape. This Amazo-
nian understory herb is about 30–50 cm tall with a maximum size
of about 1.6 m and native to the South American countries namely
Brazil, Bolivia, Colombia, French Guiana, Guyana, Peru, Suriname,
and Venezuela. We parameterized our ODE model by fitting the net
population growth rate function using the data sets in Bruna (2003).
2

Fig. 1. Conceptual diagram of the mathematical model.

These data sets were collected in Central Amazonia, in the scope of the
Brazil’s Biological Dynamics of Forest Fragments Project — BDFFP. This
project is one of the largest and longest experimental data collection
endeavors to study the ecological impact of habitat fragmentation (Lau-
rance et al., 2011). The experimental sites consist of fragments of size 1,
10 hectares, and a continuous forest located in Brazil. The demography
and population dynamics of Heliconia acuminata in these patches has
been previously studied (Bruna, 2003) using a linear matrix model.

In this paper, we first introduce in Section 2 the mathematical model
and its underlying assumptions. We further describe the data sets and
present the net population growth rate as well as death rate functions
and their parameterization in Section 3. In Section 4, we characterize
the dynamics of the model and the biological implications of the find-
ings. Specifically, we provide the formula to compute the area threshold
and the specific value for the Amazonia herb in the fragmented system.
Although, the goal of the work by Bruna (2003) was not to predict
short term changes in abundance, we have used it to compare the result
obtained from the matrix project model with the results of our ODE
model. In Section 5 we investigate the ability of the ODE model to
predict the observed population density of Heliconia acuminata in the
year 2000 in the Amazonia system studied in Bruna (2003). Fig. 1
shows the conceptual diagram summarizing the development of the
model.

2. Mathematical model for fragmented ecosystem

In this section we develop a mathematical model that will integrat-
ing experimental data from sites with distinct areas. The model is then
used to investigate how fragmentation affects the dynamics of Heliconia
acuminata population. Let 𝑏(𝑡) represent the plant density (or density
of biomass), express in number of plants per area (or units of mass
per area), in a fragment of a given area and with carrying capacity
𝐾. The temporal dynamics of the population density is modeled by the
following ODE with a logistic growth:
𝑑𝑏
𝑑𝑡

= 𝛽(𝐴)𝑏
(

1 − 𝑏
𝐾

)

= [𝑟(𝐴) − 𝜇(𝐴)] 𝑏
(

1 − 𝑏
𝐾

)

(1)

where 𝛽(𝐴) = 𝑟(𝐴) − 𝜇(𝐴) is the net growth rate of the population,
𝑟(𝐴) is the recruitment rate and 𝜇(𝐴) is the natural death rate of the
population.

With model (1) we make the following assumption:

A.1 The net growth rate 𝛽(𝐴) is assumed to depend on fragment size.
The specific form of the function 𝛽(𝐴) and its fitting details are
given in Section 3.

A.2 In Bruna (2003) the size of the continuous forest was not spec-
ified. In this paper, we arbitrarily assume that a patch of 100
hectares behaves almost like a continuous forest.

A.3 It is reasonable to expect that there may be large variation in the
carrying capacity of each site. However, due to lack of detailed
data we assume that the carrying capacity of each site is the
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carrying capacity of the site with the largest area. That is, we
assume that the carrying capacity is equal for all sites. Its value
is taken to be the average of the observed value of the density
for the continuous forest in the year 1999 given in Bruna (2003).

A.4 We assume that the patches are completely isolate, that is, there
are no dispersal in or out of patches. This is a critical aspect
of this species’ biology as shown in Bruna (2003). In particular,
the study shows that, even though patches are not completely
isolated, the interactions between the species in the same patch
are much stronger than those between different patches.

A.5 There are no seed bank. That is, there are no seeds that are stored
in the soil that survives for the next life cycles. This assumption
is consistent with the fact that seeds of tropical plants move
quickly into a ‘‘seedling bank’’ to escape intense pressure from
seed predators and pathogens (Bruna, 2002).

A.6 There is no significant vital-death correlation. This means that
the probability of dying is not strongly correlated with the re-
production rate. So it can be assumed that the reproduction and
death rates are independent of each other. This assumption is
reasonable for Heliconia acuminata based on discussions in Bruna
and Kress (2002).

A.7 The death rate 𝜇 is assumed to depend on the area. The partic-
ular form of the function 𝜇(𝐴) and the details of its parameter-
ization is given in Section 3.

A.8 The growth of the population density is logistic.

3. Model parameterization

3.1. Data description

The data we use consists of three years of census data from 13
populations of the Amazonian understory herb Heliconia acuminata in
fragments with three distinct areas at Biological Dynamics of Forest
Fragment Project, located 80 km north of Manaus, Brazil (see Bruna,
2003, for details on methods and results). The data was collected in
four sites with area of 1 ℎ𝑎, three sites with area of 10 ℎ𝑎, and six sites
in the continuous forest, which in this paper we consider to have an
area of 100 ℎ𝑎, (see Appendix A.1).

For each of the sites, Bruna (2003) provided the projected (or
asymptotic) population growth rate values for 1998–1999 and 1999–
2000 transition years. These values are the dominant eigenvalue of
each corresponding transition matrix. We called them the projected 𝜆
values and denote them by 𝜆𝑝. Furthermore, we denote by 𝜆𝑝𝑖 the differ-
ent values of the projected 𝜆 values corresponding to the two transition
years, 1998–1999 and 1999–2000, and fragments with three distinct
areas. The transition matrices corresponding to years 1998–1999 and
1999–2000 are also given in Bruna (2003).

Additionally, Bruna (2003) gave the values of the observed asymp-
totic population growth rate for each transition year 1998–1999 and
1999–2000 for each site with distinct areas. These values were com-
puted in Bruna (2003) by dividing the observed plant density at year 𝑡
by the observed plant density at year 𝑡 − 1. In this paper we call them
observed 𝜆 and denote them by 𝜆𝑜𝑖. Thus, we have two sets of data
points (𝜆, fragment area): a data set consisting of projected values of 𝜆
denoted by (𝜆𝑝𝑖, 𝐴𝑖) and a data set consisting of observed 𝜆 denoted by
(𝜆𝑜𝑖, 𝐴𝑖).

The plant mortality rate for each fragment was computed from
the survival probability in the transition matrices and is listed in
Appendix A.1.

The values of the population density available correspond to the
year 1999. The methodology for computing the values of the density
in 1998 and 2000 at each site is given in Appendix A.1. For each year
1998, 1999, and 2000, we obtained two values of plant density. The
first set of values are derived from the projected 𝜆𝑝, which we denote
by (𝑏𝑝𝑖, 𝑡𝑖) where 𝑖 = 1, 2, 3 corresponds to years 𝑡1 = 1998, 𝑡2 = 1999, and
3

𝑡3 = 2000. The second set of values are derived from the observed 𝜆𝑜,
denoted by (𝑏𝑜𝑖, 𝑡𝑖). A summary of the data used in this paper and a brief
description on how it was adapted from the data published in Bruna
(2003) is presented in Appendix A.1.

Next, we estimate the parameters for the function 𝛽(𝐴) (in Sec-
tion 3.2) and 𝜇(𝐴) (in Section 3.3). To accomplish this task we use
function cftool in MATLAB – 9.5.0.1049112 (R2018b) to fit the
functions to the data just described: (𝜆𝑝𝑖, 𝑡𝑖) and (𝜆𝑜𝑖, 𝑡𝑖). The best-
fit curve is assumed to be that which minimizes the sum of squared
residuals. Since the functions are nonlinear, we use the standard error
of the regression to assess the goodness-of-fit.

3.2. Dependence of 𝛽 on 𝐴, 𝛽(𝐴)

To establish the function 𝛽(𝐴) that will be parameterized with the
data, we assume that it satisfies the following properties: (i) 𝛽(𝐴) is a
continuous and differentiable function on [0,∞); (ii) when the area of
the site is close to zero the growth rate approaches −∞. This models
the fact that when the area of the patch is very small the biomass or
population density decreases very fast. (iii) When the area is very large
the growth rate levels out at a certain value. Two possible functions
that satisfy conditions (i)–(iii) are given in Eqs. (2) and (3):

𝛽(𝐴) = ln(𝜆(𝐴)) = 𝛽𝐹
𝐴 − 𝐴𝑐

𝐴
. (2)

and

𝛽(𝐴) = ln(𝜆(𝐴)) = ln
(

𝑐1𝐴
1 + 𝑐2𝐴

)

= ln
(

𝑐1∕𝑐2𝐴
1∕𝑐2 + 𝐴

)

, (3)

Note that the available data contains the values of 𝜆, however, we need
to estimate 𝛽. The relation between 𝜆 and 𝛽 is

𝛽(𝐴) = ln (𝜆(𝐴)) . (4)

q. (4) explains why the logarithm appears on both equation (2) and
3). The parameter 𝐴𝑐 ≥ 0 in Eq. (2) is the critical value of the area for
hich the sign of the net growth rate changes from a negative value to
positive value. We call this point the switching point. This is the point

t which the plant density switches from increasing to decreasing or
ice-versa and we will show this fact in Section 4.

Next we proceed with the estimation of the parameters in the
unctions. We divide the fitting into two cases. In one case, we use
he values of the projected 𝜆 for the years 1998–1999 and 1999–2000
cross the plots of same size and the corresponding areas, that is, we
se the data set (𝜆𝑝𝑖, 𝐴𝑖). In the other case, we utilize the values of
he observed 𝜆 for the years 1998–1999 and 1999–2000 across the
lots of same size and the corresponding areas. This is the data set
𝜆𝑜𝑖, 𝐴𝑖). The values of the data sets are given in Tables A.1 and A.2,
ppendix A.1. For each data set we parametrize both functions given

n equations (2) and (3). There are two parameters to be estimated in
ach formula, 𝛽𝐹 , 𝐴𝑐 in Eq. (2) and 𝑐1, 𝑐2 in Eq. (3). For each data set
nd each of the functions we follow two approaches. In one approach,
e fix one parameter and estimate the other. In the other approach, we
stimate both parameters. When fixing one parameter we choose to fix
𝐹 = ln

(

𝑐1∕𝑐2
)

= ln 𝜆𝐹 because it can be estimated from the available
ata. It is estimated by averaging over all values of the asymptotic
rowth rate (𝜆) of the continuous forest (sites with area equal to 100ℎ𝑎)
resented in Appendix A.1. Then compute the natural logarithm of
he resulting value. The values for the estimate of 𝛽𝐹 using the two
ata sets (𝜆𝑝𝑖, 𝐴𝑖) and (𝜆𝑜𝑖, 𝐴𝑖) are given in Table A.1, Appendix A.1,

where they are denoted by 𝛽𝐹𝑝 and 𝛽𝐹𝑜, respectively. In particular,
hen performing the fitting with the data set (𝜆𝑝𝑖, 𝐴𝑖) and fixing one
arameter, we set

ln
(

𝑐1∕𝑐2
)

= 𝛽𝐹 = ln 𝜆𝐹 ≈ 0.0214. (5)

Then, we estimate the parameter 𝐴𝑐 by parametrizing the function

in Eq. (2) and estimate 𝑐2 by fitting the function in Eq. (3). When
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Fig. 2. Fitting results for 𝛽(𝐴) functions with the area expressed in ℎ𝑎 and 𝛽 in year−1. (a) using projected data (𝜆𝑝𝑖 , 𝐴𝑖) and Eq. (2). The curve depicted with black dashed line
s obtained when both parameters, 𝐴𝑐 and 𝛽𝐹 , are estimated with Matlab cftool. The solid blue line is the fitted curve with 𝛽𝐹 = 0.0214 fixed and the value of 𝐴𝑐 estimated via

cftool. (b) using projected data (𝜆𝑝𝑖 , 𝐴𝑖) and Eq. (3). The curve represented with solid blue line is the fitted curve with 𝛽𝐹 = ln(𝑐1∕𝑐2) = 0.0214 and the value of 𝑐2 estimated via
cftool. The black dashed line curve is the fitted curve when both 𝑐1 and 𝑐2 are estimated with cftool package. (c) and (d) graphs similar to (a) and (b), respectively but using
observed data (𝜆𝑜𝑖 , 𝐴𝑖) instead of projected data.
u
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Table 1
Parameters values and the corresponding Fit Standard Error (RMSE ) when fitting
function 𝛽(𝐴). When the value of 𝛽𝐹 is not estimated, either using the function
presented in Eq. (2) or equation (3), the values of 𝛽𝐹 projected and 𝛽𝐹 observed are
taken to be 0.0214 and 0.1066, respectively (see Eqs. (5) and (6).).

Function Par. Unit With 𝜆𝑝 projected with 𝜆𝑜 observed

Value 𝑅𝑀𝑆𝐸 Value 𝑅𝑀𝑆𝐸

(2)
𝐴𝑐 ha 1.753 0.02178 0.6547 0.06573
𝛽𝐹 fixed .

𝐴𝑐 ha 2.406 0.02062 0.3706 0.06496
𝛽𝐹 year−1 0.01088 0.1032

(3)
𝑐2 ha−1 28.5 0.02184 13.84 0.06573
𝑐1 fixed .

𝑐1 (year×ha)−1 38.02 0.02061 28.39 0.06496
𝑐2 ha−1 37.61 25.60

using the data values (𝜆𝑜𝑖, 𝐴𝑖) we proceed similarly but equation (5) is
eplaced by

ln
(

𝑐1∕𝑐2
)

= 𝛽𝐹 = ln 𝜆𝐹 ≈ 0.1066 (6)

The results of the both fittings are summarized in Table 1 and in
Fig. 2.
Results summary: We found a significant correlation between frag-
ment area and growth rate 𝛽. Thus, validating our assumption A.1, the
growth rate is dependent on the area (A), that is 𝛽 = 𝛽(𝐴). Furthermore,
when using the data points (𝜆𝑝𝑖, 𝐴𝑖), the Fit Standard Error (RMSE) is
approximately the same (either ≈ 0.021 or ≈ 0.022) across the four
fittings (see column 5 in Table 1). Similarly, when using the data points
(𝜆𝑜𝑖, 𝐴𝑖), it follows that the RMSE across the four fittings is either 0.065
4

or 0.066 (see column 7 in Table 1). This result suggests that there is no
significant difference in the goodness-of-fit associated to the fitting of
the two distinct function forms given in Eqs. (2) and (3). This feature
is also visible in Fig. 2.

From Table 1, column 6, we see that the value of 𝛽𝐹 estimated
sing Matlab cftool is 0.1032 when the function in Eq. (2) is adopted
nd it is ln(28.39∕25.60) = 0.1034 when the fitting is done with the

function in Eq. (3). These values differ by less than 3.2% from the
value estimated directly from the data (𝜆𝑜𝑖, 𝐴𝑖), which is 𝛽𝐹 = 0.1066
(see Eq. (6)). On the other hand, when the fitting is performed with
the data set (𝜆𝑝𝑖, 𝐴𝑖) (column 4, Table 1) 𝛽𝐹 is estimated to be equal
0.01088 and ln(38.02∕37.61) = 0.01084 when the fitting is based on the
function (2) and (3), respectively. However, the value of 𝛽𝐹 estimated
from the data (𝜆𝑝𝑖, 𝐴𝑖) is 0.0214 (see Eq. (5)), which is ≈ 50% higher
than the values obtained by fitting with Matlab cftool.

Based on these results, we select the function in Eq. (2) to model the
dependence of 𝛽 on the area of the fragment. This function is fed into
model (1) leading to two models: one model parameterized by (𝜆𝑝𝑖, 𝐴𝑖),
and the other parameterized by (𝜆𝑜𝑖, 𝐴𝑖). In both models, 𝐴𝑐 is replaced
by the corresponding value estimated via Matlab cftool and given in
Table 1. Similarly, to the parameter 𝛽𝐹 is assigned the corresponding
value estimated directly from the data and given in Eqs. (5) and (6).

3.3. Dependence of 𝜇 on 𝐴, 𝜇(𝐴)

Observe that the fitting of the mortality function 𝜇(𝐴) is not
necessary for parametrizing model (1). However, we present the pa-
rameterization of 𝜇(𝐴) to estimate the minimum fragment area at which
the plant mortality equals its natural mortality rate, which is assumed
to be the average mortality rate observed in the sites with area equal
100ℎ𝑎 (continuous forest). This quantity is important as it helps in

understanding how fragmentation affects plant vital rates.
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Table 2
The estimated value of 𝑑1 and corresponding Fit Standard Error (RMSE)
obtained when fitting function 𝜇(𝐴) in Eq. (7).

Par. Value Unit 𝑅𝑀𝑆𝐸

𝑑1 2.488 (ha)−1 0.1022

Fig. 3. Fitted curve for 𝜇(𝐴) function given in Eq. (7) represented by a solid red line.
he data is depicted with red circles The area is expressed in ha and 𝜇 in year−1.

We assume that the function 𝜇(𝐴) satisfies the following properties:
(i) 𝜇(𝐴) is continuous and differentiable; (ii) 0 ≤ 𝜇 ≤ 1; (iii) when
the site area is close to zero the death rate approaches 1. This models
the fact that when the area of the patch is very small the death rate is
very high. Furthermore, we assume that when the area is very large the
mortality rate levels out at a certain value, which is the natural death
rate of the plant if there is no fragmentation in the system (continuous
forest). One possible function that satisfies these conditions is

𝜇(𝐴) = (1 − 𝜇𝐹 ) exp(−𝑑1𝐴) + 𝜇𝐹 , (7)

where 𝜇𝐹 is the natural plant mortality when the site is not fragmented
(continuous forest) and 𝑑1 is the system decay constant. The value of 𝜇𝐹
is the average of the mortality data values corresponding to sites with
area equal to 100ℎ𝑎, which is the continuous forest. Those values are
provided in Appendix A.1, Table A.4 and their average is 𝜇𝐹 = 0.0336.
In the same table, the values of 𝜇 for each plot with area of 1ℎ𝑎, 10ℎ𝑎
can be found. Eq. (7) together with the data is used to estimate the
parameter 𝑑1. The parameterization is carried out, as when fitting 𝛽(𝐴),
via MATLAB cftool and the results are given in Table 2 as well as in
Fig. 3.
Results summary: The value of system’s decay constant is estimated to
be 𝑑1 = 2.488 per year. Based on this value, straightforward calculations
show that the mortality rate in a fragment reaches the natural death
rate when the area is equal or greater than ≈ 4.1 ℎ𝑎. At 𝐴 ≈ 4.1 ℎ𝑎 the
mortality in the site differ 0.1% from 𝜇𝐹 .

4. Effect of fragment size on herb population density

As discussed in Section 3.2, we adopt the function in Eq. (2) to
describe the relation between net growth rate 𝛽 and area. That is,
𝛽(𝐴) = 𝛽𝐹

𝐴−𝐴𝑐
𝐴 . Thus, the model given in Eq. (1) reduces to

𝑑𝑏
𝑑𝑡

= 𝛽(𝐴)𝑏
(

1 − 𝑏
𝐾

)

= 𝛽𝐹
𝐴 − 𝐴𝑐

𝐴
𝑏
(

1 − 𝑏
𝐾

)

(8)

with 𝛽(𝐴) = 𝑟(𝐴) − 𝜇(𝐴).
The equilibrium states of the system are obtained by solving the

quation resulting from setting the right-hand side of (8) equal to zero.
imple calculations shows that, for fixed value of area 𝐴, the solutions
re:

(𝐴) = 𝛽
𝐴 − 𝐴𝑐 = 0, 𝑏 = 0, 𝑏 = 𝐾. (9)
5

𝐹 𝐴 m
The condition 𝛽(𝐴) = 𝛽𝐹
𝐴−𝐴𝑐
𝐴 = 0 holds true when 𝐴 = 𝐴𝑐 . At this

value of area 𝛽(𝐴) = 𝑟(𝐴)−𝜇(𝐴) = 0. That is, the recruitment rate 𝑟 and
the dead rate 𝜇 are equal. Thus, the initial density of biomass does not
grow or decay. The system will stabilize at the initial value of the plant
density.

We next consider the case 𝛽(𝐴) ≠ 0 and study the local stability of
he equilibrium states 𝑏 = 0 and 𝑏 = 𝐾. We first compute the Jacobian
atrix of the system, which is given by:

𝐴𝑚 = 𝛽(𝐴)
(

1 − 2𝑏
𝐾

)

(10)

At equilibrium, 𝑏 = 0, 𝐽𝐴𝑚 = 𝛽(𝐴) = 𝛽𝐹
𝐴−𝐴𝑐
𝐴 . Since 𝛽𝐹 > 0 it follows

that 𝐽𝐴𝑚 is positive if 𝐴 > 𝐴𝑐 and negative if 𝐴 < 𝐴𝑐 . Therefore, 𝑏 = 0
s a locally asymptotical stable (l.a.s) equilibrium if 𝐴 < 𝐴𝑐 while it is

unstable if condition 𝐴 > 𝐴𝑐 holds true.
When considering the equilibrium state 𝑏 = 𝐾, the Jacobian 𝐽𝐴𝑚 =

−𝛽(𝐴) and the equilibrium state 𝑏 = 𝐾 is unstable if 𝐴 > 𝐴𝑐 and it is
.a.s if 𝐴 < 𝐴𝑐 . The results can then be summarized in the following
roposition:

roposition 1. Consider the model of forest fragmentation given by (8),
here the parameters have nonnegative values. If 𝐴 = 𝐴𝑐 , the plant density
tabilizes at its initial value. If 𝐴 < 𝐴𝑐 then the equilibrium 𝑏 = 0 is l.a.s
hile the equilibrium 𝑏 = 𝐾 is unstable. On the other hand, if 𝐴 > 𝐴𝑐 then
he equilibrium 𝑏 = 0 is unstable and the 𝑏 = 𝐾 is l.a.s.

Biological implications. If the fragment size is below the switching
oint 𝐴𝑐 , the population growth rate 𝛽(𝐴) becomes negative indicating
ecreasing population size towards the equilibrium state 𝑏 = 0, which
mplies that the persistence of the herb, Heliconia acuminata, is in jeop-
rdy. If the fragment size is above the critical value 𝐴𝑐 then, Heliconia
cuminata population level stabilizes at the carrying capacity of the
ystem 𝐾. From the fitting we can see that the average value of the
ritical patch area 𝐴𝑐 is approximately 1.75ℎ𝑎, based on the projected

data (𝜆𝑝𝑖, 𝐴𝑖𝑖). And the fragment critical area 𝐴𝑐 is estimated to have
an average value of approximately 0.655 when the observed data set
is used to fit the function. Thus, the switching point 𝐴𝑐 , estimated
with observed data (𝜆𝑜𝑖, 𝐴𝑖), is lower (about 63%) than the switching
point estimated with the data (𝜆𝑝𝑖, 𝐴𝑖). Therefore, our model predictions
based on the observed data indicate that the plant population has a
higher resilience to fragmentation than the prediction based on the
projected data. Recall that the values of 𝜆𝑝𝑖 in the project data (𝜆𝑝𝑖, 𝐴𝑖),
re derived from the linear matrix model. These results are illustrated
n Fig. 4. When the fragment size is precisely equal to the threshold
alue, population size that was initially in the patch does not change,
hich indicates that the plant can persist in the system whenever the

nitial population size is different from zero.
The results summarized in Proposition 1 are illustrated in Fig. 4.

his figure depicts numerical simulations of the model (1) param-
terized with the projected data set (𝜆𝑝𝑖, 𝐴𝑖) as well as numerical
imulations of the model parameterized with the data (𝜆𝑜𝑖, 𝐴𝑖).

. Model predictability capabilities

After parametrizing the model (1) with the two data sets (projected
ata set (𝜆𝑝𝑖, 𝐴𝑖) and observed data (𝜆𝑜𝑖, 𝐴𝑖)), we test their predictability
gainst the experimental data consisting of plant population density
𝑏 corresponding to years 𝑡1 = 1998, 𝑡2 = 1999 and 𝑡3 = 2000, that
s, against the data set (𝑏𝑜𝑖, 𝑡𝑖) given in Appendix A.1, Table A.2. For

patch of a given area, the initial condition used to run the models,
he one parameterized by (𝜆𝑝𝑖, 𝐴𝑖) and the one parameterized by the
bserved data (𝜆𝑜𝑖, 𝐴𝑖), is the average value of the observed population
ensity in year 1998. More precisely, we used the initial value of
94, 342, 388 when the area was fixed at 1ℎ𝑎, 10ℎ𝑎, and 100ℎ𝑎,
espectively. The results are shown in Fig. 5.

Additionally, fixing a patch area, we investigate how well the
odel parameterized by the set (𝜆 , 𝐴 ) performs to reproduced the
𝑜𝑖 𝑖
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Fig. 4. Numerical simulation of model (1) with the parameterized function (2). The curve depicted with blue solid line is obtained with the value of 𝛽𝐹 , fixed at 0.0214 and the
alue of 𝐴𝑐 = 1.753, which is estimated with projected data (𝜆𝑝𝑖 , 𝐴𝑖). While the curve depicted with red dashed line, the value of 𝛽𝐹 is fixed at 0.1066 and the value of 𝐴𝑐 = 0.6547

is the one estimated with the observed data (𝜆𝑜𝑖 , 𝐴𝑖). The fragment area is 0.5, 1, 10, 100ℎ𝑎 (continuous forest) in panels (a), (b), (c) and (d), respectively.
average observed data comparatively to the matrix model used in Bruna
(2003). Specifically, we compare the temporal pattern obtained with
the model parameterized with the observed data set (𝜆𝑜𝑖, 𝐴𝑖), with the
observed and projected average plant population density. The results
are indicated in Fig. 6.

6. Discussion of results

Our results are obtained with a model parameterized with the
best data set available. The collection of data is in the scope of the
Brazil’s Biological Dynamics of Forest Fragments Project — BDFFP. This
project is one of the largest and longest experimental work to study the
ecological impact of habitat fragmentation (Laurance et al., 2011). It
constitutes an incredible effort in the field but there is only three patch
sizes in the data and three time instances (1998, 1999, and 2000). This
information is far from ideal to parametrize the model. In addition to
being small, the data sets exhibit high variability and missing values.
Consequently, several approximations were made. For example, there
were missing values of projected and observed asymptotic growth rate
𝜆 for transitions years 1998–1999 for 3 sites with area 100 ℎ𝑎. So, for
these sites, we assume that the density of Heliconia acuminata in year
1998 was the same as in the year 1999. The model parameterization
can be easily changed to accommodate distinct data sets not only
concerning Heliconia acuminata that may be produced in the future but
also concerning other plant systems.

The results in Fig. 5 suggests that the model, either parameterized
by the projected data (𝜆𝑝𝑖, 𝐴𝑖) or parameterized by the observed data
(𝜆𝑜𝑖, 𝐴𝑖), do not fit well the plant density observed in each individual
site of fragments of same area. This might be due to the constrains
of the data sets mentioned above. However, when using the average
observed plant density instead of the observed density in each indi-
6

vidual site, the model parameterized by the data set (𝜆𝑜𝑖, 𝐴𝑖) captures
qualitatively the plant density temporal evolution pattern (see Fig. 6).
This occurs for all three distinct areas considered. In contrast, the
matrix model predictions only capture the observed temporal evolution
of the plant density in the continuous forest (panel c)). Nonetheless, our
ODE model fits the observed data slightly better than the linear matrix
model.

Due to the fact that the data sets are small it is difficult to conduct
robustness test by removing some of the data points and see whether
one gets similar fitting results. Sensitivity analysis could be used to
gain additional insight on how the model respond to uncertainty in the
parameters. This is part of future work.

7. Conclusions

We explored the effect of fragmentation on plant population size in
an ordinary differential equation (ODE) based framework. This model
assume that the growth of the plant population size is of logistic type
and that the net growth rate (recruitment rate minus mortality rate) is
affected by the reduction of patch area through a general net growth
function. We use the model to investigate the minimum patch area
needed to sustain any plant/shrub system. Additionally, we parametrize
the model with a three years census data of Heliconia acuminata in
both forest fragments and continuous forest provided in the work
by Bruna (2003). We apply the resulting fitted model to determine the
minimum fragment size necessary to sustain the Heliconia acuminata
density in a fragmented landscape. For this specific data set, we also
test the hypothesis that the ODE-based model, with the dependence
of plant growth rate on the population density explicitly modeled, fits
the observed Heliconia acuminata density better than the linear matrix
demographic models that are common used in the field.

Our theoretical analysis of the model indicates that the persistence

of Heliconia acuminate is possible when the area of the fragment is
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Fig. 5. Simulation of plant density as a function of the patch size 𝐴 using model (1) parameterized with projected data set (𝜆𝑝𝑖 , 𝐴𝑖), shown with black solid line, and observed
data set (𝜆𝑜𝑖 , 𝐴𝑖), depicted with blue dashed line. The red circle represents the observed data (𝑏𝑜𝑖 , 𝑡𝑖). In the 𝑥-axis 1, 2, 3, 4 represent the years 1998, 1999, 2000, 2001 respectively.
(a) Patch size 𝐴 = 1ℎ𝑎. (b) Patch size 𝐴 = 10ℎ𝑎. (c) Patch size 𝐴 = 100ℎ𝑎.

Fig. 6. Simulation of plant density as a function of the fragment size 𝐴 using model (1) parameterized using the observed data set (𝜆𝑜𝑖 , 𝐴𝑖). The blue curve is the time series
obtained with the model, the red circle is the average population density of the Heliconia acuminata observed while the black circle represents the projected data points obtained
with the matrix model. At the year 1998 (year 1) the density is the observed one. (a) Patch size 𝐴 = 1 ℎ𝑎. (b) Patch size 𝐴 = 10 ℎ𝑎. (c) Patch size 𝐴 = 100 ℎ𝑎.
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Table A.1
Values of the projected 𝜆𝑝𝑖 , observed 𝜆𝑜𝑖 asymptotic growth rate, and
area of the fragment 𝐴𝑖 for each site. The units are: area in ha and 𝛽
in 1/year.

Area 𝐴𝑖 𝜆𝑜𝑖 𝛽𝑜𝑖 𝜆𝑝𝑖 𝛽𝑝𝑖
1 1.0375 0.0368 0.978 −0.0222
1 1.221 0.1997 0.987 −0.0131
1 1.075 0.0723 0.988 −0.0121
1 1.0675 0.0653 0.997 −0.0030
1 1 0.0000 0.988 −0.0121
1 1.175 0.1613 0.989 −0.0111
1 1.0125 0.0124 0.978 −0.0222
10 1.025 0.0247 0.988 −0.0121
10 1.212 0.1923 0.991 −0.0090
10 1.075 0.0723 0.999 −0.0010
10 1.025 0.0247 0.978 −0.0222
10 1.2125 0.1927 0.994 −0.0060
10 1.0626 0.0607 0.996 −0.0040
100 1.05 0.0488 1.028 0.0276
100 1.1 0.0953 1.079 0.0760
100 1.1 0.0953 0.987 −0.0131
100 1.1625 0.1506 1.04 0.0392
100 1.175 0.1613 1.022 0.0218
100 1.1625 0.1506 0.991 −0.0090
100 1.0875 0.0839 1.014 0.0139
100 1.05 0.0488 1.018 0.0178
100 1.125 0.1178 1.016 0.0159

𝛽𝐹𝑜 Observed 𝛽𝐹𝑝 Projected
0.1066 0.0214

higher than a threshold 𝐴𝑐 , the system switching point. That is, for values
f the area greater to 𝐴𝑐 the net population growth rate is greater than
ero which implies persistent plant population whose size will reach
asymptotically) the fragment carrying capacity, if no disturbances
ccur. The persistence of the plant is still possible if the forest fragment
rea is equal to 𝐴𝑐 , but in this case the population stagnates at the
nitial value.

The switching point 𝐴𝑐 estimated with the proposed net growth
rate function parameterized with the census data from Amazonian
Heliconia acuminata is 0.655 ≈ 1 ℎ𝑎. This result is in agreement with
the findings reported by Bruna and Kress (2002), concerning the same
Amazonian Heliconia acuminata system, which shows that, among the
hree area patches studied (1, 10, 100, ℎ𝑎), the herb in fragments of
1 ℎ𝑎 is more vulnerable to fragmentation. The switching point estimated
with same function but parameterized with the data calculated using
the asymptotical growth rate 𝜆 obtained from the matrix based model
nd presented in the work by Bruna (2003) is 1.75 ≈ 2 ℎ𝑎. Thus, the

predictions based on the census data indicate that the plant system is
more resilient to fragmentation than the predictions based on the data
recovered from the matrix-based model.

The mortality decay constant estimated through the function pa-
rameterized with the data census reveals that the mortality rate of
Heliconia acuminata stabilizes at the value of the mortality rate observed
in an ecosystem without fragmentation when the fragment size is
greater or equal to ≈ 4 ℎ𝑎. Thus, our study suggests that, in the
particular scenario of Heliconia acuminata Amazonian system, the net
growth rate is less sensitive to fragmentation than the mortality rate.
Such phenomena was also reported for the same plant system (Bruna
and Kress, 2002). It was reported that fragments of 10 ℎ𝑎 of land
suffered higher mortality than the continuous forest.

Given our results we observed that the ODE-based model presented
in this study can serve as an alternative to the linear demographic
model since we have included in our ODE model some assumptions
about how the mortality and recruitment rates behave which are not in-
cluded in the linear demographic model. Furthermore, the ODE model
is able to fit the given data. This is an interesting result suggesting the
use of models that take in account the dependence of the plant popu-
lation growth rates on population size when investigating the impact
of fragmentation on plant species. However, further investigations are
8

needed to verify if this findings are applied to other plant populations in
fragmented systems. The model in this paper is very simple. It consists
of an ordinary differential equation that represent average or mean
field approximations of the true time and spatial scales of the object
of study. An alternative formulation could involve an age structured
model and/or including spatial component. Additionally, those models
could incorporate distinct processes in which fragmentation affects, for
example, pollination, seed dispersal, the seed and seedling establish-
ment. However, any attempt in this direction would require a multitude
of parameters and, necessarily, data to validate it. Given the nature
of the phenomena at hand, these requirements may be very difficult
to satisfy. Therefore, the approach of using simpler models may have
advantages over uses of agent based or computational models that are
more realistic but providing very limited theoretical insights.

Realistically, we understand that we should consider multi-patch
and interactions between the patches; however, since this is an alter-
native approach to the use of linear demographic model it is important
to understand the dynamics of a single isolated patch. In the future
we will consider a more realistic model with multi-patches and their
connectedness.
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Table A.2
Values of the asymptotic growth rates 𝜆𝑝𝑖 , 𝜆𝑜𝑖 , area 𝐴𝑖 , as well as the observed (𝑏𝑜𝑖) and projected (𝑏𝑝𝑖) values of the population density
corresponding to each site in the years 1998, 1999, and 2000. The symbol ∗ indicates that values of the density were assumed to be equal to
the values of density in the year 1999. The units are: area in ℎ𝑎, and density in units of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠∕ℎ𝑎..

Area 𝑏𝑝𝑖 𝜆𝑝𝑖 Year 𝑏𝑜𝑖 𝜆𝑜𝑖 Area 𝑏𝑝𝑖 𝜆𝑝𝑖 Year 𝑏𝑜𝑖 𝜆𝑜𝑖
1 217.7 – 1998 219.5 – 100 732.5 – 1998 697.6 –
1 157.4 – 1998 155.2 – 100 514.4 – 1998 467.6 –
1 203.3 – 1998 168.7 – 100 712.2 – 1998 647.5 –
1 247 – 1998 232.6 – 100 112(∗) – 1998 112(∗) –
1 214 0.983 1999 214 0.975 100 171(∗) – 1998 171(∗) –
1 161 0.978 1999 161 1.0375 100 235(∗) – 1998 235 (∗) –
1 206 0.987 1999 206 1.221 100 753 1.028 1999 753 1.05
1 250 0.988 1999 250 1.075 100 555 1.079 1999 555 1.1
1 213.4 0.997 2000 228.4 1.0675 100 703 0.987 1999 703 1.1
1 159.1 0.988 2000 161 1 100 112 – 1999 112 –
1 203.7 0.989 2000 242.0 1.175 100 171 – 1999 171 –
1 244.5 0.978 2000 253.1 1.0125 100 235 – 1999 235 –
10 164.0 – 1998 158.0 – 100 774.1 1.04 2000 875.4 1.1625
10 402.0 – 1998 331.7 – 100 598.8 1.022 2000 652.1 1.175
10 577.0 – 1998 536.7 – 100 693.9 0.991 2000 817.2 1.1625
10 162 0.988 1999 162 1.025 100 113.6 1.014 2000 121.8 1.0875
10 402 0.991 1999 402 1.212 100 174.1 1.018 2000 179.6 1.05
10 577 0.999 1999 577 1.075 100 238.8 1.016 2000 264.4 1.125
10 158.4 0.978 2000 166.0 1.025
10 399.6 0.994 2000 487.4 1.2125
10 574.7 0.996 2000 613.1 1.0626
h

K
m

c

Appendix

A.1. Data preparation

The data was extracted from Bruna (2003). More precisely, the plant
density at each site corresponding to year 1999 as well as the fragment
area are given in Table 1, (Bruna, 2003). The projected asymptotical
growth rate 𝜆 corresponding to the transition years 1998 − 1999 and
999 − 2000 for each site is also provided in Table 1. The details on
he computation of these values are given also in Bruna (2003). The
alues of observed 𝜆 are depicted in Fig. 5 in the same work. The
ransition matrices describing the dynamics of the Heliconia acuminata
re provided in Appendix B, (Bruna, 2003).

.1.1. Values of the projected 𝜆𝑝𝑖, observed 𝜆𝑜𝑖 asymptotic growth rate, and
rea 𝐴𝑖 of the fragment for each site

The projected values of 𝜆 (that is, 𝜆𝑝𝑖) and area of each frag-
ents/site (𝐴𝑖) were read off Table 1 (Bruna, 2003) and is provided

n Table A.1 for completeness. The resulting data set is denoted by
𝜆𝑝𝑖, 𝐴𝑖). The observed transition values of 𝜆𝑜𝑖 summarized in the Ta-
le A.1 were read off Fig. 5 and the data set is denoted by 𝜆𝑜𝑖. The
orresponding values of the growth rate 𝛽𝑝𝑖 and 𝛽𝑜𝑖 were computed
sing the relation 𝛽 = ln(𝜆). On the right hand-side of Table A.1 is listed
he values of the projected and observed growth rates corresponding to
he continuous forest. These values are the average of the values of 𝛽𝑝𝑖
nd 𝛽𝑜𝑖 for sites with area 100 ha and they are denoted by 𝛽𝐹𝑝 and 𝛽𝐹𝑜,
espectively.

.1.2. Values of the population density of Heliconia acuminata 𝑏𝑝𝑖, (pro-
ected) and 𝑏𝑜𝑖 (observed) in years 1998, 1999, and 2000 for each site

The density of the plant in the years 1998, 1999 and 2000 were
omputed from the values of the density registered for year 1999
Table 1, Bruna, 2003) and using the formula:

=
density of Heliconia in year 𝑡 + 1

density of Heliconia in year 𝑡
. (A.1)

For each area and each year, we obtain two data sets: projected density
(𝑏𝑝𝑖, 𝑡𝑖) and observed density (𝑏𝑜𝑖, 𝑡𝑖), where the indices 𝑖 = 1, 2, 3 rep-
resent years 1998, 1999, 2000, respectively. The former set is obtained
by using the values 𝜆𝑝𝑖 in Eq. (A.1). The values of 𝑏𝑜𝑖 in latter set are
computed using 𝜆𝑜𝑖 in the same equation. For the sites with area 100
9

ha for which the values of projected and observed 𝜆 corresponding to s
Table A.3
Average value of the observed plant density and projected herb density in year 1998
corresponding to areas 1, 10, 100 ha.

Area Average Observed density Average Projected density
(ha) 𝑏 in 1998 (unit of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠∕ℎ𝑎.) 𝑏 in 1998 (units of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠∕ℎ𝑎.)

1 194 206
10 342 381
100 388 413

Table A.4
Average values of the plant’s mortality rate 𝜇 in each site with units 1/year. 𝜇𝐹 is the
average of the mortality rate in patches of area 100 ℎ𝑎..

Area Average mortality Area Average mortality 𝜇𝐹
(ha) 𝜇𝑖 (1/year) (ha) 𝜇𝑖 (1/year) (1/year)

1 0.0287 100 0.0595
1 0.017 100 0.0111
1 0.0343 100 0.0813
1 0.545 100 0.0427 0.0336
1 0.0886 100 0.0289
1 0.0932 100 0.0482
1 0.0437 100 0.0001
1 0.0606 100 0.0248
10 0.0186 100 0.006
10 0.0154
10 0.0121
10 0.1052
10 0.0296
10 0.0301

the transition year 1998 − 1999 are not available in Bruna (2003), we
assumed that the population density in year 1998 is the same as in year
1999. The sets (𝑏𝑝𝑖, 𝑡𝑖) and (𝑏𝑜𝑖, 𝑡𝑖) are given in Table A.2. In Table A.3
we present the average values of Heliconia density in sites with area 100
a (continuous forest) and corresponding to year 1998.

A.1.3. Mortality rates
The mortality rate for each fragment was computed using the sur-

vival probability calculated from the transition matrices describing the
dynamics of Heliconia acuminata provided in Appendix B (Bruna and

ress, 2002). The values presented in Table A.4 are the average of the
ortality in years 1999 and 2000.

The value of the natural death rate 𝜇𝐹 in the continuous forest was
omputed by averaging over all values of the plant’s mortality in all
ites of area 100 ℎ𝑎.
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