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Public involvement in Ebola Virus Disease (EVD) prevention efforts is key to reducing
disease outbreaks. Targeted education through practical health information to particular
groups and sub-populations is crucial to controlling the disease. In this paper, we study the
dynamics of Ebola virus disease in the presence of public health education with the aim of
assessing the role of behavior change induced by health education to the dynamics of an
outbreak. The power of behavior change is evident in two outbreaks of EVD that took place
in Sudan only 3 years apart. The first occurrence was the first documented outbreak of EVD
and produced a significant number of infections. The second outbreak produced far fewer
cases, presumably because the population in the region learned from the first outbreak.
We derive a system of ordinary differential equations to model these two contrasting
behaviors. Since the population in Sudan learned from the first outbreak of EVD and
changed their behavior prior to the second outbreak, we use data from these two instances
of EVD to estimate parameters relevant to two contrasting behaviors. We then simulate a
future outbreak of EVD in Sudan using our model that contains two susceptible pop-
ulations, one being more informed about EVD. Our finding show how a more educated
population results in fewer cases of EVD and highlights the importance of ongoing public
health education.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Ebola Virus Disease (EVD) has posed a serious health threat to African countries since the mid 1970s. The disease was
first detected in Sudan in 1976, but 21 additional outbreaks have since occurred in Central andWestern Africa resulting in over
28,000 total cases (Ebola Virus Disease, 2015; Moghadam, Omidi, Bayrami, Moghadam, & SeyedAlinaghi, 2015). While past
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outbreaks each produced less than500 cases, the recent 2013occurrence of EVD inWest Africa produced over 28,000 cases, the
most cases of EVD to date (Ebola Virus Disease, 2015). The stark difference in the number of cases between various outbreaks
makes predicting the severity of future outbreaks difficult. Specific transmission dynamics and resulting case counts are
dependent on a number of factors including the specific strain of EVD, the population size of a given region, and specific human
behavior that can either reduce, or contribute to, the spread of the disease (Dietz, Jambai, Paweska, Yoti, & Ksaizek, 2015).

The reservoir for Ebola is believed to be animals such as bats and monkeys (Olival & Hayman, 2014; World Health
Organization,); outbreaks of Ebola begin after an animal from the reservoir infects a human. The disease has an incubation
period of 2e21 days (World Health Organization Ebola Response, 2014; World Health Organization,). Once the virus is in the
human population, individuals can contract the disease after coming in contact with the bodily fluids of an infected indi-
vidual, which can include contact with someone who has died from EVD. This transmission route is exacerbated by the virus
as additional bodily fluids are produced by the disease resulting in vomiting, deification, and bleeding. Since there is not yet a
vaccine available, patients are treated with oral or intravenous fluids in addition to treating specific symptoms (World Health
Organization,).

Cultural practices in West Africa play a large role in the transmission of Ebola (Dietz et al., 2015). When a family member
becomes ill, it is common practice to forgo seeking medical treatment and instead see a traditional herbalist or be cared for at
home. This is especially true in the case of Ebola as early symptoms are similar to those of influenza. Being cared for by family
members often results in numerous relatives contracting the disease (Fitzpatrick et al., 2014). Another highly affected area
outside the home is in health care settings. In fact, if protocols are not followed, hospital settings can produce a significant
number of cases during Ebola outbreaks (Cook et al., 2015; Olu et al., 2015). It is common practice for deceased individuals to
bewashed, embraced, kissed, and prepared for burial by family members (Brainard, Hooper, Pond, Edmunds,&Hunter, 2015).
This is problematic as deceased individuals still carry, and are capable of spreading, the virus. Even highly educated in-
dividuals who are aware of an ongoing Ebola outbreak may participate in such cultural practices. As a result, burial practices
also play a major role in spreading the disease (Cook et al., 2015).

From past outbreaks it is clearly evident that taking precautions against spreading Ebola can quickly reduce or eliminate an
outbreak (Brainard et al., 2015). For example, early projections during the 2014 outbreak of EVD inWest Africa estimated that,
without any intervention, as many as 1.4 million cases could be produced over the course of the epidemic (Meltzer et al.,
2014). However, the World Health Organization declared the outbreak to be an “international health emergency” (IHR
Emergency,). As a result, a significant international intervention was launched that coordinated aid from numerous en-
tities and included massive information campaigns to educate the general public about preventing the spread of EVD. The aid
included health care resources for the affected countries, and the information campaigns altered individual behavior, which
quickly contained the outbreak and limited the total number of infections immensely (Chowell, Simonsen, Viboud, & Kuang,
2014). Additionally, considering the cases of Ebola that occurred in the United States and Europe during the 2014 outbreak in
West Africa, careful precautions were taken by the European and American population and governments, which prevented
secondary outbreaks from occurring.

The effects of public health education on the evolution of a disease have been studied in the cases of HIV (Bhunu,
Mushayabasa, Kojouharov, & Tchuenche, 2010; Del Valle, Hethcote, Hyman, & Castillo-Chavez, 2005; Mukandavire & Gar-
ira, 2007; Mukandavire, Garira, & Tchuenche, 2009), drinking dynamics (Xiang, Song, & Huo, 2016), Hepatitis C virus
transmission dynamics (Mushayabasa & Bhunu, 2012), and Ebola (Fast, Mekaru, Brownstein, Postlethwaite, & Markuzon,
2015; Shen, Xiao, & Rong, 2015). Mathematical models have been used to evaluate the potential role of interventions
against the Ebola virus disease. Interventions aimed at reducing the burden of the 2014 Ebola virus disease epidemic were
incorporated into mathematical models, see for instance (Agusto, Teboh-Ewungkem, & Gumel, 2015; Djiomba Njankou &
Nyabadza, 2016; Drake et al., 2015; Kucharski et al., 2015; Pandey et al., 2014; Rachah & Torres, 2015; Tambo, Ugwu, &
Ngogang, 2014; Browne et al., 2014).

Studies have shown that the prevalence of any epidemic is strongly dependent on the social behavior of individuals in a
population (Del Valle et al., 2005; Xiang et al., 2016). This is evident in two early Ebola outbreaks in Sudanwhere the relative
magnitude of each outbreak was a reflection of preparedness of health care providers and knowledge of the general public
about the disease (Baron, McCormick, & Zubeir, 1983; Report of a WHO/International Study Team, 1978). Our goal was to
assess how behavior change induced by education can alter the dynamics of an outbreak of EVD. We approach this question
by formulating a deterministic model in which a community has two types of individuals: one that is educated about Ebola
and takes precautions to avoid contracting the disease, and a second that does not take precautions against contracting or
spreading the disease. Our results illustrate the importance of education as a preventative measure against contracting Ebola.

We partition the susceptible population into two groups: individuals who have not yet been influenced by public health
education and those who have been educated. Unlike previous models which simply reduce various rates as a result of public
health education (Fast et al., 2015; Shen et al., 2015), we estimate different parameters for each group. This approach is similar
to specific preceding models in (Joshi, Lenhart, Albright, & Gipson, 2008, Joshi, Lenhart, Hota, & Agusto, 2015). We use data
from the aforementioned Ebola outbreaks in Sudan to parameterize our model and also include the effect of information on
increasing the rate of infected individuals seeking professional health care (Baron et al., 1983; Report of a WHO/International
Study Team, 1978).

In the next section we formulate a model for the case with an educated class and an uneducated class. In section three,
parameters are estimated separately for each class using a reduced version of our model. The parameters governing the un-
educated class are obtained using data from the Sudan 1976 outbreak and the parameters for the educated class are estimated
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using data from the Sudan 1979 outbreak. The fourth section contains numerical results for a future outbreak of EVD in Sudan,
and includes varying key parameters such as the education rate. Our findings illustrates how public health education and
resulting behavior change can greatly impact an outbreak of Ebola. We close with some conclusions and final thoughts.

2. Model formulation

We formulate a model with the susceptible class partitioned into two groups. We use the subscript “edu” to denote the
class that is takes appropriate precautions during an EVD outbreak due to public health education. There are two a susceptible
classes (Sedu and S), which contain the number of individuals in each group. Correspondingly, there are two classes (Iedu and I)
that contain the number of infected individuals that exist in the community. Both Iedu and I can transition into a second
infected class we consider to be the number of people in a health care setting (H), where individuals are being cared for by
trained professionals. Note that we consider the health care professionals themselves to be in Sedu. Since infections arise in the
community as well as in health care locations, transmission will occur in both settings. The model also includes a recovered
class (R) and class of dead bodies (D), both of which also have units of numbers of individuals. Finally, there is an environment
class (B), which represents the density of Ebola virus in the environment. Recovered individuals no longer experience acute
symptoms of Ebola and are immune to reinfection as wewill be only be considering a short time frame. The class of the dead
is needed because it is common practice inWest Africa for family members to come in contact with deceased relatives, which
makes this transmission route for Ebola particularly unique and interesting. The environment class represents all possible
contamination in the general community including the existence of bodily fluids, dirty linens, and any potential animal which
may be a source of infection. Table 1 presents a complete list and description of all parameters in the model. A flow diagram
characterizing the full model is depicted in Fig. 1. In the diagram, solid lines represent flow between compartments, the
dashed lines represent the infected classes contaminating the environment, and the curved dashed lines represent new
infections coming from interaction of susceptibles with the environment.

The full model takes the following form:

S0 ¼ p� mS� qS� ðb0aBþ b1aI þ b3aIedu þ b4aDþ b2aHÞS
S0edu ¼ qS� mSedu � ðb0bBþ b1bI þ b3bIedu þ b4bDþ b2bHÞSedu
I0 ¼ �

b0aBþ b1aI þ b3aI
0
edu þ b4aDþ b2aH

�
S� gða1a;a2a;HtotalÞI � f1I � d1I

I0edu ¼ ðb0bBþ b1bI þ b3bIedu þ b4bDþ b2bHÞSedu � gða1b;a2b;HtotalÞIedu � f2Iedu � d2Iedu
H0 ¼ gða1b;a2b;HtotalÞIedu þ gða1a;a2a;HtotalÞI � d3H � f3H
R0 ¼ f1I þ f2Iedu þ f3H � mR
D0 ¼ d1I þ d2Iedu þ d3H � uD
B0 ¼ xðI þ Iedu þ H þ DÞ � dB

(1)
where
Table 1
Parameters found in the model.

Parameter Description

b0a Transmission rate from uneducated interaction with the environment
b1a Transmission rate from uneducated interaction with uneducated infected
b2a Transmission rate from uneducated in hospitals
b3a Transmission rate from uneducated interaction with educated infected
b4a Transmission rate from uneducated interaction with dead bodies
b0b Transmission rate from educated interaction with the environment
b1b Transmission rate from educated interaction with uneducated infected
b2b Transmission rate from educated in hospitals
b3b Transmission rate from educated interaction with educated infected
b4b Transmission rate from educated interaction with dead bodies
a1a Sigmoidal constant that governs uneducated infected movement into hospital
a2a Sigmoidal constant that governs uneducated infected movement into hospital
a1b Sigmoidal constant that governs educated infected movement into hospitals
a2b Sigmoidal constant that governs educated infected movement into hospitals
f1 Recovery rate for infected uneducated individuals in the community
f2 Recovery rate for infected educated individuals in the community
f3 Recovery rate for infected individuals in hospitals
d1 Death rate for uneducated infected individuals in the community
d2 Death rate for educated infected individuals in the community
d3 Death rate for infected individuals in hospitals
u Burial rate of dead bodies
x Environmental contamination rate
d rate of decay of ebola in the environment
p Growth of uneducated susceptible
m Natural death rate
q Rate of education
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Fig. 1. A flow diagram for the full Ebola model. Solid lines represent flow between compartments, the dashed lines represent the infected classes contaminating
the environment, and the curved dashed lines represent new infections coming from interaction of susceptibles with the environment.
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gða1i;a2i;HÞ ¼
1� e

�H
a1i

1þ a2ie
�H
a1i

:

Recall that it is common in West African countries for sick individuals to forgo seeing a doctor and instead be cared for at
home, especially in the case of a minor illness. Since EVD initially has flu-like symptoms, the number of individuals seeking
care at the beginning of an outbreak is especially low. However, as more cases of an outbreak are detected, the awareness of
the disease increases in the community through the media, government, and even word of mouth. Increased awareness
results in people seeking help sooner and thus an increased rate of transfer to health care settings. We capture this char-
acteristic with the sigmoidal shaped function g, which ranges from 0 (no one going to the hospital) to 1 (the maximum rate of
seekingmedical attention). The parameter a2 sets the point at which the function begins its sharp increase and a1 determines
the steepness of the increase. Since g is a function of H, as more hospitalizations occur, general awareness of the epidemic
increases and the rate of individuals seeking treatment in a hospital will increase. There are two different sets of a values for
the educated and uneducated populations because educated individuals will be more likely to understand the significance of
an outbreak and the ramifications of failing to seek treatment compared with the uneducated population. We have also
included different death rates (d1, d2, d3) and recovery rates (f1, f2, f3) to distinguish between rates for those who take
precautions versus those who do not, as well as individuals in the community versus those in the hospital. We also include a
rate of burial u and environmental contamination rate x so we can properly model these transmission routes.

The transmission coefficients (bi;j) are different for educated individuals than those for uneducated to reflect the fact that
individuals who are educated about the disease will take more precautions as opposed to those who are not. We expect that
the differences in behavior exhibited by educated individuals will reduce their interaction with infectious individuals, dead
bodies, and environmental contamination resulting in reduced transmission when compared with those who do not take
precautions. We also allow for the flow from the uneducated susceptible class to the educated susceptible class via the
parameter q to represent change in behavior which could result from increased awareness of the epidemic via media
coverage, word of mouth, and/or dissemination of information by health care agencies.

3. Parameter estimation

In order to estimate the transmission coefficients, we use data from Sudan where an outbreak occurred in the same
location at two separate instances. The initial outbreak occurred in 1976, and was the first recorded outbreak of Ebola (Ebola
Virus Disease, 2015; Report of a WHO/International Study Team, 1978); the second outbreak occurred in 1979 in the same
general location (Baron et al., 1983; Ebola Virus Disease, 2015). We take the initial 1976 outbreak to be a population entirely
uneducated about the disease as it was the initial documented occurrence of Ebola in the world. As a result of media coverage
and public health education, we assume that during the 3 years following the initial outbreak the remaining population
became aware of EVD and how to avoid it. As a result, we take the second outbreak to be a population of individuals who
behavior differently as a result of various forms of public health education. Our assumptions are supported by the fact that,
under nearly identical transmission conditions, there were significantly more cases in the first outbreak compared to the
second (see Tables 2 and 3). Additionally, there were many more infections that took place in hospitals in the 1976 outbreak.



Table 2
Data from the 1976 outbreak of Ebola in Sudan.

July August September October November

Cumulative Cases 8 38 176 260 280
Cumulative Recovered 4 17 90 121 133
Cumulative Deaths 4 21 86 139 147

New Cases 8 30 138 84 20
New Recovered 4 13 73 31 12
New Deaths 4 17 65 53 8

% infections that occurred in the community % infections that occurred in the hospital

38.5% 61.5%

Table 3
Data from the 1979 outbreak of Ebola in Sudan.

End July & August September October

Cumulative Cases 16 33 34
Cumulative Recovered 2 11 12
Cumulative Deaths 13 20 22

New Cases 16 17 1
New Recovered 2 9 1
New Deaths 13 7 2

% infections that occurred in the community % infections that occurred in the hospital

85% 15%
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To estimate parameters for these contrasting behaviors, we reduce our model to a single population and use a least squared
optimization approach to find the set of parameters that best match the data.

In each reduced model we only consider a single population-one either educated about the EVD or uneducated about the
disease. Since we are simulating an epidemic scenario that takes place during a short time frame, we take the natural death
rate (m) and birth rate (p) to be zero. This yields the following system that describes the 1976 outbreak:

S0 ¼ �ðb0aBþ b1aI þ b4aDÞS� b2aSH
I0 ¼ ðb0aBþ b1aI þ b4aDÞSþ b2aSH � gða1a;a2a;HÞI � f1I � d1I
H0 ¼ gða1a;a2a;HÞI � d2H � f2H
R0 ¼ f1I þ f2H
D0 ¼ d1I þ d2H � uD
B0 ¼ xðI þ H þ DÞ � dB:
In the first scenario, we consider is the Sudan 1976 outbreak that took place in the towns of Nzara andMaridi, which had a
combined population totaling 35,000 (Report of a WHO/International Study Team, 1978). The outbreak began when workers
of a cotton factory in Nzara became ill on June 27, 1976 and lasted until the end of November. The disease spread to Maridi in
early August when a patient infected in Nzara was admitted to a hospital in Maridi. The majority of total cases took place in
Maridi with the hospital cited as an amplification factor (Report of a WHO/International Study Team, 1978). The first inter-
national response took place on October 29, 1976 when the World Health Organization sent an emergency response team to
investigate and assist with the new disease (Report of a WHO/International Study Team, 1978). By this time the outbreak was
nearly over as the number of new cases had been declining for over a month (Report of a WHO/International Study Team,
1978).

The 1976 outbreak provides an example in which EVD was introduced to a system where the entire population is un-
educated about Ebola and therefore does not take appropriate precautions against spreading the disease. This includes not
following accepted health care protocol, which is reflected in the large number of new infections that took place in health care
settings. Thereforewewill use data from the 1976 outbreak to estimate parameters related to a population that is uneducated
about EVD and a health care setting entirely unprepared to handle an outbreak. TheWorld Health Organization's report from
this outbreak includes the data seen in Table 2 (Report of a WHO/International Study Team, 1978).

In the second scenario, we consider the 1979 Sudan outbreak (Baron et al., 1983). This occurrence of EVD took place in the
towns of Nzara and Yambio, which is nearly the identical location as the 1976 outbreak. The report from this outbreak in-
cludes the data show in Table 3 (Baron et al., 1983). The outbreak began on July 31 1979 in Nzara and later spread through
family members to the nearby town of Yambio (Baron et al., 1983). The disease was active from the last few days of July
through to the first week of October. Since the 1979 outbreak took place in the same location as the previous outbreak and
only three years later, the population is composed of mostly the same individuals as the 1976 outbreak. We therefore assume



B. Levy et al. / Infectious Disease Modelling 2 (2017) 323e340328
the population was more educated about the disease, that individuals took precautions against contracting the disease, and
that sick individuals sought medical attention at a higher rate. However, despite having recently dealt with EVD, the health
care facilities were not prepared to deal with another outbreak. The hospital was understaffed, did not have a quarantine
policy, and the staff was not trained on proper disinfecting and sterilization techniques (Baron et al., 1983). As a result, 15% of
new infections took place in a health care setting. Only after the World Health Organization intervened on September 22 was
proper protocol put in place, which helped extinguish the outbreak (Baron et al., 1983). Since the second outbreak took place
only 3 years later, we will take the population size to be the same.

To estimate parameters using the reduced model, we find the set of values that best matched the data by creating a
minimization scheme that relatesmodel output to data from the outbreak.We use theMultiStart algorithm and fmincon from
the optimization toolbox in MATLAB to implement all optimization schemes. The fmincon algorithm accepts as input the
unknown parameters with a scalar value to beminimized (JðxÞ), while also imposing inequality constraints. Since fmincon is a
local solver, the MultiStart algorithm generates a large number of starting points to test, which ensures we were finding the
global minimum. For all parameter estimation simulations, we use a population size of 35,000 and begin with one infected
individual in the community, and one in the health care setting. We assume an initial value of zero for the recovered, dead
body, and environment classes, as these compartments do not become populated until the disease is present in the
population.

To help understand appropriate bounds to impose on the parameters, we first simplyminimize the difference between the
number of new cases in the data and the number of new cases produced by the model:

Minimize
x

JðxÞ ¼ kNC � NC�k2;

whereNC represents the 1� 5 vector of new cases produced eachmonth in themodel,NC� represents the 1� 5 vector of new
cases from each month in the data, and x represents all possible values of the unknown parameters.

After determining appropriate bounds to impose on the parameters in order to limit the search area, we run the scheme
again but this time matching the number of new cases as well as the percent of infections that came from the community and
health care settings, respectively:

Minimize
x

JðxÞ ¼ kNC � NC�k2 þ k100�ðPC � PC�Þk2 þ k100�ðPH � PH�Þk2;

where PC represents the percentage of new cases arising in the community and PH represents the percent of newcases arising
in health care settings. We multiply by 100 in order to weight the values appropriately.

This allows us to refine the parameter bounds further. We then fit new cases, new deaths, new recoveries and the percent
of infections that came from the community and hospital:

Minimize
x

JðxÞ ¼ kNC � NC�k2 þ k100�ðPC � PC�Þk2 þ k100�ðPH � PH�Þk2 þ k100�ðNR� NR�Þk2
þ k100�ðND� ND�Þk2;

where NR represents the 1� 5 vector of newmonthly recoveries and ND represents the 1� 5 vector of new monthly deaths.
First, the step-wise procedure described above was used with the data from the 1976 Sudan outbreak to estimate the

parameters associated with individuals who do not take precautions against contracting and spreading EVD. Estimated
parameter values are shown in Table 4.

By taking a step-wise approach to fitting the parameters, wewere able to fit the data from the 1976 outbreak as depicted in
Fig. 2. Since individuals who are not aware of the risks associated with Ebola are more likely to be treated at home, the
number of infections in the community initially increases more rapidly than those in hospitals. Once enough individuals have
Table 4
Parameter estimation results obtained by fitting 1976 Sudan data to the reduced model.

Parameter Description Value

b0a Transmission rate from uneducated interaction with the environment 9:90� 10�08

b1a Transmission rate from uneducated interaction with uneducated infected 4:40� 10�06

b2a Transmission rate from uneducated in hospitals 0.012
b4a Transmission rate from uneducated interaction with dead bodies 1:84� 10�07

a1a Sigmoidal constant that governs uneducated infected movement into hospitals 18.8
a2a Sigmoidal constant that governs uneducated infected movement into hospitals 15
f1 Recovery rate for infected uneducated individuals in the community 0.04
f3 Recovery rate for infected uneducated individuals in hospitals 0.011
d1 Death rate for uneducated infected individuals in the community 0.077
d3 Death rate for uneducated infected individuals in hospitals 0.07
u Burial rate of dead bodies 0.07
x Environmental contamination rate 0.43
d rate of decay of Ebola in the environment 0.87



Fig. 2. Results from fitting the reduced model to the 1976 Sudan data.
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been admitted to hospitals an outbreak is declared and information is disseminated to the public, which increases general
awareness of the disease resulting in more individuals seeking medical attention. The two distinct peaks in the graph
depicting infected individuals capture this effect. The number of infections in the community increases more rapidly than the
number of infections in hospitals until a threshold of awareness is reached at which point individuals begin going to the
hospitals at a higher rate, which ultimately extinguishes the outbreak.



Table 5
Parameter estimation results obtained by fitting 1979 Sudan data to the reduced model.

Parameter Description Value

b0b Transmission rate from educated interaction with the environment 1:96� 10�18

b2b Transmission rate from educated in hospitals 2:07� 10�06

b3b Transmission rate from educated interaction with educated infected 2:23� 10�06

b4b Transmission rate from educated interaction with dead bodies 3:77� 10�13

a1b Sigmoidal constant that governs educated infected movement into hospitals 4
a2b Sigmoidal constant that governs educated infected movement into hospitals 3
f2 Recovery rate for infected educated individuals in the community 0.02
f3 Recovery rate for infected educated individuals in hospitals 0.02
d2 Death rate for educated infected individuals in the community 0.02
d3 Death rate for infected educated individuals in hospitals 0.02
u Burial rate of dead bodies 0.09
x Environmental contamination rate 0.2
d rate of decay of Ebola in the environment 0.8
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Now we turn our attention to the model for 1979 Sudan outbreak:

S0edu ¼ �ðb0bBþ b1bIedu þ b4bDÞSedu � b2bSeduH
I0edu ¼ ðb0bBþ b1bIedu þ b4bDÞSedu þ b2bSeduH � gða1b;a2b;HÞIedu � f1Iedu � d1Iedu
H0 ¼ gða1b;a2b;HÞIedu � d2H � f2H
R0 ¼ f1Iedu þ f2H
D0 ¼ d1Iedu þ d2H � uD
B0 ¼ xðI þ H þ DÞ � dB
We again use the same optimization tools and approach to estimate parameters related to those who take precautions
against contracting and spreading EVD. By taking the previously described step-wise approach to fitting the parameters we
were able to fit the data from the 1979 Sudan outbreak. Results from this procedure are shown in Table 5 andmodel output is
depicted in Fig. 3. Since there was a much shorter outbreak with far fewer cases the data is more coarsely fit, but wewere still
able to capture the dynamics seen in the data. Notice that since this population seeks medical treatment at a higher rate, very
few infections are present in the community at a given time. Instead, individuals seek professional medical attention almost
immediately.

Table 6 presents the list of parameters which could not be estimated from the two single-population data sets, including
transmission rates that govern the interaction between those educated about EVD and thosewho are not.We assume that the
interaction between susceptible uneducated and infected educated would be the same as susceptible uneducated and
infected uneducated. Similarly, we assume the interaction between susceptible educated and infected uneducated would be
the same as susceptible educated and infected educated. We therefore assume that b3;a ¼ b1;a and b1;b ¼ b3;b will best
represent the behavior beingmodeled in each class. The rate of education, q, is an unknownparameter that controls flow from
the S class into the Sedu class. By varying this rate, we can analyze the importance of interventions such as public health
education as well as general public education about EVD in preventing or reducing an outbreak.

4. Numerical simulations

By considering two distinct populations, each with their own behavior that impacts transmission dynamics, we are in
position to simulate a potential future outbreak of an EVD in Sudan. The parameters estimated from the Sudan 1976 data
captures transmission dynamics in a population uneducated about EVD and therefore takes few precautions against con-
tracting the disease in a community setting as well as inadequate protocol in health care settings. The coefficients derived
from the Sudan 1979 data capture dynamics in a setting where the general population is aware of Ebola and individuals take
preventative measures against transmission, which represents our educated population. However, since health care workers
were still not properly trained to handle EVD, transmission rates in this setting remained relatively high. By combining
estimated parameters in the full model while varying others, we can analyze the relevance of individual behavior, cultural
practices, and proper health care protocol in reducing or preventing an outbreak of EVD.

In the following scenarios we model an outbreak of EVD in present day towns of Nzara, Maridi, and Yambio using the full
moden shown in (1). The most recent population estimates for these towns are 73,800 (Nzara), 18,000 (Maridi), and 40,382
(Yambio) for a total of 132,182 (Maridi, 2011; Nzara, 2014; Yambio, 2011). See Table 7 for a description of all parameters used in
the following simulations. In all simulations we beginwith one uneducated infected in the community, one educated infected
in the community, and one infected in the hospital. All remaining individuals will begin in one of the susceptible classes. We
assume an initial value of zero for the recovered, dead body, and environment classes. We use most of the estimated
transmission rates (b1a; b3a; b4a; b1b; b3b; b4b) and all sigmoidal constants (a1a;a2a;a1b;a2b) shown in Tables 4e6 in our
simulations. The transmission rate in the health care setting (b2a; b2b) will depend on how prepared the facilities are for an
outbreak of EVD. Since EVD has been established in Africa for 40 years, we can assume the transmission rate in the health care



Fig. 3. Results from fitting the reduced model to the 1979 Sudan data.
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setting will be no worse than that of the 1979 Sudan outbreak. For the environmental contamination rate (x) and decay rate
(d), we took the average of the two estimated rates found in Tables 4 and 5 For the burial rate of dead bodies (u), we used the
estimate from the 1979 outbreak, which is a more rapid burial rate compared to the 1976 outbreak. Since we are simulating
over a short time frame, we take the growth rate (p) and death rate (m) to be 0.



Table 6
Parameters that could not be estimated from the data.

Parameter Description Value

b3a Transmission rate from uneducated interaction with educated infected b3;a ¼ b1;a
b1b Transmission rate from educated interaction with uneducated infected b1;b ¼ b3;b
q Rate of education

Table 7
A list of all parameters used in simulations including the data used for estimation, if applicable.

Parameter Description Source Value Used

b0a Transmission rate from uneducated interaction with the environment Sudan 1976 9:90� 10�08

b1a Transmission rate from uneducated interaction with uneducated infected Sudan 1976 4:40� 10�06

b2a Transmission rate from uneducated in hospitals � b2b � 2:07� 10�06

b3a Transmission rate from uneducated interaction with educated infected ¼ b1a 4:40� 10�06

b4a Transmission rate from uneducated interaction with dead bodies Sudan 1976 1:84� 10�07

b0b Transmission rate from educated interaction with the environment Sudan 1979 1:96� 10�18

b1b Transmission rate from educated interaction with uneducated infected ¼ b3b 2:23� 10�06

b2b Transmission rate from educated in hospitals Sudan 1979 � 2:07� 10�06

b3b Transmission rate from educated interaction with educated infected Sudan 1979 2:23� 10�06

b4b Transmission rate from educated interaction with dead bodies Sudan 1979 3:77� 10�13

a1a Sigmoidal constant that governs uneducated infected movement into hospitals Sudan 1976 18.8
a2a Sigmoidal constant that governs uneducated infected movement into hospitals Sudan 1976 15
a1b Sigmoidal constant that governs educated infected movement into hospitals Sudan 1979 4
a2b Sigmoidal constant that governs educated infected movement into hospitals Sudan 1979 3
f3 Recovery rate for infected individuals in hospitals Historic Average

(Magill et al., 2013, p. 332)
0:12� 0:20

f1 Recovery rate for infected uneducated individuals in the community Based on f3 ¼ :5f3
f2 Recovery rate for infected educated individuals in the community Based on f3 ¼ :5f3
d3 Death rate for infected individuals in hospitals Historic Average

(Singh & Ruzek, 2013)
0:09� 0:14

d1 Death rate for uneducated infected individuals in the community Based on d3 ¼ 2d3
d2 Death rate for educated infected individuals in the community Based on d3 ¼ 2d3
u Burial rate of dead bodies Sudan 1979 0.09
x Environmental contamination rate Sudan 1976 & 1979 :5ð:43þ :2Þ
d rate of decay of EVD in the environment Sudan 1976 & 1979 :5ð:87þ :8Þ
q Rate of education Will Vary 0� 0:2
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We begin by comparing how different ratios of educated and uneducated individuals results in varying levels of infections.
Specifically, how they impact the length of the outbreak and the number of infected individuals. To consider this, we compare
the percent of the total population infected in the two simulations of the historic outbreaks in Sudanwith the total percent of
population infected in a simulation of an outbreak in present day Sudan with a mixed population. In the simulations of past
outbreaks in Sudan we assume the population is either entirely educated or uneducated. In the simulation of present day
Sudanwe take 50% of the population to be educated, 50% of the population to be uneducated, and use the recovery and death
rates in hospitals of f3 ¼ 0:16 and d3 ¼ 0:09 as these values ensure all death and recovery rates fall within the historic av-
erages (Magill, Hill, Solomon, & Ryan, 2013, p. 332; Singh & Ruzek, 2013). Results from these simulations are show in Fig. 4.
The completely uneducated population has the highest percent of the population infected due to the high number of infected
individuals that forgo seeking medical attention and instead remain in the community. On the other hand, the entirely
educated population transitions in the hospital at a much quicker rate, which extinguishes the outbreak. The simulation of
present day Sudan falls in between the two other simulations as we take only 50% of the population to be educated. This
simulation has the steepest initial increase in infected individuals due to the significantly larger population size. However,
individuals will move to the hospital at a quicker rate than the entirely uneducated population, which extinguishes the
outbreak.

Different strains of EVDwill result in varying recovery rates and death rates. The historic average time to death for EVD has
ranged from 6 to 16 days (Singh& Ruzek, 2013) while the historic average recovery time has ranged from 7 to 14 days (Magill
et al., 2013, p. 332). Since the specific strain of EVD in a future outbreak would play a significant role in the specific recovery
and death rate, wewill consider a range of both values in our full model simulations that span the values of the historic rates.
Additionally, since proper care can improve the likelyhood of survival, we assume that the death rate in the community is
twice death rate in a health care settings (d1 ¼ d2 ¼ 2d3) and that the recovery rate in the community is half the recovery rate
in a health care setting (f1 ¼ f2 ¼ :5f3). Other unknown inputs in the full model include the rate of education (q) and the
transmission rate in health care settings (b2b) as well as the proportion of initial susceptible population that are educated and
uneducated about preventing the spread of EVD. These inputs are particularly important for illustrating the need to train
health care workers about proper EVD protocol and educate the general public about EVD before, and during, outbreaks. The
Sudan 1976 outbreak saw 0:008% of the total population becoming infected (Report of a WHO/International Study Team,



Fig. 4. Various levels of education lead to different percent of total population infected.
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1978) and the 2014 EVD outbreak in West Africa saw 0:001% of the total population becoming infected (World Health
Organization Ebola Response, 2014). For comparison in the current simulations, 0:008% of the total population of 132,182
would be 1058 cases and 0:001% of the total population would be 185 cases.

Using a ratio of uneducated:educated susceptibles of 1:3, a q value of 0, and the health care transmission coefficient
estimated from the Sudan 1979 data, we simulate an outbreak of EVD using a time span of 365 days. In this scenario, an
unprecedented outbreak takes place for most values of f3 and d3 as seen in the top two plots in Fig. 5, where most total case
counts werewell over 1000. This simulation represents a scenariowith a relatively high percent of educated individuals in the
community but no public health education takes place (q ¼ 0). By using the health care transmission coefficient from the 1979
outbreak, this simulation also represents a case where health care workers are not properly trained on appropriate EVD
protocol. This results in high incidence rates for low death and recovery rates because individuals begin to fill up the health
care facilities as the outbreak goes on, which is volatile in this setting. Even if the entire initial population is educated, a high
transmission rate in health care settings still results in a massive outbreak takes place for most recovery and death rate values
(f3 and d3), as seen in the top two plots in Fig. 5. However, if b2a and b2b values are reduced by 0.5, the total number of cases is
reduced to reasonable levels, as seen in the bottom plot in Fig. 5. These simulations illustrate the fact that reducing trans-
mission in a health care setting and/or educating individuals about EVD prior to an outbreak can significant reduce the total
cases during an epidemic.

To help inform interventions used to mitigate a future outbreak, we aim to capture the dynamics of public health edu-
cation and resulting behavior change in our model. We capture these dynamics using the q parameter, which controls flow
from the uneducated susceptible compartment into the educated susceptible compartment. Increasing values of q will
represent a higher rate of behavior change. We can also analyze the importance of timing of public health education by
adjusting the time at which q becomes nonzero. Note that the delay between implementation of a public health campaign and
large-scale behavior change will depend upon many factors including the specific methods being used to disseminate in-
formation. In the present paper we only wish to model how behavior change itself can impact an outbreak. We therefore
consider the activation of q to represent the time at which large-scale behavior change begins to take place rather thanwhen
the public health education began. Since we are considering a hypothetical future outbreak of EVD in Sudan, we assume that
the hospital setting will have a 75% reduced transmission rate estimated from the 1979 outbreak and we run our model for
one year. We use an initial ratio of uneducated:educated susceptibles of 3:1, which will change over time depending on the
value of q used.

Fig. 6 displays results when no intervention takes place, which means that q ¼ 0 in all simulations. In this case, the
outbreak peaks between 40 and 50 days, with new cases appearing as long as 5 months after the initial case. There were
350e650 total cases of EVD, or 0.0026e0.0049% of the total population becoming infected. Fig. 7 displays results when an
intervention begins 60 days after the start of the outbreak. There were 347e628 total cases of EVD, or 0.0026e0.0048% of the



Fig. 5. Results of a potential outbreak in Sudan for various recovery and death rates with a rate of education q of 0 in all simulations. The color bar gives the total
number of infections. The top left plot has a ratio of uneducated:educated susceptibles of 1:3 and the transmission rate in health care settings is high. The top
right plot has 100% of the population educated and the transmission rate in health care settings is high. The bottom plot has a ratio of uneducated:educated
susceptibles of 1:3 and the transmission rate in health care settings is reduced by 0.5.
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total population becoming infected. In this scenario, since the outbreak had already peaked, there was only a slight reduction
in total cases of EVD. Fig. 8 displays results when an intervention begins 30 days after the start of the outbreak. Since the
information campaigns were introduced before the total number of infections peaked we see a more significant reduction in
total cases ranging from 295 to 538 total cases of EVD, or 0.0022e0.0041% of the total population becoming infected. Fig. 9
Fig. 6. Results of a simulated outbreak in Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures reflect the
absence of public health education as q ¼ 0 in all cases.



Fig. 8. Results of a simulated outbreak in present day Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures
reflect public health education starting 30 days afters the initial case, which is immediately prior to the peak of the outbreak.

Fig. 7. Results of a simulated outbreak in present day Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures reflect
public health education starting 60 days afters the initial case, which is past the peak of the outbreak.
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displays results when an intervention begins 14 days after the start of the outbreak, which is well before outbreak peaks. As a
result, there were 107e420 total cases of EVD, or 0.0008e0.0032% of the total population becoming infected. Fig. 10 displays
results when the q value is nonzero from the start of the outbreak. This simulation represents the best possible scenariowhere
public health education begins immediately after the first case of EVD is detected. In this case therewere 16e143 total cases of
EVD, or 0.0001e0.0011% of the total population becoming infected. These results clearly illustrate not only the importance of
public health education that lead to behavior change, but also the timing of such campaigns. The earlier behavior change
begins to take place as a result of public health education, the more lives that can be saved. To illustrate this, we consider the
case where the population is educated about EVD prior to an outbreak, so that the initial ratio of uneducated:educated
susceptibles is inverted to 1:3 and no public health education is implemented. Results from this simulation are shown in
Fig. 11. In this scenario, the number of cases ranges from 20 to 66 total cases or 0.0002e0.0005% of the total population, which
is a significant reduction from all previous simulations.

The histogram in Fig. 12 displays the total number of cases of EVD from numerical simulations in Figs. 6 through 11. The
histogram clearly shows that the timing of public health education is important in reducing the number of cases of EVD.
Specifically, the earlier an educational campaign is implemented, the fewer cases that result. It may be difficult to organize an
educational campaign during an outbreak, as resources are already limited. As a result, ongoing education of the population
will not only result in fewer cases, but is also the most reasonable approach.



Fig. 10. Results of a simulated outbreak in Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures reflect public
health education starting immediately after the initial case.

Fig. 9. Results of a simulated outbreak in present day Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures
reflect public health education starting 14 days afters the initial case, which is well prior to the peak of the outbreak.
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5. Sensitivity analysis

We performed a sensitivity analysis on the full model using the total number of infections as the outcome of interest.
Parameter values to test were sampled using Latin Hypercube Sampling (LHS), and Partial Rank Correlation Coefficients
(PRCC) were used to evaluate how sensitive the total number of infections is to changes in each parameter value (Blower &
Dowlatabadi, 1994; Marino, Hogue, Ray, & Kirschner, 2008). We included all the parameters from Table 7, except for b3a, b1b,
f1, d1, d2, b0b, and b4b as these inputs are either dependent on other parameters or their estimated values are less than
1:0� 10�10. We also treated the percentage of the initial population that begins in the uneducated susceptible class as a
parameter, denoted as S0. To construct intervals for the LHS sampling, we chose to select fromvalues 50% above and below the
baseline values given in Table 7 with uniform probability distributions used for each interval. We used the suggested number
of draws provided in (McKay, Beckman, & Conover, 1979), which resulted in N>4K=3 draws of the LHS design, where K is the
number of input parameters and N is the number of LHS draws. In our case, K ¼ 18 and N ¼ 50.

PRCC is a tool with which we can evaluate the impact of changes in each parameter on the outcome of interest, evenwhen
the relationship is non-linear. Note that we can apply the Fisher transformation to the PRCC as described in (Fieller& Pearson,
1961; Macklin, 1982). To determine the significance of the PRCC for each parameter, we calculated a p-value for each using the
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Fig. 12. This histogram summarizes the simulated future outbreaks in Sudan. Specifically, it displays the maximum, minimum, and midrange of the total number
of cases of EVD from the numerical simulations in Figs. 6 through 11. Each simulation considered implementing public health education at a different time and
the education rates, death rates, and recovery rates were varied in each case.

Fig. 11. Results of a simulated outbreak in Sudan displaying the total cases of EVD for various recovery, death, and education rates. These figures reflect an initial
ratio of uneducated:educated susceptibles of 1:3 and no public health education (q ¼ 0). These figures illustrate how educating the population prior to a case of
EVD can prevent an outbreak from occurring.
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methods described in (Marino et al., 2008). Since we are performing K ¼ 18 hypothesis tests, we corrected the resulting p-
values for false discovery using the FDR method of (Benjamini & Hochberg, 1995).

PRCC values with an adjusted p-value less than 0.01 are considered significantly different from 0. The results of the
sensitivity analysis are displayed in Table 8, where statistically significant PRCC values are shown in bold.

Based on the adjusted p� value, six of the PRCC values are deemed not significant including b0a, b1a, b2a, b4a, a2a, and x. All
other PRCC values are deemed statistically significant, with positive values indicating a positive correlation between the
parameter and total number of infections and a negative value indicates a negative correlation. The following parameters
therefore have a statistically significant PRCC value and a positive influence on the number of infections: b3b, b2b, a1b, u, and
S0. Each of these valuesmakes sense based on their role in the system. The following parameters have a statistically significant
PRCC value and a negative influence on the number of infections: a1a, a2b, f2, f3, d3, d, and q.

Using the twelve parameters whose PRCC values were found to be significant, pairwise comparisons with Fisher trans-
formed values (Fieller & Pearson, 1961) produces the results given in Table 9. The PRCC values that are significantly different



Table 9
Pairwise PRCC Comparisons with FDR Adjusted P-values. A bold Y indicates the P-value is significant (P< :01) and a normal N indicates the P-value is not
significant.

b3b b2b a1a a1b a2b f2 f3 d3 u d q S0

b3b N Y Y Y Y Y Y Y Y Y Y
b2b Y Y Y Y Y Y Y Y Y Y
a1a Y N N N Y Y N N Y
a1b Y Y Y Y N Y Y N
a2b N N Y Y N N Y
f2 N N Y N N Y
f3 N Y N N Y
d3 Y Y N Y
u Y Y N
d N Y
q Y
S0

Table 8
Model parameters and the corresponding PRCC and FDR adjusted p-values resulting from
the sensitivity analysis. Significant values are less than 0.01 and are highlighted in bold.

Variable PRCC p-value

b0a �0.086030 7.162e�01
b1a 0.282820 1.431e�01
b2a 0.035981 8.437e�01
b4a 0.322470 9.279e�02
b3b 0.884460 1.878e¡13
b2b 0.917910 0.000eþ00
a1a �0.387030 3.799e¡02
a2a �0.063951 7.685e�01
a1b 0.525560 3.550e¡03
a2b �0.443820 1.618e¡02
f2 �0.712940 4.494e¡06
f3 �0.655080 6.291e¡05
d3 �0.840170 1.323e¡10
u 0.467430 1.102e¡02
x �0.088059 7.162e�01
d �0.414850 2.554e¡02
q �0.587120 6.792e¡04
S0 0.489260 7.607e¡03
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(p< :01) are shown in bold. Pairs whose PRCC values are not significantly different indicate cases where there is no evidence
showing that the outcome changes differently in response to changes in the two parameters. There is a significant difference
between b3b and b2b with each of the remaining parameters, which stands out the most in these results. These two pa-
rameters represent transmission rates among the educated class and have the strongest PRCC values as seen in Table 8. In
essence, b3b and b2b reflect the strength of behavior change in reducing an outbreak of EVD. If the educated portion of the
populations does not take precautions against spreading the disease (ie, high b3b and b2b values), then a significant number of
cases will be produced. Since the pairwise comparison between b3b and b2b was not significant, it is not clear which
parameter is more influential. Further evidence for this point is provided by the fact that the percent of the population that
starts in the uneducated class (S0) is also significantly different than most other parameters and is negatively correlated with
the total number of infections. While recovery rates f2 and f3 as well as death rate d3 were both negatively associated with
the outcome in a significant way as individual parameters, the pairwise comparison of each was non-significant rendering the
relative importance of each inconclusive.
6. Conclusions

Unnecessary interactions with infected individuals and poor health care protocol each contribute to the duration and
spatial spread of an EVD outbreak (Brainard et al., 2015; Chowell et al., 2014; Cook et al., 2015; Dietz et al., 2015). Some of these
causes result from cultural practices, while others are due to a lack of awareness about EVD. Such behavior is clearly evident in
the 1976 outbreak of EVD in Sudan as this initial documented outbreak of Ebola lasted for fivemonths, infected a large portion
of the population, and producedmost new infections in a health care setting. For this reasonwe estimated parameters related
to the uneducated population using data from the 1976 outbreak (Report of a WHO/International Study Team, 1978).

We then used the Sudan 1979 data to estimate parameters related to the educated population, as we assume this outbreak
consisted of individuals whowere more educated about EVD. This is a fair assumption as the outbreak lasted for less time and
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had fewer cases, and health care professionals had an improvedmedical understanding of the disease. Considering these facts
about the EVD outbreak in Sudan in 1979, our model illustrated fewer cases due to having more knowledgeable suspectibles
with respect to medically appropriate interactions with infecteds. The knowledge of the general community as well as health
care workers in that situation also results in lower estimated transmission rates.

Public health education has been used in the past to alter an epidemic by improving the general population's under-
standing of a disease (Bhunu et al., 2010; Del Valle et al., 2005; Joshi et al., 2008, 2015). Wemodel the impact of such behavior
changes on an outbreak by considering two sub-populations and estimating parameters related to each separately before
viewing the interplay between the two groups in our full model. In simulations of the full model, the initial proportion of
educated and uneducated susceptibles as well as the timing of behavior change play major roles in reducing themagnitude of
the outbreak. Specifically, the sooner changes in behavior take place and the more educated susceptibles that exist, the fewer
cases that result. The model is highly sensitive to various inputs such as transmission rates, recovery rates, and death rates as
illustrated in our simulations and sensitivity analysis. Our model indicates that the severity of a future outbreak will be
governed by the preparedness of health care facilities as well as the specific strain of EVD.

Our conclusions echowhat was seen in the 2014 outbreak of EVD inWest Africa: the severity of an outbreak is directly tied
to the level of prior knowledge and education of the general population as well as preparedness of health care facilities. For
instance, a high proportion of educated individuals results in far lower incidence levels of EVD. The education in this context
includes breaking some of the cultural practices assumed to contribute significantly to the spread of the disease. The study
further identifies the timing of behavior change to be one of the determining factors in the success of a control strategy.
Delayed implementation can cause establishment of the epidemic leading to complication in reducing the burden of the
disease. Another key takeaway is the need for ongoing public health education. This fact is supported by this work as having a
higher percent of educated individuals results in a far lower percent of the population becoming infected. This was also
evident in the 2014 outbreak in West Africa, as by the time public health campaigns were launched the number of incidents
had already reached a record size, which made it difficult to quell the epidemic. Simulation and sensitivity results show that
the outcome of the epidemic is highly sensitive to various rates. Thus, the severity of future outbreaks of EVD are governed by
the level of education present in the population as well as preparedness of health care facilities. Capacity to handle large
numbers of hospitalizations due to high education response rates, trust in health care systems, and well-strained health
professionals will contribute significantly to the reduction in the burden of the Ebola disease.
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