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ABSTRACT
When it comes to seriating a matrix of binary data, dimensional reduction tech-
niques like correspondence analysis and its derivatives often perform better than
model-driven methods. Yet, there is a larger problem in that, first, seriation is
data-dependent and not guaranteed for every binary matrix, and second, that high-
dimensional matrices may yet produce plots that are difficult to interpret. The blame
for such poor results may be cast onto the data themselves as being not conducive
to seriation. Consequently, the onus is thus placed on the investigator to a priori
have well-seriated data to begin with. The question then also arises, in the pro-
cess of exploring the data and identifying multiple partial, well seriated sequences,
how to harmonize them into a single ranking. The solution proposed here involves
an iterative procedure called “Lakhesis,” which uses an agglomerative process of
regression of the partial sequences to resolve missing observations in producing a
single consensus seriation. Per optimality measures, Lakhesis has the capacity to
outperform current conventional approaches to seriation. The R lakhesis package
provides an graphical interface for exploring binary data and selecting seriations,
toward selecting well-seriated “strands,” which are then “lakhesized” into a single
consensus seriation.

KEYWORDS
Seriation, ordination, binary data, correspondence analysis, Spearman’s rank
correlation

1. Introduction

Seriation is a statistical problem in which one seeks to rearrange the rows and columns
of a matrix in order to create an optimal order for the matrix values [26]. Also called
sequencing or ordination, seriation represents a problem found in several fields, such
as archaeology, ecology, and the biosciences. Given the high number of permutations
of potential sequences to evaluate, a broad array of techniques have been cultivated
to address the problem. Approaches to seriation have often treated count or frequency
data, treating binary (0/1) data as a reductive case of the former. Yet, binary data
can pose their own challenges. Quadratic ordination, i.e., using a generalized linear
model to perform a logistic regression with a quadratic term, has long been the choice
of model for frequency matrices. In a binary matrix, however, perfect separation of
0s/1s, which would be ideal with well-seriated data, would result in a failure of model
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fit. Moreover, given a low count and sparse size, distributions might fail to converge to
an optimally seriated order. This makes dimensional reduction techniques, especially
correspondence analysis (CA), more suitable for binary seriation, but herein too there
are challenges. Not all matrices will necessarily be well-seriated, making exploration a
necessary part of seriation. Moreover, if one has determined multiple, partial seriations
within their data, the need arises for a means to harmonize these partial sequences,
to create what Hahsler et al. call a single “consensus seriation” [20]. This paper offers
a practical solution to these challenges, with the development of (1) an interactive,
graphical platform to perform exploratory seriations, (2) a new means to seriate corre-
spondence analysis (CA) scores via Procrustes-fitting to a reference curve, (3) a means
of producing a consensus seriation, and (4) defining critical measures. These tools are
freely available in open source R lakhesis package.

1.1. Background

As mentioned above, there are a variety of approaches and tools available for seriation.
Permutation-based and other combinatoric methods were advanced by [1, 8, 34, 44],
which are discussed succinctly by Hahlser et al. [20]. In addition to non-metric mul-
tidimensional scaling (nMDS; [see 29–31]), correspondence analysis (CA) has been a
popular method for seriation [3, 4, 18, 21]; Ihm [26] notes that the earliest form of CA
can be found in [23]. Given that CA will display points along a curve if they follow a
seriated pattern, detrended correspondence analysis (DCA) was pioneered by Hill and
Gauch [22] to “unbend” the curve by creating partitions along the first component
axis and shifting these partitions to produce a more linear form [see pp. 379-396 in 5,
for more background]. Putting constraints on CA scores has been studied by [40, 51],
while establishing bootstrap confidence intervals on CA-based seriations has been per-
formed by [2, 33, 39]. DCA has been debated in ecology but remains popular [53, 54].
Model-based methods, namely quadratic ordination (QO), emerged in ecology around
the same time as CA and have the benefit of being theoretically more sound, although
at the time they were more numerically intensive [14, 15]. There is a significant litera-
ture on model-based ordination, especially with constraints, which have deep affinities
with canonical correspondence analysis (CCA), factor analysis, and latent variable
analysis [16, 25, 27, 43, 48–50, 57].

The aforementioned approaches are well served by numerous packages in R [42]. The
seriation package [20] contains several functions for seriating and critically evaluating
seriated matrices from a combinatorial approach. Dimensional reduction techniques
like nMDS, PCA, and CA are available in MASS [52] and ca [37]. The vegan package
[38] contains functions to perform DCA and CCA, among many other dimensional
reduction techniques. VGAM [58] contains functions for constrained and unconstrained
QO. Bayesian generalized linear models (GLMs) with and without constraints can be
fit using the boral package [24]. The recent ecoCopula package [41] uses copulas for
ordination.

1.2. Contribution

Before stipulating the contributions of this paper, it can be noted that this work
came about in the attempt to adapt copulas for the case of seriating binary data
[11, 41]. While copulas show promise for ordination of high-dimensional frequency
data, binary data posed challenges. To start, the perfect separation of 0s and 1s in a
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sequence of row or column values (an optimal arrangement in seriation) would result
in a failure of model fit in a quadratic regression. Furthermore, given the low and
often sparse values, unconstrained model-fitting with high-dimensional binary data
using simulation may also take an exceedingly long time to converge to a solution, or
even fail. As such, dimensional reduction techniques like CA remain the most useful
for this case. But, straightforward application of CA can just as often return results
that are not clearly seriated or which form undesirable clusters. In archaeology, for
example, creating a single incidence matrix (in which each row represents a context
and each column represents a find-type) from multiple, contemporary sites will tend to
elicit a plot which produces clusters of those sites [e.g., 32], rather than the expected
horseshoe curve or arch effect, since the rows and columns have less overlap with those
from other sites than they with those from the same site or locality. More generally,
an exceedingly high dimensional matrix may lose too much variance (inertia) in the
process of dimensional reduction.

Given that the choice of row and column elements plays such a decisive role in deter-
mining seriated sequences, the R package lakhesis provides an interactive platform
to aid in the heuristic seriation of binary matrices and to evaluate their consensus
seriation critically. Intended to complement functions already available in seriation

and vegan, it does not reduplicate nor replace those packages. The dependencies of
lakhesis include ca [37], ggplot2 [55], shiny [7], shinydashboard [6], bslib [46],
and readr [56], the latter of which was needed for properly importing Unicode char-
acters from an initial .csv file. Figures for this paper were aided with gridExtra

[36].
In the R lakhesis package, an interactive shiny app called the Lakhesis Calculator

was developed to allow a user to perform CA in an exploratory fashion on a matrix of
binary data. The investigator can select row and column scores and then re-run CA on
that selection, in effect “exploring” lower dimensional pockets of space. To establish
a seriated order, a new method of ranking was developed, in which CA scores are fit
via a Procrustes method to the curve elicited by of a “reference matrix” of the same
size, which contains an “ideal” seriation. The scores of the data are then projected
onto the curve, which are used to determine their ordering. Two plots are shown in the
Calculator, one of the Procrustes-fit CA scores plot and the other showing the distance
of points from the reference curve-fit. The investigator may either log the displayed
seriated sequence of rows and columns as a “strand” (a seriated matrix which contains
a partial subset of the row and column elements of the full input matrix), and/or select
row and column points on which to re-run CA.

User-selected strands can then merged into a single consensus seriation. This is ac-
complished using an iterative process of simple linear regression, performed separately
on the row and column rankings. By using a measure of optimality called “concen-
tration” (on which see Sec. 4.2) which conveys how well seriated a binary incidence
matrix is, pairwise regression is first performed on all strands (with each strand serv-
ing as independent or dependent variate for every other strand). Then, the ranking of
the joint row or column elements of the strand (as independent variate) are regressed
onto the other (as dependent variate), with any discrepancy between the regression
and actual value of the joint elements resolved by taking their mean. This will result
in an “imputed” ranking for any elements missing in the dependent strand. The val-
ues are all then re-ranked. Performing this operation on all strands pairwise, the pair
which elicits the most optimal concentration measure is chosen, and the new regres-
sion serves as the dependent variate for the next iteration, in which each remaining
strand is regressed, and the one which elicits the lowest concentration score is chosen.
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The end result is that all rankings will be regressed into a single, optimal “consensus
seriation.” Regression has the benefit in that sequences which have the same order
but which may run in reverse are easily accommodated (their slope will merely be
negative).

The critical evaluation of any one strand with respect to the consensus of all is per-
formed on the basis of two coefficients, agreement and concentration. For agreement,
the square of Spearman’s rank correlation coefficient [47] is applied to row and column
sequences separately, ρ2r and ρ2c , after removing any pairs which have an NA value. The
product of these two coefficients is then used as a measure of overall agreement between
any two strands. Furthermore, the optimality of each strand can be assessed. Finally,
a deviance test on the rows and columns of the resulting consensus seriation can be
used to identify which row or column elements might not be conducive to obtaining
a well-seriated sequence. These criteria can be used by the investigator to select or
de-select strands and elements that may not be conducive to a seriated sequence.

The paper proceeds to outline the processes of Procrustes fitting CA scores in
Section 2, which are used to derive a seriated sequence. In Section 3, the process of
aligning the strands into a consensus via iterative regression is discussed. In Section
4, coefficients of agreement and concentration are defined. Section 5 then examines an
application to a seriation of Early Iron Age tombs from southern Etruria, to assess
the method’s performance alongside other current approaches. The manual, “A Guide
to Lakhesis,” can be consulted for the functionality of the lakhesis package.

2. Exploratory CA with Procrustes Fitting

Let Y be the initial incidence matrix, of u× v size, in which each cell contains a 0 for
absence and 1 for presence. Any matrix X is formed of selected rows and columns of
Y, provided that there is overlap in resulting columns and rows of X, and each row
sum and column sum of X is greater than 1. Columns or rows which attest only one
incidence are omitted for expediency. To initialize, let X = Y.

2.1. Potential Matrix Transposition

Let the size of X be n × k, where n < k, in which each cell contains a 0 for absence
and 1 for presence. If it should be the case that k < n for X, the matrix is transposed,
and the results for the row and column scores are then swapped at the end of the step.
The reason for this condition, that the number of rows must be less than the number
of columns, has to do with the production of a parabolic effect in the plot of the scores
elicited by CA. The row and column scores are to be fitted to those of a reference
matrix of the same size that contains a known “ideal” seriation, which is discussed
next, wherein the parabola will only reliably be produced for row scores when n < k.

This reference matrix R is of the same size as X, n× k. Each ith row of R contains
1s across the columns, from the (i, i)th cell to the (i, i + k − n)th cell, and 0s in all
other cells. That is, for an incidence matrix 5 × 7 in size, a corresponding reference
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Figure 1. CA scores of a reference matrix R of size 50× 100, showing the projections of the first and second

principal axes on the left and the first and third axes on the right. Row scores are in black and column scores
in gray. If R had been transposed (of size 100× 50), the row scores would have taken the place of the column

scores, and vice versa.

matrix R is

R =


1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1


When performing CA, row scores of this reference matrix will follow a parabolic curve.
If there had a larger number of rows than columns (n > k), then the row scores would
resemble a double-parabola which appears truncated and symmetric around the second
axis, and the column scores will instead follow a parabolic curve. This is a result of
the “coiling” of the scores around the third principal axis, which is visible in three
dimensions (Fig. 1). For the purpose of Procrustes fitting, if the number of rows is
greater than that of the columns, the matrix X is transposed, and then the results for
rows and columns swapped after fitting.

2.2. Correspondence Analysis

Perform correspondence analysis (CA) onX andR separately, the details of which may
be found in the work of Greenacre and Nenadic [18, 19, 37]. CA involves centering the
initial data matrix with respect to both row and column values, and then standardizing
them with respect to both row and column values, essentially giving the chi-squared
distance of each cell from the origin. This matrix of standardized residuals, S, is then
subjected to singular value decomposition (SVD),

S = UΣV⊤.
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The principal scores for each of the rows will be

Gn = Wn
− 1

2UΣ

and those of of the columns will be

Gk = Wk
− 1

2VΣ.

where W
− 1

2
n and Wk

− 1

2 are diagonal matrices containing inverse square root of the
row and column sums. The first two dimensions of the principal scores are then used
for Procrustes fitting. Select the first two columns of Gn as Gr, of size n× 2, and the
first two columns of Gk as Gc, of size k × 2. Let Lr and Lc be the first two columns
of row and column scores of the reference matrix, respectively.

2.3. Procrustes Fitting

Procustes fitting [see 17] of Gr on Lr consists of the following three steps.

2.3.1. Centering

First, center the points of Gr and Lr around the origin. Let µj represent the mean of
the jth column of Gr, and µj represent a column vector of size n× 1 whose values are
all µj . The centered matrix is then

Grc = Gr −
[
µ1 µ2

]
.

Similarly, to center the reference matrix row scores, where λj represents the mean of
its jth column,

Lrc = Lr −
[
λ1 λ2

]
.

2.3.2. Scaling

Second, scaling is performed using the Euclidean distance of the point furthest from
the origin. Let grcj represent the jth column vector of Grc. Then,

d2
g = grc1

⊤grc1 + grc2
⊤grc2

dg =
√

max
i

(
d2
g

)
and similarly for the reference matrix, determine the magnitude of the point furthest
from the origin:

d2
l = lrc1

⊤lrc1 + lrc2
⊤lrc2

dl =
√

max
i

(
d2
g

)
.

Then the scaled points for the data and reference matrix will be

Grcs =
1

dg
Grc
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and

Lrcs =
1

dl
Lrc.

2.3.3. Rotation

Third, the points of the data matrix are rotated around the origin to fit the centered
and scaled points of the reference row scores. Typically rotation is accomplished by
the identification of landmark points that are used to match one shape to another.
In the absence of these landmark points, an iterative process is used to match each
data point with the median reference point, that is the point at or nearest to (0, f(0)),
where f(x) = β2x

2 + β0 is the curve fitted to the centered and scaled reference row
points. The Euclidean distance from each data point to any nearest reference point is
then summed as residuals. The rotation which minimizes this squared residual sum is
then selected.

Let (l̃1, l̃2) be the median point contained in Lrcs. Let θ̃l = arctan2(l̃2, l̃1).
Then, for each ith row in Grcs:

• Let grcsi1 and grcsi2 be the first and second axis coordinates of the point repre-
sented by the ith row of Grcs.

• Compute θ∗i = arctan2(grcs2, grcs1)− θ̃l.
• The rotation matrix will accordingly be

Θ∗
i =

[
cos θ∗i sin θ∗i
− sin θ∗i cos θ∗i

]
Then,

G
(i∗)
rcs = GrcsΘ

∗
i

• Let d
(i∗)
k be the Eucldiean distance of the kth row of G

(i∗)
rcs to whichever row of

Lrcs is nearest to it.
• Then the residual sum of squares for the ith rotation will be

Di∗ =

n∑
k=1

d
(i∗)
k

Accordingly, each potential rotation is evaluated with regard to its goodness-of-fit,
in terms of the Euclidean distances from a one-to-many mapping of the points of the
scores of the data scores to those of the reference scores.

Finally, then, the rotation matrixΘ is chosen as theΘi for whichDi∗ is the smallest.
The final step of the Procrustes fitting then rotates the matrix Grcs by multiplying

it by Θ:

Γr = GrcsΘ

Similarly, for the CA column points in the data matrix, Gc, apply the same trans-
formations as above using the centering, scaling, and rotation based on the row values
(performing Procrustes fit using the means, scaling, and rotations derived from the
column values would cause the points to be misaligned):
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Figure 2. Procrustes-fitting CA scores of the quattrofontanili data included in the lakhesis package and

their sequencing after projection onto the reference curve. Data scores are in black (rows/contexts) and gray
(columns/find-types), with the curve of the reference scores shown as a line.

• Centering on the origin:

Gcc = Gc −
[
µ1 µ2

]
• Scaling:

Gccs =
1

dx
Gcc

• Rotation:

Γc = GccsΘ

Then, let f(x) = β2x
2 + β0 be the “reference” curve fit to the points in Lrcs. Let

y = f(x), and let (xri, yri) be the point on the line (x, y) closest to the ith row of Γr,
and let (xcj , ycj) be the point on (x, y) closest to the jth row of Γc, in terms of their
Euclidean distance. Let the vectors xr and xc represent all xri and xcj , respectively.
Note that these vectors are not simply a projection of the scores onto the first principal
axis, since the best-fitting point on the reference curve is not orthogonal to the first
principal axis. Figure 2 illustrates these steps from the initial CA plot of the data to
the final fit of row and column scores.

2.4. Strand Selection

Let sr then be the rankings of xr, and let sc be the rankings of xc. The row and column
rankings are swapped if the matrix X was transposed (as mentioned in Section 2.1 on
page 4). The set {sr, sc} determines a “strand” H, a particular subset-seriation of the
initial matrix X (this can also be conceived as the product of X and a permutation
matrix).
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The investigator selects any subset of rows and columns of Y to be X, choosing
specific rows and columns n ≤ u, k ≤ v, and selecting m number of row and column
strands at their discretion. The lakhesis package allows the investigator to perform
this task graphically using the CA plot, which will construct an X using selected row
and column score points. Rows and columns which contain all 0s are automatically sup-
pressed. At the end of the process of exploring and selecting seriations, there will be m
number of strands, each with a find-type and a context ranking, sr1, sc1, . . . , srm, scm.

3. Consensus Seriation: Lakhesis Analysis

In order to arrive at a consensus seriation, the rankings of the rows and columns are
processed separately. Let ũ ≤ u be the number of rows which are contained in the
strands, and ṽ ≤ v be the number of columns (i.e., not every row or column in the
original matrix Y needs to have been selected).

Given the missing values, a method of imputation is necessary in order to derive a
consensus seriation using all of the available information from each strand. This prob-
lem is non-trivial, and finds analogues in ranked-voting or ranked-preference problems
[e.g., 13, 45]. However, it differs from ranked-voting problems in that the objective is
not to find a single winner or first-ranked element, nor it is to impute rankings on the
basis of external variates such as a category or type as with preferences. Rather, it
is to determine a single ranking on the basis of the information provided by a set of
partial rankings from a larger data set, which is optimal for seriation according to a
given principle.

Stringing together these ranked strands is here called “Lakhesis” analysis, named
for the ancient Greek goddess who measured the thread of fate. Owing to the need
to impute missing rankings, is an iterative process which works in an agglomerative
fashion, building a consensus seriation from the bottom up. It uses the principle of
concentration (see below, Section 4.2) in determining the order in which to regress
strands.

(1) To initialize, perform pairwise linear regression on all strands’ row and column
elements separately. Each strand must have at least 4 joint elements with at
least one other strand.
(a) For any two strands, select one as the dependent (y), Hy, and another as

the independent (x) variate, Hx.
(2) A regression is then performed in the following manner, to merge the two rank-

ings. Regressions are performed separately for rows (i.e., srx on sry) and columns
(scx on scy):
(a) Remove all elements for which there is an NA value in either strand.
(b) Use the regression line, f(x) = β1x + β0, to project the ranks of the inde-

pendent variate onto the dependent (thereby supplying rankings for any NA

values in the dependent variate which are attested in the independent).
(c) If y ̸= f(x), the mean of y and f(x) is used for that element.
(d) The values of the dependent and regressed independent variates are re-

ranked, forming a new seriated incidence matrix, Hxy.
(3) The concentration coefficient κ (Sec. 4.2) is computed for each pairwise regres-

sion’s seriated incidence matrix, and the pair of strands is chosen which elicits
the lowest concentration measure.

(4) The “merged” rankings from this seriation constitute the dependent variate for
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the next regression.
(5) For all remaining strands, treat each as the independent variate, and the merged

rankings from the previous regression as the dependent variate.
(6) Repeat Steps 2 – 5 until all strands have been regressed, resulting in a single

consensus seriation.

Given that the order in which strands are regressed has a bearing on the resulting
consensus seriation (i.e., a merged consensus seriation H123 may differ from H213),
the use of the concentration principle to determine the selection of strands is necessary.
Especially if the number of strands were to exceed 10, all possible permutations of the
order of strands in their regression could not be evaluated in a reasonable amount
of time. Similarly, PCA (which was initially explored as a method of harmonizing
rankings) would only work as a method of ranking imputation if there were at least four
elements jointly shared across all strands, a restriction which was undesirable given
a potential need to perform consensus seriation on a large set of data in piecemeal
fashion. Furthermore, as the rotation of axes in CA, as in PCA, can vary, it is possible
for strands to have the same seriated sequence but in reverse order. Linear regression
has a virtue in being able to accommodate identical sequences in reverse order, as their
relationship will merely have a negative slope. Having at minimum four joint elements
serves to mitigate any potential misalignment, but having a diagnostic criteria of
agreement among strands with the resulting consensus will also enable the investigator
to remove highly discrepant strands from the consensus (see Section 4.1).

Rather than slicing matrices in the R console and re-running commands, the pro-
cess of seriating matrices and evaluating their consensus seriation is performed in the
Lakhesis Calculator, which performs the above operations at the click of a button. The
following section discusses the diagnostic criteria used in the Calculator to evaluate the
quality of investigator-selected strands and their consensus seriation, via coefficients
of agreement and optimality, as well as measures of goodness-of-fit for individual row
and column elements, which can be used to improve the resultign seriation.

4. Critical Evaluation: Coefficients and Goodness-of-Fit

Two coefficients are introduced here, one of agreement, which is based on Spearman’s
rank correlation coefficient [47], ρ, and another of concentration, to address optimality
for the particular case of binary data. Additional measures of optimality have been
discussed by Hahsler et al. [20] (some of which assess the gradient of frequency seri-
ations and so are not ideal for binary data). Additional measures that are applicable
are implemented in Section 5.

4.1. Agreement

Agreement is computed on the basis of the square of Spearman’s rank correlation
coefficient [47], ρ, between one strand and the consensus seriation, omitting any ele-
ments with missing values. For example, agreement for one ranking c(1,2,4,NA,3)

and another c(NA, 4, 3, 2, 1), will involve first involve omitting to NA values to
obtain c(2,4,3) and c(4,3,1), whose squared correlation would come to ρ2 = 0.11.
For two strands, the squared Spearman correlation coefficients are obtained separately
for rows, labeled ρ2r and for columns, labeled ρ2c . The product of these two coefficients,
ρ2rρ

2
c , represents how well two strands agree with one another in terms of their rankings.
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Strands which have lower agreement can be deleted in order to see if the optimality
of the overall consensus seriation will be improved.

4.2. Concentration

In this paper, an optimality measure is proposed by extending the Kendall-Doran
concentration principle [12, 28], which is ideal for binary data, here called κ. The
Kendall-Doran concentration principle is based on the notion that in a “perfect” seri-
ation, one would see all attestations of any one column element in a contiguous order
with no zeros interspersed, and so Kendall-Doran concentration measures the number
of elements between the first and last attestation of a column, to be compared against
the sum of the incidence matrix: if a seriation is most optimal, the concentration mea-
sure will be identical to the sum of the matrix (there will be no 0s between occurrences
of a column).

The extension of the Kendall-Doran concentration principle is here extended here
to apply not just to columns but also to rows, and also to weight it by the sum of the
incidence matrix. This modified concentration measure is labeled κ, and is computed
as follows. Let ν be the sum of all cells of the seriated incidence matrix (i.e., the
strand) H ordered by the row and column rankings. Then let j(Hi·) be a function
that represents the smallest column index of the ith row of H that contains a value
of 1, and let J(Hi·) similarly be a function that represents the largest index that
contains a value of 1. Similarly, let i(H·j) and I(H·j) be functions that return the
smallest and largest row index of jth column of H which contains a value of 1. Then,
the concentration coefficient κ is defined as:

κ =
1

2ν


n∑

i=1

[J(Hi·)− j(Hi·)] +

k∑
j=1

[I(H·j)− i(H·j)]

 (1)

which will be bounded by 1, which indicates a perfect seriation, increasing the less
optimal a seriation becomes (i.e., it is a “loss” measure).

4.3. Deviance Testing

Finally, a measure of goodness-of-fit can be achieved for each row and column element
of H using a quadratic-logistic model, as has been conventional in ecology given its
flexibility in representing the concentration [15, 49], along the lines of a chi-squared
likelihood ratio test of deviance. That is, a row or column comprising a series of 0s
and 1s, hi· or h·j, represents the dependent variate, while the indices i or j represent
the independent variate. Using a GLM, the model for the rows is

p(i) =
1

1 + exp [−β0 − β1i+ β2i2]
(2)

and one likewise uses j and p(j) for column model. It should be noted that the optimal
condition for a seriation, as stipulated by the coefficient of concentration κ, would
results in a failure of fit for the quadratic-logistic model, since there will be perfect
separation of the 0/1 values along each column and row. Accordingly, this goodness-of-
fit test is not performed for row and columns which exhibit perfect separation. Instead,
these are assigned an NA value. But, where applicable for individual elements, the
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quadratic-logistic model provides a better means of assessing goodness-of-fit than using
a straightforward measure of row or column concentration, since instances where rows
and columns concentrate more densely around a central tendency will be penalized
less than those that are uniformly distributed between their maximum and minimum
ranking.

For rows and columns which are not perfectly separated, the goodness-of-fit test
uses the familiar likelihood ratio test of the deviance of the model against that of a
null hypothesis [10, 35], where deviance is

dev(M) = 2[logL(µ̂S ; y)− logL(µ̂M ; y)] (3)

logL(µ̂M ; y) is the log-likelihood under the model, and logL(µ̂S ; y) is the saturated
model, and where y = i or j, depending on whether rows or columns are being tested.
The deviance test is here not being used to test different models on the rows or
columns, but rather in an exploratory fashion to assess which rows and columns have
better or worse fit using the quadratic-logistic model. Let H0 be the null hypothesis
with corresponding saturated model M0, and let H1 be the alternative hypothesis with
M1 being the fitted model. Given that the degrees of freedom will be one less than
the total number of column or row elements (depending on whether row or columns
are being tested) under the null hypothesis, and two less under the fitted model, the
difference

dev(M0)− dev(M1) (4)

will be chi-squared distributed with d.f. = 1. The resulting p value indicates the
probability of obtaining a fit which is as or greater than the one obtained for that
particular row or column. A table in the Lakhesis Calculator shows the row or elements
with the highest p values, i.e., which fit the quadratic-logistic model more poorly and
hence might not be conducive to seriation, and which the investigator may want to
suppress or remove from the plot.

5. Application

In order to assess the quality of the method advocated here, nine different methods of
seriating the same data were used on the same data set, quattrofontanili (Table 1).
In addition to the original published seriation [9], the seriations were obtained by
Procrustes-fit CA (Sec. 2) and by “Lakhesizing” three investigator-selected strands,
contained in the qfStrands data object in the package (Sec. 3). Six other seriations
were obtained using preexisting methods. DCA was performed using the decorana()
function from vegan, PCA, PCA (Angular Distance), and the Bond-Energy Algo-
rithm with Traveling Salesperson Problem Solver (BEA-TSP) were implemented us-
ing seriate() from seriation, nMDS was implemented using monoMDS from vegan,
and a latent variable model using Bayesian ordination was performed using boral. A
replication script has been included for this application.

To assess the optimality of each of these methods, the concentration coefficient
coefficient κ (Eq. 1) is incorporated alongside other measures of optimality from the
criterion() function in seriation: the measure of effectiveness (ME), weighted
correlation coefficient (Cor R), and two stress measures, Moore and Neumann [20,
5-6]. The first two of these are merit measures (indicating larger values are more

12



Seriation Method
Original Original seriation by Close-Brooks and Ridgway [9].
CA Procrustes CA with Procrustes fitting to reference curve using lakhesis.
Lakhesis Consensus seriation of three investigator-selected partial

strands using Procrustes-fit CA using lakhesis.
DCA Detrended correspondence analysis using decorana() in vegan.
PCA Principal component analysis using seriation.
PCA Angle Principal component analysis using angular distance using

seriation.
BEA-TSP Bond-energy algorithm with a traveling salesperson problem

solver using seriation.
nMDS Non-metric multidimensional scaling using monoMDS() in

vegan.
LVA Latent variable model using Bayesian ordination, taking the

projection along the first axis, using boral.
Table 1. Nine methods of obtaining a seriated matrix (both row and column) for the quattrofontanili data.

Method Effectiveness Cor R Moore Neumann Concentration (κ)
Original 0.6311 270 4520 2196 4.771
CA Procrustes 0.9211 251 4810 2342 3.115
Lakhesis 0.9345 255 4826 2326 2.968
DCA 0.9394 233 4966 2414 2.996
PCA -0.7387 200 4950 2454 6.090
PCA Angle -0.4317 228 4968 2408 4.420
BEA-TSP -0.5059 411 3848 1700 5.302
nMDS 0.1719 162 5380 2596 6.611
LVA -0.8668 217 4948 2386 4.314

Table 2. Criteria of the quality of the seriated matrix obtained for nine different methods including that of

the published original. The first two columns are merit measures (higher values are more optimal) and the last

three columns are loss measures (lower values are more optimal).

optimal) and the last two are loss measures (lower values are more optimal). The
concentration coefficient κ is a loss measure.

The results of these criteria are shown in Table 2. The results of Lakhesis analysis
on three investigator-defined strands contained in qfStrands elicited the most optimal
concentration coefficient κ = 2.968, with DCA close behind at κ = 2.996. DCA pre-
sented a slightly better measure of effectiveness (ME), with Lakhesis second. Lakhesis
resulted in the third-highest weighted correlation (Cor R), and came in third or fourth
in terms of Moore and Neumann stress. Using Procrustes-fit CA resulted in the third-
lowest concentration coefficient and ME, and was third or fourth in terms of Cor R
and Moore and Neuman stress. BEA-TSP resulted in the most optimal seriations in
terms of Cor R and Moore and Neumann stress, while that method performed poorly
in terms of the other criteria, with DCA eliciting middling scores for those measures.
Generally, PCA and nMDS produced the least optimal seriations. In sum, however,
different measures of optimality appeared to favor different methods. BEA-TSP espe-
cially was outperforming all methods in terms of weighted correlation and the stress
measures. It should however be noted that stress measures were developed for gradient,
frequency seriations, and so may prove less reliable for binary data.

In order to investigate whether methods each producing their own particular se-
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Figure 3. Coefficients of agreement, ρ2rρ
2
c , among the methods tested in Table 1.

riation, or whether they were all more or less consonant with one another, a matrix
plot of the agreement coefficients, ρ2rρ

2
c , between each method was produced (Fig. 3).

It is clear that the original seriation, Procrustes-fit CA, Lakhesis analysis, and DCA
all have comparatively high coefficients of association, and are generally producing
the seriations which agree with one another; these methods have the highest concen-
tration and effectiveness measures as well. Lakhesis had coefficient of association of
ρ2rρ

2
c = 0.97 with DCA, 0.89 with Procrustes-fit CA, and 0.79 with the original seri-

ation. Beyond these highly associated methods, LVA via boral had an association of
0.64 with Lakhesis and DCA both. The other methods scored much lower measures
of association. In particular, BEA-TSP had its largest measure of association of only
0.14 with DCA, indicating its seriation was highly idiosyncratic. Seriations attained
through PCA, PCA Angle, and nMDS were all likewise highly particular, in addition
to having generally low optimality measures.

There is accordingly a clear neighborhood of optimal solutions produced by cor-
respondence analysis-affiliated methods (DCA and the two methods introduced here,
Procrustes-fit CA and consensus seriation via Lakhesis). By providing an exploratory
framework in which to identify investigator-selected seriations, Lakhesis analysis af-
fords the ability to harmonize different well-seriated selections of elements into an
optimal ordering that compares well with other established methods. Given that in-
cidence matrices might have multiple potential seriations with high optimality, such
coefficients of agreement are useful in determining whether there is a single, highly
optimal neighborhood of solutions, generated by affiliated methods, as here.

6. Conclusion and Discussion

Seriation or ordination remains very much an art in terms of the choice of methods
used to find an optimal ordering for matrix rows and columns. Procrustes-fitting corre-
spondence analysis scores to a well-seriated reference curve represents another choice
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of methodology, which performs well in comparison with other methods, and even
outperforms in terms of the concentration principle. However, successful seriations de-
pend ultimately on the data themselves. Accordingly, this paper offers investigators a
more rapid means of graphically selecting score points and re-running correspondence
analysis, selecting their own seriated sequences, which can then be harmonized into a
single consensus. This strategy is useful especially in cases where an investigator has
a large matrix, whose plot may initially be difficult to read but which may contain
a well-seriated subset of rows and columns. This is especially the case given flexible
sampling frameworks, where the rows and columns of an incidence matrix may admit
the incorporation of more or fewer elements.

Data Availability Statement

The lakhesis package containing the manual of functions and data to per-
form the results outlined in this paper is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/. These
results were generated using the development version (v. 0.0.2) hosted at
https://github.com/scollinselliott/lakhesis, which will be submitted to
CRAN along with this paper as the supporting citation, if accepted for publication.
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Supplementary Material Online

The “Guide to Lakhesis” submitted with this paper is also included within the
lakehsis package as a vignette.

The replication script includes the R code for producing the results in Section 5.
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