
Toward a ‘Grand Unified Theory’ of Archaeological Chronology

Stephen Collins-Elliott

17 Septmeber 2024

Introduction
The logic of chronology-building is familiar to every archaeologist. Relative chronologies are established
on the basis of stratigraphic superimposition, contextual similarity, stylistic similarity, and seriation, which
are then associated with absolute calendrical dates. Such associations typically comprise termini post and
ante quem (hereafter t.p./a.q.) derived from external documentary or historical events, whether about a
context (e.g., destruction layer) or particular artifact (e.g., coinage), or on the basis of scientific methods like
radiocarbon dating. The goal of formally “combining” sources of chronological information has been a clear
objective. Software exists for calibrating and conditioning radiocarbon dates upon relative constraints, such
as BCal (Buck, Christen, and James 1999), OxCal (Bronk Ramsey 2009), and the R pacakge Bchron (Haslett
and Parnell 2008), but the need to provide a comprehensive means of formal dating and all archaeological or
historical events is hampered by the use of informal judgments, especially for dating artifacts, such as “around
the last third of such-and-such century.” This paper addresses the need to simplify the model assumptions in
play and provide more basic tools that work toward a “grand unified theory” of chronology, especially to
bring the dating of artifact typology–in its occurrence of production, use, and deposition—into a more formal
representation.

Namely, a three-step process is advocated, in which (1) all contexts are first seriated according to their
find-type (grouping like with like) into an optimal order, and then (2) constrained to any known, fixed
sequences, with absolute dates treated as probability densities. The final step (3) involves marginalizing
probability densities of the depositional events of all contexts and finds, those of the absolute constraints,
and the production dates of find-types. Probability densities of the use of finds can then be estimated
as conditional upon their production and deposition. Hence, by first creating an optimal seriation (i.e.,
doing what archaeologists have always done in identifying similar assemblages and the co-occurrence of
artifact types), single contexts and isolated stratigraphic sequences can be incorporated into formal models of
chronology, allowing for full cross-site estimation.

Optimal and Fixed Sequences
Not all sequences are of the same informational value. Some sequences may be based on ideal or optimal
theoretical assumptions, as with frequency or contextual seriation, and others they may be based on physical
relationships, as with soil stratigraphy. It is clear that such theoretical sequences should yield to those based
on physical relationships, but this raises the problem of how to coerce one or more theoretical sequences
which may contain events whose physical relationships may conflict. For example, one can produce an ideal
seriation of contexts that includes discrete, single deposits on the one hand (say a number of separate pits
with no overlap) and on the other hand stratified deposits. In such an optimal seriation, it is possible for
those stratified deposits to be seriated “out of order” with respect to their stratified sequence (i.e., the
stratigraphy may have been perturbed at one more moments so that their finds assemblages are not well
stratified). Accordingly, it is desirable to take the optimal order achieved via seriation and constrain it back
to agree with the soil stratigraphy.

1

https://bcal.shef.ac.uk/
https://c14.arch.ox.ac.uk/oxcal.html
https://andrewcparnell.github.io/Bchron/

Checking Sequence Agreement

To check whether two or more sequences of events agree with one another in their order, the seq_check()
function is used. Sequences should run in the same direction from left to right (i.e., the earliest element of
all sequences should be the first element), and be contained in a list object. The seq_check() function
returns a logical output if all sequences have the same elements in the same order.

Both sequences x and y contain the same events in the same order:
x <- c("A", "B", "C", "D", "E")
y <- c("B", "D", "F", "E")
a <- list(x, y)
seq_check(a)
#> [1] TRUE

But sequence z contains events "F" and "C" out of order with respect to x and y:
z <- c("B", "F", "C")
b <- list(x, y, z)
seq_check(b)
#> [1] FALSE

Merging Sequences

The synth_rank() function will use recursion in order to produce a single, “merged” or “synthesized” sequence
from two or more sequences. This is accomplished by counting the total number of elements after running a
recursive trace through all partial sequences (via the quae_postea() function, on which see below). If partial
sequences are inconsistent in their rankings, a NULL value is returned.
x <- c("A", "B", "C", "D", "H", "E")
y <- c("B", "D", "F", "G", "E")
a <- list(x, y)
synth_rank(a)
#> [1] "A" "B" "C" "D" "F" "H" "G" "E"

Producing a single merged or synthesized sequence is a matter of procedural convenience for the gibbs_ad()
function (below on Gibbs Sampling). To be sure, events missing from one sequence or another could occur at
different points in the merged sequence. In the example above, "H" could occur at any point after "D" and
before "E", but the synth_rank() function has situated it in between "F" and "G".

If sequences disagree, a NULL value is returned for the synth_rank() function.

Adjusting Sequences

As mentioned above, one may have sequences which are derived via theoretical considerations (e.g., frequency
or contextual seriation), and some which are known or fixed (e.g., soil stratigraphy or historical documentation).
The seq_adj() function will take an “input” sequence and adjust its ordering to fit with another “target”
sequence of smaller size.

For example, the input sequence might be an ordering obtained from a contextual seriation which is based on
artifact types found in both tomb assemblages as well as stratified deposits, from one or more sites. And the
target sequence might be a known stratigraphic sequence. One wants to maintain the ordering of the target
sequence, adjusting the input into agreement:
input
seriated <- c("S1", "T1", "T2", "S3", "S4", "T4", "T5", "T6", "S5", "T7", "S2")
target
stratigraphic <- c("S1", "S2", "S3", "S4", "S5")
input adjusted to agree with the target

2

seq_adj(seriated, stratigraphic)
#> [1] "S1" "T1" "S2" "T2" "S3" "T7" "S4" "T4" "T5" "T6" "S5"

To achieve this the seq_adj() function performs a linear interpolation between jointly attested events, placing
the input sequence along the x axis and the target sequence along the y axis, coercing the order of all elements
to the y axis:

2 4 6 8 10

1
2

3
4

5

input (seriated)

ta
rg

et
 (

st
ra

tig
ra

ph
ic

)

S1

T1

T2

S3

S4

T4

T5

T6

S5

T7

S2

For multiple stratigraphic sequences, the seq_adj() function can be re-run, taking a new target sequence
and using the previous result as the new input sequence. If both input and target sequences agree, the input
sequence will be returned.

All Earlier Events, All Later Events

A core need of the gibbs_ad() function is to determine, for each event, all events which come later and
earlier than that event. The functions quae_postea() and quae_antea() achieve this need for later events
and earlier events respectively. Hence, there is no need for determining a single sequence or ordering as an
input, which takes the form of a list object containing sequences. The output is a list indexed with each
element, containing the vector of contexts which precede or follow that element.

For quae_antea(), a dummy element of "alpha" is included in all vectors, and for quae_postea(), a dummy
element of "omega" is included. The elements of "alpha" and "omega" are necesary as they constitute the
fixed lower and upper limits in which estimates are made in gibbs_ad().
x <- c("A", "B", "C", "D", "H", "E")
y <- c("B", "D", "F", "G", "E")
a <- list(x, y)
quae_postea(a)
#> $A
#> [1] "omega" "B" "C" "D" "H" "E" "F" "G"
#>
#> $B
#> [1] "omega" "C" "D" "H" "E" "F" "G"
#>
#> $C
#> [1] "omega" "D" "H" "E" "F" "G"
#>
#> $D
#> [1] "omega" "H" "E" "F" "G"

3

#>
#> $H
#> [1] "omega" "E"
#>
#> $E
#> [1] "omega"
#>
#> $F
#> [1] "omega" "G" "E"
#>
#> $G
#> [1] "omega" "E"
quae_antea(a)
#> $A
#> [1] "alpha"
#>
#> $B
#> [1] "alpha" "A"
#>
#> $C
#> [1] "alpha" "A" "B"
#>
#> $D
#> [1] "alpha" "A" "B" "C"
#>
#> $H
#> [1] "alpha" "A" "B" "C" "D"
#>
#> $E
#> [1] "alpha" "A" "B" "C" "D" "H" "F" "G"
#>
#> $F
#> [1] "alpha" "B" "D" "A" "C"
#>
#> $G
#> [1] "alpha" "B" "D" "F" "A" "C"

Gibbs Sampling
The Gibbs sampler is a common Markov Chain Monte Carlo (MCMC) technique, widely used in estimating
posterior probabilities in Bayesian inference (a mainstay of calibrating and refining radiocarbon dates; see
references above) as well as in computing marginal densities. For more information, see Geman and Geman
(1984), Buck, Cavanagh, and Litton (1996), and Lunn et al. (2013).

A central function of the eratosthenes package is the gibbs_ad() function, which takes in information
about relative sequences and absolute dating constraints, and then samples marginal probability densities for
events from the full, joint conditional density, using a Gibbs sampler. This vignette provides details on the
use of this function.

The function operates on a continuous timeline. Any calendrical scale is possible, but here it is conventional
for CE/AD dates to be positive and BCE/BCE dates to be negative.

Inputs

The core inputs for the gibbs_ad() function are the following:

4

• relative sequence(s) of contexts
• finds (optional), associated with a context and type/class (also optional)
• absolute constraints (termini post/ante quem)

Relative Sequences of Contexts Relative sequences of contexts must be in the form of a list, with
each object in the list being a vector whose ordering of elements is in agreement with all other elements. See
the vignette Aligning Relative Sequences for more information.

The following object contexts provides an example of a valid set of relative sequences:
x <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
y <- c("B", "D", "G", "H", "K")
z <- c("F", "K", "L", "M")
contexts <- list(x, y, z)

seq_check(contexts) # check if the sequences are in agreement
#> [1] TRUE

Finds Data on finds (i.e., any elements which pertain to a given context) are optional. Each find must be
in the form of a list with the following structure:

• id: An id number or string of the find, such as an inventory number or bibliographic reference.
• assoc: The context to which the find belongs, which must be contained in the relative sequences of

contexts.
• type: An optional vector or element denoting any types, subtypes, classes, etc., to which the find

pertains. If not present, a NULL value must be given.

Each find must in turn be stored in a single list object:
f1 <- list(id = "find01", assoc = "D", type = c("type1", "form1"))
f2 <- list(id = "find02", assoc = "E", type = c("type1", "form2"))
f3 <- list(id = "find03", assoc = "G", type = c("type1", "form1"))
f4 <- list(id = "find04", assoc = "H", type = c("type2", "form1"))
f5 <- list(id = "find05", assoc = "I", type = "type2")
f6 <- list(id = "find06", assoc = "H", type = NULL)
artifacts <- list(f1, f2, f3, f4, f5, f6)

Missing information on types should be supplied with a NULL value.

Finds should have no absolute dating constrains on them. If they do, they should be specified as an absolute
constraint.

Absolute Constraints Absolute constraints are predicated on whether they provide a terminus post quem
(t.p.q.) for a context or a terminus ante quem (t.a.q.) for a context. The information on these absolute dates
is regarded as external or extrinsic information. For example, a radiocarbon date provides for information
on when the sample died, not when its context was formed; a coin type may be known to have had a range
of production dates, but the production date of that particular coin may be affected by the stratigraphic
context in which it is found. Such constraints may take a variety of forms.

The formatting for a t.p.q. or a t.a.q is the same, as a list in which each constraint contains:

• id: An id number or string of the find, such as an inventory number or bibliographic reference.
• assoc: The context to which the find belongs, which must be contained in the relative sequences of

contexts.
• type: An optional vector or element denoting any types, subtypes, classes, etc., to which the find

pertains. If not present, a NULL value must be given.

5

• samples: A numeric vector or element containing potential dates of the t.p.q. or t.a.q., i.e., a sample
of the probability density function which expresses when that constraint occurred. Common densities
would include:

– A single numeric if the constraint is known precisely and certainly.
– Samples of n size from a continuous uniform distribution, runif(n, a, b), if known between two

bounds a and b, without any more or less certainty about any one date.
– Samples of n size from a bespoke probability density, such as a calibrated radiocarbon date.

Constraints must be contained in two separate list objects, one for t.p.q. and the other for t.a.q.:
external
coin1 <- list(id = "coin1", assoc = "B", type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2", assoc = "G", type = NULL, samples = runif(100,37,41))
destr <- list(id = "destr", assoc = "J", type = NULL, samples = 79)

tpq_info <- list(coin1, coin2)
taq_info <- list(destr)

Additional Arguments

Additional arguments are necessary for the gibbs_ad() function:

• samples: the number of Gibbs samples to take (i.e., the number of estimates of any one event). By
default set at 10ˆ5.

• alpha: the constraint on the earliest possible date to sample. By default set at -5000.
• omega: the constraint on the latest possible date to sample. By default set at 1950.
• trim: takes a logical value as input, trim specifies whether to remove contexts from the result which

lie earlier than the earliest given t.p.q. or later than the latest t.a.q., i.e., contexts whose estimation
depends on alpha and omega. By default set at TRUE.

• rule: the rule for how to estimate production dates for artifact types, which is described in the following
section. By default set at "naive".

Rules for Estimating Production Dates Since archaeologists are typically interested in dates of
production and use as much as deposition, the gibbs_ad() function will return the marginal densities for
both production and deposition (from which the estimation of a use date can then be derived).

Estimating the date of the production of a find or find-type however necessitates some assumption, since
in principle the absence of evidence is not viewed as evidence of absence. Without stipulating a rule, the
earliest production date of any artifact could reach back endlessly into time, since an artifact does not need
to have been produced after the initial occupation of a site where it has been found.

Here, two basic rules have been included for determining production dates of finds:

• "naive": The earliest potential threshold of a find-type occurs sometime before the first deposition
of that type, and after the deposition of the next earliest context. A production date is then chosen
uniformly at random between that threshold and the depositional date of that artifact.

• "earliest": The earliest potential date of a find-type occurs sometime before the first deposition of
that type, and after the deposition of the next earliest context. A production date is then chosen
uniformly at random between those two dates.

The "earliest" option will constrain the date of production to the earliest possible instances, while the
"naive" option (the default) will select any date between an earliest threshold and the depositional date of
the particular find.

If no finds are included in the gibbs_ad() arguments, then only depositional dates for contexts, not production
dates, are estimated.

6

Functionality

The gibbs_ad() function at its core uses a Gibbs sampler, drawing from the full joint conditional density in
order to sample marginal densities for dates of deposition (of contexts and finds) and production (of finds).

First, samples are drawn from any t.p.q and t.a.q.. Then, for convenience, the Gibbs sampler proceeds in
order of a sequence of contexts based on the merged ranking of all contexts (via synth_rank()). The sampler
will identify all contexts and constraints prior and subsequent to any one context, and then will identify the
largest prior date and smallest subsequent date, in between which it will uniformly sample a date. One can
adjust the number of samples drawn with the samples argument of the function:
dates <- gibbs_ad(contexts, finds = artifacts, samples = 10ˆ4, tpq = tpq_info, taq = taq_info)

Output

The output of the gibbs_ad() function will be a list of class marginals containing the marginal densities
of the depositional dates of contexts and finds, if included; production dates are given for finds types, again,
if included. Marginal densities are also given for each t.p.q. and each t.a.q., which expresses the probability
of their dating given the conditions of the relative sequences of contexts (not independent of them).

• $deposition contains the depositional dates of contexts included in the sequences input
• $externals contains the dates of the absolute constraints taking the full joint conditional density into

account
• $production contains the dates of production of artifact types

str(dates)
#> List of 3
#> $ deposition:List of 9
#> ..$ B: num [1:10000] 47.5 -185.3 -147.6 -293.1 -270 ...
#> ..$ C: num [1:10000] 61 -42.9 -106.6 -220.6 -71.8 ...
#> ..$ D: num [1:10000] 69.573 -24.496 -62.15 -3.912 0.343 ...
#> ..$ E: num [1:10000] 78.44 3.61 18.81 1.47 26.41 ...
#> ..$ F: num [1:10000] 78.8 78.2 69.4 38.9 29.2 ...
#> ..$ G: num [1:10000] 78.8 78.5 70.6 72.5 71.1 ...
#> ..$ H: num [1:10000] 78.9 78.7 73.2 73.4 76.1 ...
#> ..$ I: num [1:10000] 79 78.7 78.7 77.6 77.1 ...
#> ..$ J: num [1:10000] 79 78.9 78.8 78.4 78.2 ...
#> $ externals :List of 3
#> ..$ coin1: num [1:10000] -320 -316 -307 -309 -305 ...
#> ..$ coin2: num [1:10000] 37 37.9 37.1 40 39.2 ...
#> ..$ destr: num [1:10000] 79 79 79 79 79 79 79 79 79 79 ...
#> $ production:List of 4
#> ..$ type1: num [1:30000] 67.9 65 72.1 -39.5 -14.6 ...
#> ..$ form1: num [1:30000] 69 68.6 77.8 -25 -42.8 ...
#> ..$ form2: num [1:10000] 74.083 -4.46 -50.042 -0.123 2.485 ...
#> ..$ type2: num [1:20000] 78.9 78.9 78.6 78.6 71.3 ...
#> - attr(*, "class")= chr [1:2] "marginals" "list"

For example, a histogram of the production date of a type2 artifact using a naive date of production will be:

7

Histogram of dates$production[["type2"]]

dates$production[["type2"]]

F
re

qu
en

cy

40 50 60 70 80

0
50

0
10

00
15

00

In order to estimate a date of use for any one artifact, one can run the gibbs_ad() function again, taking
the production date of the artifact type from the marginals object as a t.p.q. and its depositional context as
a t.a.q.:
f4use <- list("find4 use")

find4prod <- list(id = "type2prod", assoc = "find4 use", samples = dates$production[["type2"]])
find4dep <- list(id = "find4dep", assoc = "find4 use", samples = dates$deposition[[f4$assoc]])

tpq_find4prod = list(find4prod)
taq_find4dep = list(find4dep)

f4usedate <- gibbs_ad(f4use, samples = 10ˆ4, tpq = tpq_find4prod, taq = taq_find4dep)

hist(f4usedate$deposition[["find4 use"]])

Histogram of f4usedate$deposition[["find4 use"]]

f4usedate$deposition[["find4 use"]]

F
re

qu
en

cy

40 50 60 70

0
20

0
40

0
60

0
80

0
10

00

References
Bronk Ramsey, C. 2009. “Bayesian Analysis of Radiocarbon Dates.” Radiocarbon 51: 337–60.
Buck, C. E., W. G. Cavanagh, and C. D. Litton. 1996. Bayesian Approach to Interpreting Archaeological

Data. Chichester: John Wiley & Sons.

8

Buck, C. E., J. A. Christen, and G. N. James. 1999. “BCal: An On-Line Bayesian Radiocarbon Calibration
Tool.” Internet Archaeology 7. https://intarch.ac.uk/journal/issue7/buck/.

Geman, S., and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration
of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–41.

Haslett, J., and A. C. Parnell. 2008. “A Simple Monotone Process with Application to Radiocarbon-Dated
Depth Chronologies.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 57 (4):
399–418.

Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter. 2013. The BUGS Book: A Practical
Introduction to Bayesian Analysis. Boca Raton, FL: CRC Press.

9

https://intarch.ac.uk/journal/issue7/buck/

	Introduction
	Optimal and Fixed Sequences
	Checking Sequence Agreement
	Merging Sequences
	Adjusting Sequences
	All Earlier Events, All Later Events

	Gibbs Sampling
	Inputs
	Additional Arguments
	Functionality
	Output

	References

